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1) Planetary Boundary Layers

-The portion of a geophysical fluid that is directly

  influenced (forced) by the boundary
-Geophysical fluids “feel” the earth’s rotation, ! = 7.3 x 10-5  s-1
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1) Turbulent (fully 3D) Boundary Layers

Reynolds’  Decomposition of the state variables :

X = {U, V , W, T, S, P, !(T,S,P) }

  =  X + x              :     <X> = X  ;    <x> = 0

  = Mean + fluctuation



1) Turbulent (fully 3D) Boundary Layers

Reynolds’  Decomposition of the state variables :

X = {U, V , W, T, S, P, !(T,S,P) }

  =  X + x              :     <X> = X  ;    <x> = 0

  = Mean + fluctuation

NUMERICAL MODELS :

X  = Resolved   +  Unresolved (sub-grid-scale)

?  Equivalent to Mean + fluctuation  ?

Often assumed (implicitly),  but NOT equivalent

< Unresolved> " 0  ,  in general



1) Turbulent (fully 3D) Boundary Layers

Reynolds’  Decomposition of the state variables :

X = {U, V , W, T, S, P, !(T,S,P) }   =  X + x,     <x> = 0

                                                          = Mean + fluctuation

Consider Advection of X by the total flow :

U  • #X  =  U $x X   + V $y X    +  W $z X

              = $x U X  +  $y  V X + $z W X
                -  X  [$x U  + $y V  +  $z W  ]

                         [    ]  =   0   (uncompressible)



1) Turbulent (fully 3D) Boundary Layers

Reynolds’  Decomposition of the state variables :

X = {U, V , W, T, S, P, !(T,S,P) }   =  X + x,     <x> = 0

                                                          = Mean + fluctuation
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                -  X ($x U  + $y V  +  $z W
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1) Turbulent (fully 3D) Boundary Layers
 Now  Consider vertical advection of U velocity   (X = U):
$z W U   =   $z (W  + w) (U + u )   = $z ( W  U +  w U + u W  + u w )
Average , < >   = $z ( W  U )   + $z ( < u w > )

NB:  the divergence of the turbulent transport, < u w >
(Reynolds flux,  turbulent flux / stress,  kinematic flux)

The surface flux, < u w >o  =  u* 2
 where  u*  is the turbulent velocity scale

SIM    <w x>o =  u*  x*   ;   x*  = {  t*  ,  s*  , b*  , etc.  }



1) Turbulent (fully 3D) Boundary Layers

-Consider  mean U momentum equation

$tU  =

        - U $xU - V $y U - W $zU ,    Advection  (non-linear)

        + f  V                      ,     Coriolis     (earth’s rotation)

        - $xP / %                  ,     Pressure gradient

        - $z <wu>               ,    Turbulent vertical mixing (NL)

       - $z <uu>  - $z <vu> ,  Lateral mixing (NL)

        + &m $zzU               ,    Molecular viscosity (Damp)



1) Boundary Layer :  REGIMES

-Distance, d from the boundary is the important length scale

$tU  =  - U $xU - V $xU - W $z U  ,    Advection  (non-linear)

            + f  V                                ,     Coriolis     (earth’s rotation)
            -  $xP / %                          ,     Pressure gradient

            - $z <wu>                         ,    Turbulent mixing (non-linear)

             + &m $zzU                         ,    Molecular viscosity

Interior  ( small Rossby Number)

Rossby Number,   Ro   =   non-linear   =   U
                                                                  Coriolis            f  d  ,
Where  f = 2 ! sin(latitude)  is the vertical Coriolis parameter

               !  10-4  s-1

Therefore , far from the boundary there will be a geophysical fluid

interior ,  characterized by  Ro << 1
(geostrophic   flow    ===>>   fV   =  $xP / %  )



1) Reynolds’ Number,  Re

$tU  =  - U  $xU - V $yU - W $z U  ,    Advection  (non-linear)

            + f  V                    ,     Coriolis     (earth’s rotation)
            -  % $xP                 ,     Pressure gradient

            - $z <wu>              ,    Vertical turbulent mixing ( non-linear)

             + &m $zzU               ,    Molecular viscosity

Viscous Surface Layer ( small Re)

Reynolds Number,  Re  =  non-linear   =  d u*  = 10-2   10-4  =  1
                                           viscous            &m            10-6

At small d (< 1 cm)  there is a viscous sub-layer !!!

At greater d (Re>>1), a turbulent (3-d) boundary layer !!!

