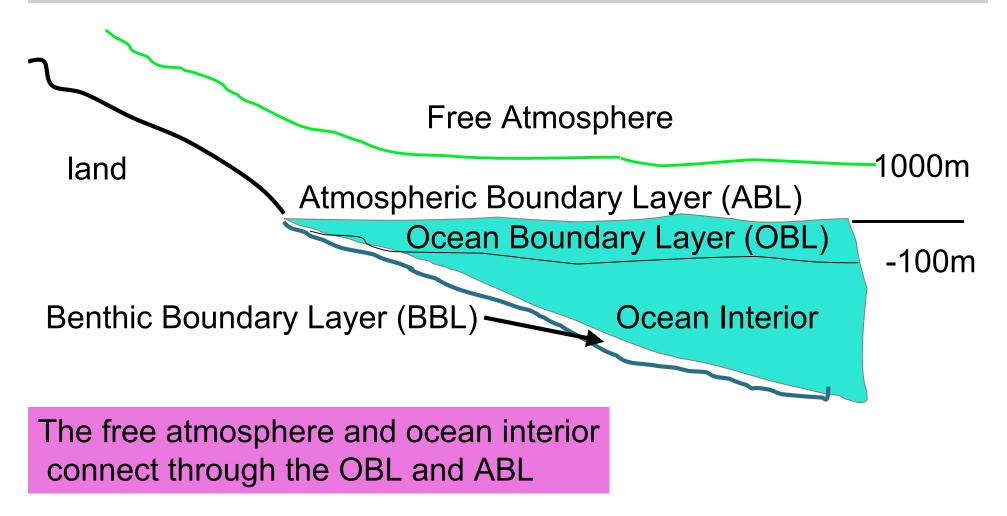
The Oceanic Boundary Layer (OBL)

- Planetary Boundary Layers
- The OBL
- Surface Forcing and Similarity Theory
- The Convective OBL
- Turbulence closures

Modeling and parameterizing ocean planetary boundary layers. In OCEAN MODELING AND PARAMETERIZATION, E.P. Chassignet and J. Verron (Eds.) Kluwer, 1998.

1) Planetary Boundary Layers

-The portion of a geophysical fluid that is directly influenced (forced) by the boundary -Geophysical fluids "feel" the earth's rotation, $\Omega = 7.3 \times 10^{-5} \text{ s}^{-1}$



Reynolds' Decomposition of the state variables :

$$X = \{U, V, W, T, S, P, \rho(T,S,P)\}$$

= X + x : <X> = X ; <x> = 0

= Mean + fluctuation

Reynolds' Decomposition of the state variables :

$$X = \{U, V, W, T, S, P, \rho(T, S, P)\}$$

= X + x : $\langle X \rangle = X$; $\langle x \rangle = 0$

= Mean + fluctuation

NUMERICAL MODELS :

- X = Resolved + Unresolved (sub-grid-scale)
- ? Equivalent to Mean + fluctuation ?

```
Often assumed (implicitly), but NOT equivalent
```

```
< Unresolved> \neq 0 , in general
```

Reynolds' Decomposition of the state variables :

 $X = \{U, V, W, T, S, P, \rho(T,S,P)\} = X + x, <x> = 0$ = Mean + fluctuation

Consider Advection of X by the total flow :

$$\boldsymbol{U} \bullet \nabla \boldsymbol{X} = \boldsymbol{U} \partial_{\mathbf{x}} \boldsymbol{X} + \boldsymbol{V} \partial_{\mathbf{y}} \boldsymbol{X} + \boldsymbol{W} \partial_{\mathbf{z}} \boldsymbol{X}$$

$$= \partial_{x} U X + \partial_{y} V X + \partial_{z} W X$$
$$- X \left[\partial_{x} U + \partial_{y} V + \partial_{z} W \right]$$

[] = 0 (uncompressible)

Reynolds' Decomposition of the state variables :

