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1) Planetary Boundary Layers

-The portion of a geophysical fluid that is directly
influenced (forced) by the boundary
-Geophysical fluids “feel” the earth’s rotation, @ = 7.3 x 10 s
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The free atmosphere and ocean interior
connect through the OBL and ABL



1) Turbulent (fully 3D) Boundary Layers

Reynolds’ Decomposition of the state variables :
X={U V,WT,S,P, po(T,S,P) }
= X+X . <X>=X: <x>=0

= Mean + fluctuation



1) Turbulent (fully 3D) Boundary Layers

Reynolds’ Decomposition of the state variables :

X={UV,WT,S,P, po(T,S,P) }
= X+X . <X>=X: <x>=0
= Mean + fluctuation

NUMERICAL MODELS :
X =Resolved + Unresolved (sub-grid-scale)
? Equivalent to Mean + fluctuation ?

Often assumed (implicitly), but NOT equivalent

< Unresolved> = 0 , in general



1) Turbulent (fully 3D) Boundary Layers

Reynolds’ Decomposition of the state variables :

X={U V, W TS, P, ofl,SP)} = X+x, <x>=0
= Mean + fluctuation

Consider Advection of X by the total flow :
UVvX =UosX +Vi X + Wao X

=, UX + o, VX+09, WX
- X [o,U +0,V + 0, W]

[ ] = O (uncompressibe)



1) Turbulent (fully 3D) Boundary Layers

Reynolds’ Decomposition of the state variables :

X={U V, W TS, P, ofl,SP)} = X+x, <x>=0
= Mean + fluctuation

Consider Advection of X by the total flow :
U-.VvX =UjX +Vi X + Wi X
=0, UX + 9, VX+0, WX
- XU +o,V + 9, W

=, UX + 0, VX+09, WX



1) Turbulent (fully 3D) Boundary Layers

Now Consider vertical advection of U velocity (X = U):
o, WU = 9,(W +w) U+u) =9, ( WU+ wU+uW +uw)
Average ,<> =04, (W U) +9,(<uw>)




1) Turbulent (fully 3D) Boundary Layers

-Consider mean U momentum equation

" =— UoU-Vo U-Wo,U, Advection (non-linear)
+f V , Coriolis (earth’s rotation)
-o,P/p , Pressure gradient
- 9, <WU> , Turbulent vertical mixing (NL)

- d, <uu> -9, <vu>, Lateral mixing (NL)

+ v, 0,,U , Molecular viscosity (Damp)



1) Boundary Layer : REGIMES

-Distance, d from the boundary is the important length scale
o =-UogU-VoU-Wo,U , Advection (non-linear)

+f V , Coriolis (earth’s rotation)
- o,P/p , Pressure gradient

- 9, <WU> ,  Turbulent mixing (non-linear)
+ v, 0,,U , Molecular viscosity

Interior ( small Rossby Number)

Rossby Number, Ro = non-linear = U
Coriolis fd,
Where f =2 Q sin(latitude) is the vertical Coriolis parameter
~ 104 s

Therefore , far from the boundary there will be a geophysical fluid
interior , characterized by Ro << 1
(geostrophic flow ===>> f{V

o,P/p )



1) Reynolds’ Number, Re
wJ = -UoU-VoU-Wa,U , Advection (non-linear)

+f V , Coriolis (earth’s rotation)

- po,P , Pressure gradient

- 9, <WU> ,  Vertical turbulent mixing ( non-linear)
+ v, 0,,U , Molecular viscosity

Viscous Surface Layer ( small Re)

Reynolds Number, Re = non-linear = du* =102 104 = 1
viscous (0 106

m

At small d (< 1 cm) there is a viscous sub-layer !!!
At greater d (Re>>1), a turbulent (3-d) boundary layer !!!

NB In OBL non-linear advection is turbulent mixing



1) 1-D (vertical) Boundary Layer Mixing
o =-U 9 U-Wa,U , Advection (non-linear)

+f V , Coriolis (earth’s rotation)
- o,P/p , Pressure gradient

- 9, <WU> ,  Turbulent mixing (vertical)
+v,.,0,,U , Molecular viscosity

TURBULENT BOUNDARY LAYER :
balance LHS tendency with vertical turbulent mixing

X = -9d,<wx> =7 -9, (-K, 9, X)
down-gradient diffusion

Kuyv = Ky Is turbulent viscosity ;

Kispy= Ky is turbulent diffusivity

both have units !!! Length? /time (m?2/s)



1) 1-D (vertical) Boundary Layer Mixing
o =-U 9 U-Wa,U , Advection (non-linear)

+f V , Coriolis (earth’s rotation)
- o,P/p , Pressure gradient

- 9, <WU> ,  Turbulent mixing (vertical)
+v,.,0,,U , Molecular viscosity

TURBULENT BOUNDARY LAYER : Steady state
balance of vertical turbulent mixing with Coriolis

'az (Km azU)

d, <wu> fV
'az ( Km az \% )

d, <wv> = -fU

Ekman layer ( spiral for viscosity K, constant)



1) 1-D (vertical) Boundary Layer Mixing
o =-U 9 U-Wa,U , Advection (non-linear)

+f V , Coriolis (earth’s rotation)
- o,P/p , Pressure gradient

- 9, <WU> ,  Turbulent mixing (vertical)
+v,.,0,,U , Molecular viscosity

TURBULENT BOUNDARY LAYER :
balance LHS tendency with Coriolis

o = fV + 9, <uw>
oV =-fU + 9, <vw>

Inertial Oscillations : wind (u* >0) forces and/or damps

NB : All terms and Resolved + unresolved
====>> (cean General Circulation Model



< Atmospheric forcing
A ={U,V,T,-S, P, -p(T,S,P)}
om— =  — = sk ~
surface waves VISCous —skin Re ~ 1
turbulent
transport, “mixed” layer,
<WX>, Re >>1
?gm transition (thermocline , — h _
m I halocline, pycnocline), gradlent layer, Ri<1
5km| geostrophy (Coriolis interior, Ro << 1
(Vj balances pressure gradient)

Layered structure is a consequence of the changing balance
of terms with increasing distance, d.



