## Question title: Potential Vorticity

Potential vorticity differs from vorticity in that (select many):1. it is a scalar instead of a vector.2. it is not materially-conserved.3. vortex stretching and squeezing terms and vortex tilting need not be explicitly treated.4. it cannot be used in the shallow water equations.

## Question title: Rotating Flows

Most oceanic and atmospheric flows are rotating.True False

## Question title: The most important equation for vorticity

For any scalar field $g(x, y, z, t)$,
1. 02. $g(x, y, z, t)$3. $g(x, y, z, 0)$
4. $g(x, y, z, t) * g(x, y, z, t)$
5. $\operatorname{curl}(g(x, y, z, t))$

## Question title: Vorticity

The vorticity of a fluid is (select all that are true):

1. the curl of the velocity.2. an important materially conserved property.
2. always zero.4. influenced by baroclinic forcing.5. only valid for 2-dimensional flow.6. closely related to Kelvin's circulation theorem.
3. increased and decreased by stretching and squeezing the fluid in the direction of the vortex tubes.

## Question title: Vorticity Equation in a Rotating Frame

In a rotating frame, vorticity conservation must consider (select as many as are true):1. the 'planetary vorticity' of the rotating frame.2. the 'relative vorticity' of the moving fluid in the rotating frame.3. the effects of curvature of the earth on vorticity (the beta effect).