 $X = \{U, V, W, T, S, P, \rho(T,S,P)\} = X + x, <x> = 0$ = Mean + fluctuation

Consider Advection of X by the total flow : $U \bullet \nabla X = U \partial_x X + V \partial_y X + W \partial_z X$ $= \partial_x U X + \partial_y V X + \partial_z W X$ $- X (\partial_x U + \partial_y V + \partial_z W)$

$$=\partial_{x}UX + \partial_{y}VX + \partial_{z}WX$$

Now Consider vertical advection of U velocity (X = U): $\partial_z WU = \partial_z (W + w) (U + u) = \partial_z (W U + w U + u W + u w)$ Average, $\langle \rangle = \partial_z (W U) + \partial_z (\langle u w \rangle)$

NB: the divergence of the turbulent transport, < u w > (Reynolds flux, turbulent flux / stress, kinematic flux)

The surface flux, $\langle u w \rangle_{o} = u^{*2}$

where u^* is the turbulent velocity scale

SIM $\langle w x \rangle_{o} = u^{*} x^{*}$; $x^{*} = \{t^{*}, s^{*}, b^{*}, etc.\}$

-Consider mean U momentum equation

- $\partial_t U = -U \partial_x U V \partial_y U W \partial_z U$, Advection (non-linear)
 - + f V , Coriolis (earth's rotation)
 - $\partial_x P / \rho$, Pressure gradient
 - ∂_z <wu>, Turbulent vertical mixing (NL)
 - $\partial_z < uu > \partial_z < vu >$, Lateral mixing (NL)

+ $\upsilon_m \partial_{zz} U$, Molecular viscosity (Damp)

1) Boundary Layer: REGIMES

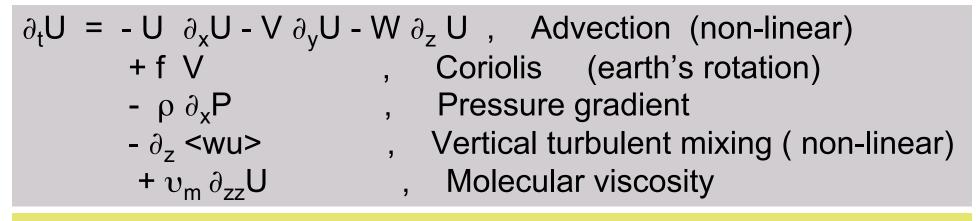
-Distance, d from the boundary is the important length scale				
$\partial_t U = - U \partial_x U - V \partial_x U - W \partial_z U$	Advect	ion (non-linear)		
+fV	Corio	is (earth's rotation)		
- ∂ _x P / ρ	Pressu	ure gradient		
- ∂ _z <wu></wu>	Turbul	ent mixing (non-linear)		
+ $\upsilon_m \partial_{zz} U$	Molec	ular viscosity		

Interior (small Rossby Number)

Rossby Number, Ro = non-linear = U
Coriolis f d ,
Where f = 2
$$\Omega$$
 sin(latitude) is the vertical Coriolis parameter
 $\approx 10^{-4}$ s⁻¹

Therefore , far from the boundary there will be a geophysical fluid interior , characterized by Ro << 1 (geostrophic flow ===>> fV = $\partial_x P \,/\,\rho$)

1) Reynolds' Number, Re



Viscous Surface Layer (small Re)

Reynolds Number, Re = non-linear = $\frac{d u^*}{v_m} = \frac{10^{-2}}{10^{-4}} = 1$ viscous v_m 10^{-6}

At small d (< 1 cm) there is a viscous sub-layer !!!

At greater d (Re>>1), a turbulent (3-d) boundary layer !!!

NB In OBL non-linear advection is turbulent mixing

TURBULENT BOUNDARY LAYER : balance LHS tendency with vertical turbulent mixing

$$\partial_t X = -\partial_z < wx > =? -\partial_z (-K_x \partial_z X)$$

down-gradient diffusion
 $K_{[u,v]} = K_m$ is turbulent viscosity ;
 $K_{[t,s,b]} = K_h$ is turbulent diffusivity
both have units !!! Length² / time (m²/s)

1) 1-D (vertical)	В	oundary	Layer	Mixing
$\partial_t U = -U \partial_x U - W \partial_z U$,	Advection	(non-linea	ar)
+ f V	,	Coriolis	(earth's r	rotation)
- ∂ _x P / ρ	,	Pressure	•	
- ∂ _z <wu></wu>	,	Turbulent	mixing (ve	ertical)
+ $\upsilon_m \partial_{zz} U$,	Molecula	r viscosity	/

