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The most essential use of the equations of
motion of a fluid is to calculate budgets over
a known volume or mass of fluid.

Perhaps the nicest example of this in oceanog-
raphy is the flow into and out of estuaries.
This estuarine circulation is a useful example
of the use of volume and salt conservation
attributed to Knudsen (1900).
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Here, we will:

1. derive the budgets for volume and salt conserva-
tion,

2. then do examples from the Black and Mediter-
ranean Sea (from Pickard and Emery , 1990),

3. consider pollutants along with salt,

4. and finally solve a time-dependent problem to
demonstrate the role of ’the flushing timescale’.

2

We begin with the conservation of mass∗:

d

dt

∫

V (t)
ρ dV = 0 →

Dρ

Dt
+ ρ∇ · v = 0. (1)

Which is replaced by conservation of volume
(for an incompressible fluid):

∇ · v = 0. (2)

∗Where we recall our notation that V (t) follows a
material surface.
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Conservation of salt is (neglecting molecular
diffusion):

d

dt

∫

V (t)
ρS dV =

∫

V (t)
ρ
DS

Dt
dV = 0. (3)

Or, since it didn’t matter which parcel of
fluid we followed and ρ > 0:

DS

Dt
= 0. (4)

We note that salinity can change (e.g., by
evap./precip.), but it is the quantity of water
that changes not the mass of salt.
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The following figure schematizes the situation (Pickard
and Emery , 1990). There is a two-layer flow over the
sill, runoff, evaporation and precipitation.

We proceed by integrating the differential equations

over the estuary.
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∇ · v = 0 (5)

applies everywhere, so

0 =
∫
∇ · v dV =

∮
v · n̂ dA. (6)

Where
∫

dV is by Gauss’s identity is equiv-
alent to

∮
dA over the surrounding surface.

We break up the surface integral:

0 =
∮

v · n̂ dA, (7)

=
∫

A1
v1 dA +

∫

A2
v2 dA, (8)

+
∫

AE

E dA−
∫

AP

P dA +
∫

AR

vr dA.
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Renaming using volume fluxes [V ] = L3/T :

0 =
∫

A1
v1 dA +

∫

A2
v2 dA, (9)

+
∫

AE

E dA−
∫

AP

P dA +
∫

AR

vr dA.

0 = V1 + V2 + AEE −APP −R, (10)

≡ V1 + V2 − F. (11)

Where F is the freshwater supplied to the
estuary.
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Recall: conservation of salt gives the equa-
tion on salinity (neglecting mixing/diffusion):

0 =
DS

Dt
=

∂S

∂t
+ v ·∇S.

We use ∇ · v = 0, to find

0 =
∂S

∂t
+∇ · vS. (12)

Integrate to find

0 =
∫
∇ · vS dV =

∮
Sv · n̂ dA. (13)

Little salt in rivers, evap & precip. carry no
salt, so

0 =
∮

Sv · n̂ dA =
∫

A1
Sv · n̂ dA +

∫

A2
Sv · n̂ dA.
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Formally, we can define velocity-weighted av-
erage salinities, so

0 =
∫

A1
Sv · n̂ dA +

∫

A2
Sv · n̂ dA,

= S1V1 + S2V2.

Where we define

S1 ≡
∫
A1

Sv · n̂ dA
∫
A1

v · n̂ dA
.

But, more loosely, there is a typical incoming
salinity and a typical outgoing salinity, which
may make approximate values for S1 and S2

obvious.
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So, we have two equations so far

S1V1 = −S2V2, V1 + V2 = F.

We can eliminate either V1 or V2 using

V1 =
−S2V2

S1
, V2 =

−S1V1

S2
.

To give

F = V2
S1 − S2

S1
, F = V1

S2 − S1

S2
. (14)
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We will now do two classic examples from
Pickard and Emery (1990): the Mediter-
ranean and the Black Sea.
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The Mediterranean has a sill depth (at the
Strait of Gibraltar) of 330m. It is observed
that

S1 = 36.3 psu,

S2 = 37.8 psu,

V1 = −1.75 · 106 m3/s ≡ −1.75 Sv.