NB  In OBL  non-linear advection  is turbulent mixing



1) 1-D  (vertical)  Boundary  Layer  Mixing
$tU  =  - U  $xU - W $z U  ,    Advection  (non-linear)

            + f  V                    ,     Coriolis     (earth’s rotation)
            -   $xP / %              ,     Pressure gradient

            - $z <wu>              ,    Turbulent mixing (vertical)

             + &m $zzU               ,    Molecular viscosity

TURBULENT BOUNDARY LAYER :

 balance  LHS tendency with vertical turbulent mixing

$tX     =   - $z <wx>    =?   -$z  ( -Kx   $z  X )

                                        down-gradient diffusion

K[u,v]   = Km     is turbulent viscosity ;

K[t,s,b] = Kh      is turbulent diffusivity

            both have units !!!  Length2 / time  (m2/s)



1) 1-D  (vertical)  Boundary  Layer  Mixing
$tU  =  - U  $xU - W $z U  ,    Advection  (non-linear)

            + f  V                    ,     Coriolis     (earth’s rotation)
            -   $xP / %              ,     Pressure gradient

            - $z <wu>              ,    Turbulent mixing (vertical)

             + &m $zzU               ,    Molecular viscosity

TURBULENT BOUNDARY LAYER :  Steady state

balance of vertical turbulent mixing   with  Coriolis

$z <wu>    =  f V      =  -$z  ( Km  $z  U )

$z <wv>    =  -f U     =  -$z  ( Km   $z  V )

Ekman layer ( spiral for viscosity Km constant)



1) 1-D  (vertical)  Boundary  Layer  Mixing
$tU  =  - U  $xU - W $z U  ,    Advection  (non-linear)

            + f  V                    ,     Coriolis     (earth’s rotation)
            -   $xP / %              ,     Pressure gradient

            - $z <wu>              ,    Turbulent mixing (vertical)

             + &m $zzU               ,    Molecular viscosity

TURBULENT BOUNDARY LAYER :

 balance LHS tendency   with Coriolis

$tU     =   f V    +  $z  <uw>

$tV     = - f U    +  $z  <vw>

 Inertial  Oscillations : wind (u* >0)  forces and/or damps

NB :  All terms  and Resolved + unresolved

 ====>>  Ocean General Circulation Model



2) The Ocean Boundary Layer (OBL)

  X =  {U, V, T, -S, P, -%(T,S,P) }
z

d

Atmospheric  forcing

 surface waves
 skin

  “mixed” layer,

                    Re >>1

 gradient layer,   Ri < 1 

 interior,       Ro << 1

turbulent

transport, 

<wx>,  

 geostrophy (Coriolis

balances  pressure gradient)

        transition  (thermocline ,

           halocline, pycnocline),

viscous

Layered structure  is a consequence of the changing balance

  of terms with increasing distance, d.

Re ~ 1 1cm

50m

10m

5km

h



2) The Richardson Number,  Ri

Ri  = N22          =  stable PE           <  0.25   ===>>   local turbulent
      ($z V )2           available KE       (empirical)            mixing  (K-H)

                                                                         (Kelvin-Helmholtz)

       NON - DIMENSIONAL

Stratified Shear Flow :        Buoyancy  B(z) = -g %(z) / %o    [m/s2]

Stratification is  Buoyancy Frequency, N,   N2  = $z B  > 0  [s-2]

Shear   is $z V   [s-1]   for   V  =  (U, V),   high shear is unstable

                                                                lots of kinetic energy, KE

High stratification means stable (negative) potential energy, PE



3) Turbulent Surface Forcing

Wind Stress,  'o      = ( 'x , 'y )o

Freshwater flux,   Fo  =    P    ,    Precipitation,   > 0

                                      + E   ,    Evaporation, usually < 0

Surface heat flux,  Qo

                =   Qnsol                  ,          non-solar heat fluxes  <  0

              + SWnet  (0)        ,          net surface solar radiation > 0

             -  SWnet  (ds),       ,         solar not driving the OBL

In limit of ds = 0,  solar radiation does not drive OBL,

Clearly  ds  should not  be beyond the OBL



3) Surface Kinematic Fluxes

 | <v w>o | =    | 'o |  / %o               =   u* u*  =  u*2
  

  <w t>o    =  - Qo  /  (%o  Cp )   =   u*  t*

<w s>o   =   Fo   So  / %o             =   u*  s*

Surface buoyancy flux  Bo = -g ( ( <w t>o  - ) <w s>o  )