TURBULENT BOUNDARY LAYER : Steady state balance of vertical turbulent mixing with Coriolis

$$\partial_z < wu > = f V = -\partial_z (K_m \partial_z U) \partial_z < wv > = -f U = -\partial_z (K_m \partial_z V)$$

Ekman layer (spiral for viscosity K_m constant)

1) 1-D (vertical)	B	oundary	Layer	Mixing
$\partial_t U = -U \partial_x U - W \partial_z U$,	Advection	(non-linea	ar)
+ f V	,	Coriolis	(earth's i	rotation)
- ∂ _x P / ρ	,	Pressure	gradient	
- ∂ _z <wu></wu>	,	Turbulent	mixing (ve	ertical)
+ $\upsilon_m \partial_{zz} U$,	Molecula	r viscosity	/

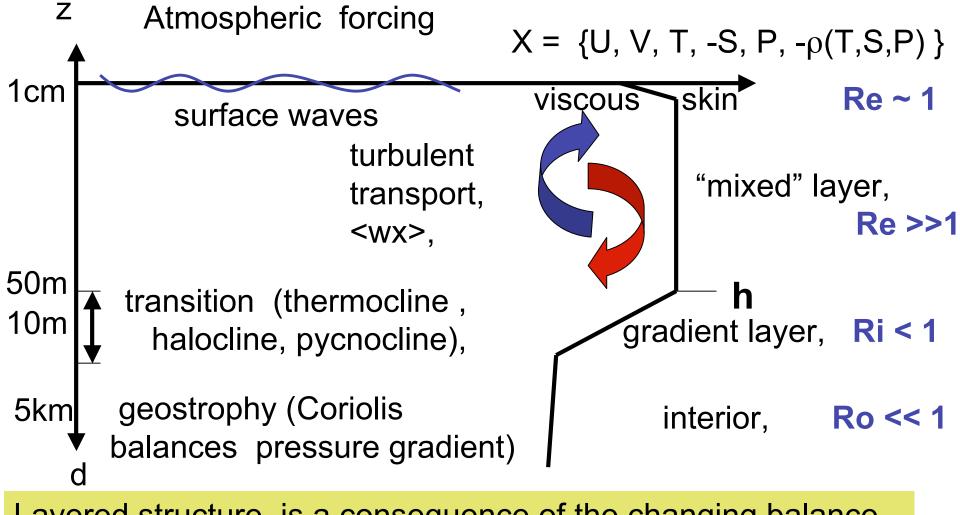
TURBULENT BOUNDARY LAYER : balance LHS tendency with Coriolis

$\partial_t U$	= f V	+ ∂_z	<uw></uw>
$\partial_t V$	= - f U	+ ∂_z	<vw></vw>

Inertial Oscillations : wind (u* >0) forces and/or damps

NB : All terms and Resolved + unresolved ====>> Ocean General Circulation Model

2) The Ocean Boundary Layer (OBL)



Layered structure is a consequence of the changing balance of terms with increasing distance, d.

2) The Richardson Number, Ri

Stratified Shear Flow : Buoyancy $B(z) = -g \rho(z) / \rho_0 [m/s^2]$ Stratification is Buoyancy Frequency, N, $N^2 = \partial_z B > 0 [s^{-2}]$ Shear is $\partial_z V$ [s⁻¹] for V = (U, V), high shear is unstable lots of kinetic energy, KE

High stratification means stable (negative) potential energy, PE

Ri =
$$\underline{N}^2$$
 = stable PE < 0.25 ===>> local turbulent
($\partial_z V$)² available KE (empirical) mixing (K-H)
(Kelvin-Helmholtz)

NON - DIMENSIONAL

3) Turbulent Surface Forcing

Wind Stress, $\mathbf{T}_{O} = (\tau_{x}, \tau_{y})_{O}$

Surface heat flux, Q_o

non-solar heat fluxes < 0 net surface solar radiation > 0 solar not driving the OBL

In limit of $d_s = 0$, solar radiation does not drive OBL, Clearly d_s should not be beyond the OBL