Where the Sverdrup, 106 m3/s ≡ 1 Sv, is a
useful oceanographic unit.
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So, we can infer from

S1 = 36.3 psu, S2 = 37.8 psu,

V1 = −1.75 Sv,

V2 =
−S1V1

S2
, F = V1

S2 − S1

S2
,

that

V2 = 1.68 Sv, F = −0.07 Sv.

So, for a tiny amount of net freshwater loss
(through evaporation exceeding precipitation
and runoff), a huge exchange flow is re-
quired, with an outflow of salty water exiting
at depth and fresher Atlantic water entering
at the surface.
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The Black Sea has a sill depth (at the Bospho-
rus) of 70m. It is observed that

S1 = 17 psu,

S2 = 35 psu,

V1 = 13 · 103 m3/s.

Where the Sverdrup, 106 m3/s ≡ 1 Sv, is a
useful oceanographic unit. So, we can infer
that

V2 = −6 · 103 m3/s, F = 7 · 103 m3/s.
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Compare the two basins:
Mediterranean:

S1 = 36.3 psu, S2 = 37.8 psu
V1 = −1.75 · 106 m3/s, V2 = 1.68 · 106 m3/s,

F = −7 · 104 m3/s.

Black:

S1 = 17 psu, S2 = 35 psu
V1 = 13 · 103 m3/s, V2 = −6 · 103 m3/s,

F = 7 · 103 m3/s.

Mediterranean has outflow at depth, 25x the volume of fresh-
water. Black has inflow at depth, 1x the volume of freshwater.

Key differences: the amount of mixing in basin (Med. has S1 ≈
S2, while Black has S1 ' S2), and inflow/outflow at surface
governed by freshwater deficit/supply (assuming S1 < S2).
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We could also treat pollutants, not just salt.

DP

Dt
≈ 0. (15)

The pollutants will have river sources, and
potentially an exchange at sill, so the steady
equation is

V1P1 + V2P2 = RP2.
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Suppose we have constant pollutant concen-
tration in river discharge in Black Sea, then

F ≈ R = 7 · 103 m3/s, V1 ≈ 2R,

P2 ≈ 0.

So, the steady state result will be

V1P1 + V2P2 = RP2,

P1 ≈
1

2
PR.

Thus, the incoming pollution is diluted very
little in the Black Sea.
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If we follow the pollutant through the Bosphorus out into the
Mediterranean, we have Black Sea sources:

PB ≈
1

2
PR, VB = 13 · 103 m3/s

And the Med. budget will be

V1P1 + V2P2 = VBPB ≈ VB
1

2
PR.

Using our Med. numbers

V1 = −1.75 · 106 m3/s, V2 = 1.68 · 106 m3/s,
P1 = 0.

We find the Med outflow is very dilute

P2 ≈
1

260
PR.

Reinforcing our notion that the Med. is better mixed than the
Black Sea.
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One trick we haven’t used is time depen-
dence. While volume conservation didn’t have
a time derivative, pollutant/salt did.

Suppose we impusively started polluting the
rivers, then

DP

Dt
= 0 →

d

dt

∫
P dV = −

∮
Pv · n̂ dS

We know the steady-state solution Pss (we
just did it!), so let’s see how long it takes to
get there.
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How long to reach steady state?

d
dt

∫
(P − Pss) dV = −

∮
(P − Pss)v · n̂ dS,

Vol. d
dt
〈P − Pss〉 = VR(PR − PR;ss)− Vout(Pout − Pout;ss),

d
dt
〈P − Pss〉 = − Vout

Vol.(Pout − Pout;ss).

Angle brackets are volume averages, and Vol. is the volume. If
we assume a well-mixed basin, the outflow concentration, Pout,
will be near the average 〈P 〉, so

d
dt
〈P − Pss〉 ≈ − Vout

Vol.〈P − Pss〉

Thus,

d

dt
〈P − Pss〉 ≈ −

Vout

Vol.
〈P − Pss〉 → 〈P − Pss〉 ≈ Ae−t

Vout
Vol.

〈P 〉 ≈ 〈Pss〉
(
1− e−t

Vout
Vol.

)

Which introduces the flushing time, V ol./Vout. In the Med.
(Vol.=3.8·1015 m3) it’s about 70 yrs, for the Black (Vol.=6 · 1014 m3),
it’s about 1500 yrs.
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