 Monin-Obukhov Length,  L  = u*3   /  (*  Bo )  ;    < 0  unstable

Depth where wind power ( = Force x Velocity = * u*3)

equals PE loss (gain) due to Bo>0 (Bo < 0)  =  Bo  L

%(T,S,P)  + ( = 2 - 4 x 10-4   C-1
     ; )  =  3.5 x 10-4  (psu)-1 



3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the

surface roughness elements, the ONLY important

turbulence  parameters are the distance, d, and the

surface kinematic  fluxes.

 | <v w>o | =    | 'o |  / %o         =    u* u*    =u*2

  <w t>o    =  - Qo  /  (%o  Cp )   =   u*  t*

<w s>o   =   Fo   So  / %o          =   u*  s*

Monin-Obukhov Length,  L  = u*3   /  (*  Bo )  ;    < 0  unstable

Depth where wind power ( = Force x Velocity = * u*3)

equals PE loss (gain) due to Bo>0 (Bo < 0)  =  Bo  L



3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the

surface roughness elements, the ONLY important

turbulence  parameters are the distance, d, and the

surface kinematic  fluxes.

KEY :   Dimensional  Analysis

5 parameters  (u*,  t* , s* , d,  L )

4 units (m, s, ºK, psu)

Non-dimensional groups are functions of  (d/L), 

the stability parameter   ( < 0, unstable )



3) Dimensional Analysis  ( d = -z)

  Let :  <w x>o  =   u*  x*   =    - Kx    $z X  ,  define diffusivity,   Kx

Non-dimensional gradients :   -$z X   d  /  x*   ,   -x (d/L),

 Empirically  * = 0.4,  von Karman constant ,

 makes -x  (0)  = 1 in neutral (wind only) forcing  (Bo = 0,  L+ . )

Near the surface of a PBL  similarity theory (MOS)  says

        Kx   + - u*  x*      =     * d u*          +       *  u* d

                     $z X              -x  (d/L)     neutral

 * $z X  =  x* / z   ===>> neutral logarithmic profiles,  X(z)



4)  The convective OBL  (Bo < 0 )

Surface buoyancy flux,    Bo   =   -<wb>o      <  0

Wind stress,                     'o   =  0  ;  u* = 0

Convective Velocity Scale ,             w*  =  (-Bo  h)1/3 ,
Where h is boundary layer depth  : / =  d / h

d/L    =  *  d  Bo   /  u*3   +       -.

-x  (d/L) +   ( 1 - c d/L )-1/3   = ( 1  - c / h/L )-1/3

u*/ -x   +  (u*3  - c * d Bo )
1/3 +  (c *  /)1/3  w*



4)  The convective OBL : 0B=0t !z- <wb>

Buoyancy
z=-d

- h1

 cool

initial

Conservation :

Cool = Initial-Green



4)  The convective OBL : 0B=0t !z- <wb>

Buoyancy
z=-d

- h1

 cool

A

A

Penetrative  Convection

Green - Red  =  A

initial

final

Conservation :

Cool = Initial-Green



4)  The convective OBL : 0B=0t $ z-<wb>

B
z=-d

- h1

 <wb>

<wb>o

1-.2cool

A

A

z=-d

<wb> > 0

!zB  = 0

non-local
   entrainment

      depth   he

Penetrative 

Deepening (Ri)

initial

final

h2

<wb> =  -K !zB

downgradient

diffusion

<wb>e



5)  OBL  Schemes

Mixed-Layer Models Turbulence Closure Models

 Prognostic,  $th

Diagnostic,  h 

1st order

2nd order

TKE budget

Ekman

Pacanowski-Philander

K-Profile (KPP)

Mellor-Yamada (1984)

Gaspar et al.  (1990)

Kraus-Turner (1984)

Niiler (1975)

Garwood (1978)

Gaspar (1988)

Price-Weller-Pinkel



4)  1st order closures  (local)

<wx>  =  - Kx    $z XASSUME :  analogy to molecular diffusion

e.g.  Ekman :     Ku   =  Kv    =   K m     =    CONSTANT   

BUT  non-zero fluxes  are observed in regions of

zero local gradient.

Therefore, the analogy is known to be wrong in a

PBL,  and can’t be corrected by any choice of  KX ,

but may be good enough for some problems.

K (Ri)   formulations are popular despite this problem

             (Pakanowski and Philander (1981)

Trick :  A 50m thick upper grid level is like a OBL  with infinite Kx



5)  1st order closures  ( non-local K-Profile)

Temperature variance equation  says

         <wx>  =  - Kx   (  $z X   -  1x  )

Non-local   -   Kx knows  about h,  /,  and the surface forcing

                  -    1x  gives non-zero flux for $z X = 0, as observed