3) Surface Kinematic Fluxes

$$| \langle \mathbf{v} | \mathbf{w} \rangle_{o} | = | \mathbf{\tau}_{o} | / \rho_{o} = \mathbf{u}^{*} \mathbf{u}^{*} = \mathbf{u}^{*2}$$

 $\langle \mathbf{w} | \mathbf{v} \rangle_{o} = - \mathbf{Q}_{o} / (\rho_{o} | \mathbf{C}_{p}) = \mathbf{u}^{*} \mathbf{t}^{*}$
 $\langle \mathbf{w} | \mathbf{s} \rangle_{o} = \mathbf{F}_{o} | \mathbf{S}_{o} / \rho_{o} = \mathbf{u}^{*} | \mathbf{s}^{*}$

Surface buoyancy flux $B_o = -g (\alpha < w t >_o - \beta < w s >_o)$ $\rho(T,S,P) \rightarrow \alpha = 2 - 4 \times 10^{-4} C^{-1}$; $\beta = 3.5 \times 10^{-4} (psu)^{-1}$

Monin-Obukhov Length, $L = u^{*3} / (\kappa B_o)$; < 0 unstable

Depth where wind power (= Force x Velocity = κ u^{*3}) equals PE loss (gain) due to B_o>0 (B_o < 0) = B_o L

3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the surface roughness elements, the ONLY important turbulence parameters are the distance, d, and the surface kinematic fluxes.

$$| < \mathbf{v} | w >_{o} | = | \mathbf{T}_{O} | / \rho_{o} = u^{*} u^{*} = u^{*2}$$

$$< w | t >_{o} = - Q_{o} / (\rho_{o} | C_{p}) = u^{*} | t^{*}$$

$$< w | s >_{o} = F_{o} | S_{o} / \rho_{o} = u^{*} | s^{*}$$

Monin-Obukhov Length, $L = u^{*3} / (\kappa B_o)$; < 0 unstable

Depth where wind power (= Force x Velocity = κ u^{*3}) equals PE loss (gain) due to B_o>0 (B_o < 0) = B_o L

3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the surface roughness elements, the ONLY important turbulence parameters are the distance, d, and the surface kinematic fluxes.

KEY : Dimensional Analysis
5 parameters (u*, t*, s*, d, L)

```
4 units (m, s, <sup>o</sup>K, psu)
```

Non-dimensional groups are functions of (d/L), the stability parameter (< 0, unstable)

3) Dimensional Analysis (d = -z)

Non-dimensional gradients : $-\partial_z X d / x^* \propto \phi_x (d/L)$,

Empirically $\kappa = 0.4$, von Karman constant, makes $\phi_x(0) = 1$ in neutral (wind only) forcing $(B_o = 0, L \rightarrow \infty)$

 $\kappa \partial_z X = x^* / z = = >>$ neutral logarithmic profiles, X(z)

Let :
$$\langle w x \rangle_o = u^* x^* = -K_x \partial_z X$$
, define diffusivity, K_x

Near the surface of a PBL similarity theory (MOS) says

$$\begin{array}{rcl} \mathsf{K}_{\mathsf{x}} \xrightarrow{} & - \underline{\mathsf{u}}^{*} & \underline{\mathsf{x}}^{*} & = & \underline{\kappa} \ d \ u^{*} & \xrightarrow{} & \kappa \ u^{*} \ d \\ & \partial_{z} \ \mathsf{X} & & \varphi_{\mathsf{x}} \ (\mathsf{d}/\mathsf{L}) & \mathsf{neutral} \end{array}$$

4) The convective OBL $(B_o < 0)$

Surface buoyancy flux, $B_o = -\langle wb \rangle_o < 0$ Wind stress, $\tau_o = 0$; $u^* = 0$