Stratified Shear Flow : Buoyancy B(z) =-g p(z)/ p, [m/s?]
Stratification is Buoyancy Frequency, N, N2 =9,B >0 [s7]
Shear isd,V [s'] for V = (U, V), high shearis unstable
lots of kinetic energy, KE
High stratification means stable (negative) potential energy, PE

Ri = N- = stable PE < 0.25 ===>> |ocal turbulent
(0,V )? available KE (empirical) mixing (K-H)
(Kelvin-Helmholtz)

NON - DIMENSIONAL



3) Turbulent Surface Forcing

Wind Stress, T, = (7, T, )

Freshwater flux, F, = P , Precipitation, >0
+ E , Evaporation, usually <0

Surface heat flux, Q,

Qo , non-solar heat fluxes < 0
+ SW, . (0) , net surface solar radiation > 0
- SW, . (d,), , solar not driving the OBL

In limit of d, = 0, solar radiation does not drive OBL,
Clearly d; should not be beyond the OBL



3) Surface Kinematic Fluxes

[<vw>|= |t | /p, = utut = u®
<wt>, =-Q,/ (p, C;) = u* ¥
<ws>, = F, S, /p, = u* s”

Surface buoyancy flux B,=-g (a <wt>, - <w s>, )
o(T,SP) =a=2-4x104 C1 ;p = 3.5x10% (psu)?’
Monin-Obukhov Length, L =u* / (x B,) ; <0 unstable

Depth where wind power ( = Force x Velocity = k u*3)
equals PE loss (gain) duetoB>0 (B, <0) = B, L



3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the
surface roughness elements, the ONLY important
turbulence parameters are the distance, d, and the

surface kinematic fluxes.

| <V W>_ | = | "[,'O | / 00 = u*u* =u*2
wt>, =-Q,/ (p, C,) = u* t*
<ws>, = F, S, /p, = u*s’

Monin-Obukhov Length, L =u*® / (x B,) ; <0 unstable

Depth where wind power ( = Force x Velocity = k u*3)
equals PE loss (gain) duetoB>0 (B, <0) = B, L



3) Monin-Obukhov Similarity Theory

Near the surface of a boundary layer, but away from the
surface roughness elements, the ONLY important
turbulence parameters are the distance, d, and the

surface kinematic fluxes.

KEY : Dimensional Analysis
5 parameters (u*, t*,s*,d, L)

4 units (m, s, °K, psu)

Non-dimensional groups are functions of (d/L),
the stability parameter ( <0, unstable )



3) Dimensional Analysis (d = -z)
Non-dimensional gradients : -0, X d / x* o ¢,(d/L),

Empirically x = 0.4, von Karman constant,
makes ¢, (0) =1 in neutral (wind only) forcing (B,=0, L— o)

K d,X = X*/z ===>> neutral logarithmic profiles, X(z)

Let: <wx>, = u* x* = -K, 94,X , define diffusivity, K

X

Near the surface of a PBL similarity theory (MOS) says

* *

K, = -u" X = xdu® — K u*d
d, X ¢, (d/L) neutral

Z




4) The convective OBL (B, <0)

Surface buoyancy flux, B, = -<wb>, < 0
Wind stress, To =0; u" =0
Convective Velocity Scale , w* = (-B, h)3,

Where h is boundary layer depth : = d/h

dL =xdB, /u3 — -

o, (d/L)— (1-cd/L)" =(1 -coh/L)

u’/ ¢, —=> (U= -cxdB,)"”— (cx 0)"® w*



4) The convective OBL : AB=At 9 - <wb>

z=-d §—» Buoyancy

initial

Conservation :

_h1

Cool = Initial-Green




4) The convective OBL : AB=At 9 - <wb>

z=-d §—» Buoyancy

initial

A Conservation :
- h,

Cool = Initial-Green

final

A

Penetrative Convection

Green-Red = A




4) The convective OBL : AB=At 9 -<wb>

<wb>

7= cool -2 az= SWoz
I\—PB | WD~>, | >
] o <Wb>e B N
initial
N S~ <wb> > 0
] & _ 0,.B =0
| - h; _ —/ non-local
entrainment .
] depth h_Z_|
] <wb>= -K 9 ZB
final ~— downgradient
N h, diffusion
] —
Penetrative

Deepening (Ri)




Mixed-Layer Models Turbulence Closure Models
Prognostic, d:h
TKE budget 1storder
— Kraus-Turner (1984) — Ekman
— Niiler (1975)

— Garwood (1978) —— Pacanowski-Philander

— Gaspar (1988) — K-Profile (KPP)
Diagnostic, h 2nd order
L price-weller-pinke — Mellor-Yamada (1934)

—— Gaspar et al. (1990)



ASSUME : analogy to molecular diffusion <wx> = -K, d,X
e.g. Ekman: K, = K, = K, = CONSTANT

BUT non-zero fluxes are observed in regions of
zero local gradient.

Therefore, the analogy is known to be wrong in a
PBL, and can’t be corrected by any choice of Ky,
but may be good enough for some problems.

K (Ri) formulations are popular despite this problem
(Pakanowski and Philander (1981)

Trick : A 50m thick upper grid level is like a OBL with infinite K,



Temperature variance equation says

SWX> = -KX ( azx - Yx)

Non-local - K, knows about h, o, and the surface forcing
- v, gives non-zero flux for 9, X = 0, as observed