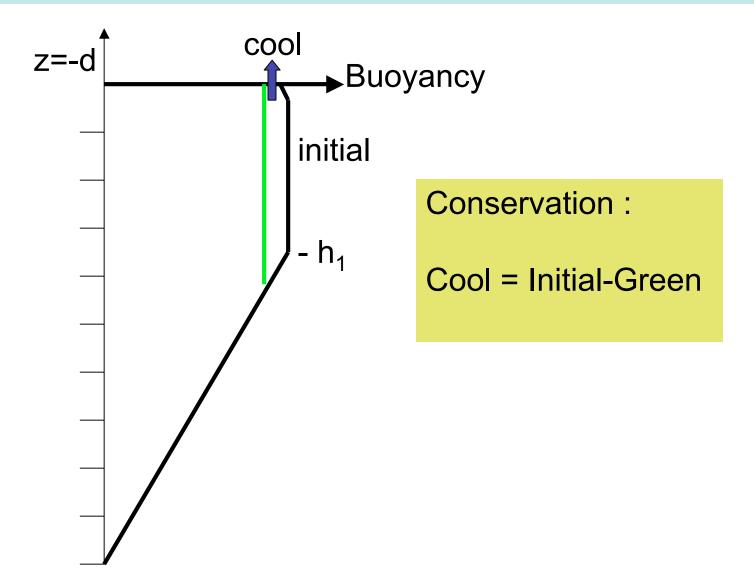
Convective Velocity Scale , $w^* = (-B_o h)^{1/3}$, Where h is boundary layer depth : $\sigma = d / h$

$$d/L = \kappa d B_0 / u^{*3} \rightarrow -\infty$$

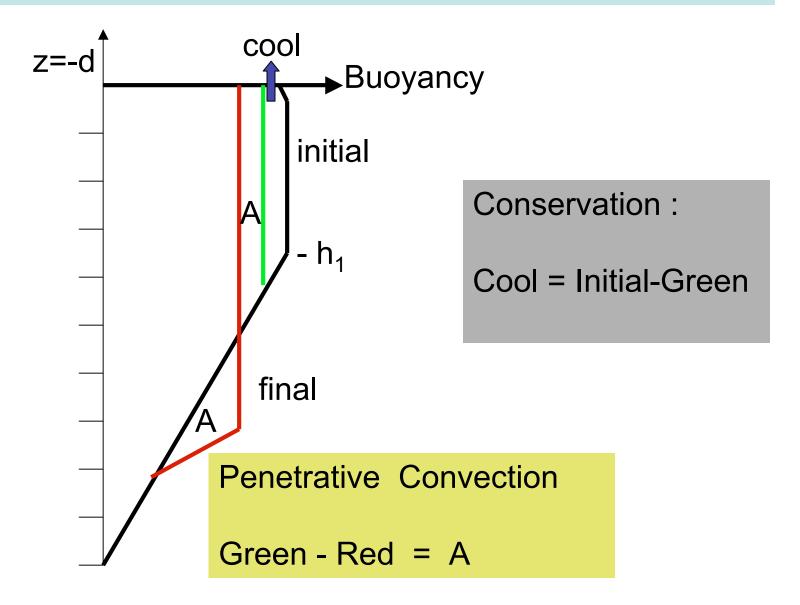
$$\phi_x (d/L) \rightarrow (1 - c d/L)^{-1/3} = (1 - c \sigma h/L)^{-1/3}$$

$$u^*/\phi_x \rightarrow (u^{*3} - c \kappa d B_o)^{1/3} \rightarrow (c \kappa \sigma)^{1/3} w^*$$

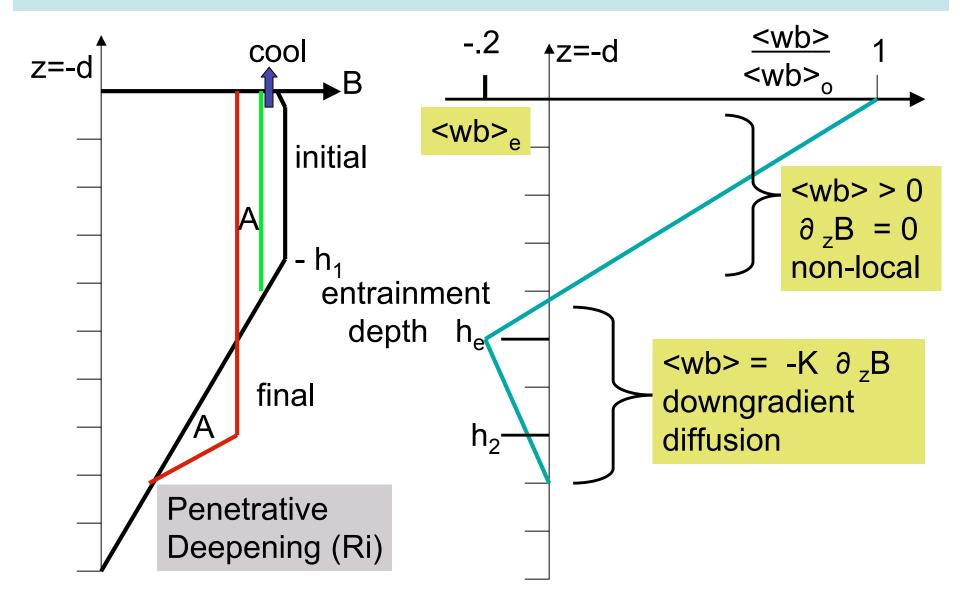
4) The convective OBL : $\Delta B = \Delta t \partial_z - \langle wb \rangle$



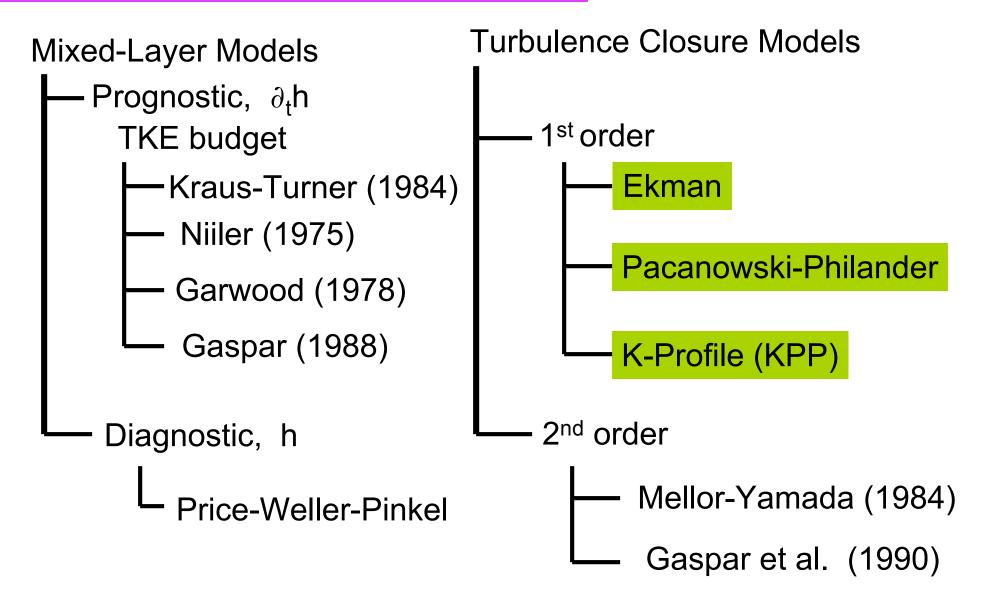
4) The convective OBL : $\Delta B = \Delta t \partial_z - \langle wb \rangle$



4) The convective OBL : $\Delta B = \Delta t \partial_z - \langle wb \rangle$



5) OBL Schemes



4) 1st order closures (local)

ASSUME : analogy to molecular diffusion $\langle wx \rangle = -K_x \partial_z X$

e.g. Ekman : $K_u = K_v = K_m = CONSTANT$

BUT non-zero fluxes are **observed** in regions of zero local gradient.

Therefore, the analogy is known to be wrong in a PBL, and can't be corrected by any choice of K_X , but may be good enough for some problems.

K (Ri) formulations are popular despite this problem (Pakanowski and Philander (1981)

Trick : A 50m thick upper grid level is like a OBL with infinite K_x

5) 1st order closures (non-local K-Profile)

Temperature variance equation says

$$\langle wx \rangle = -K_x (\partial_z X - \gamma_x)$$

Non-local - K_x knows about h, σ , and the surface forcing - γ_x gives non-zero flux for $\partial_z X = 0$, as observed