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OUTLINE:

- Describe thermohaline and meridional overturning circulations,

- Multi-decadal variability in the North Atlantic as depicted by
the Atlantic Meridional Overturning Circulation (AMOC),

- Examples of climate impacts and potential predictability,

- Results from the NCAR Community Climate System Model
(CCSM3) simulations,

- Summary



WHAT IS THERMOHALINE CIRCULATION (THC)?

It is that part of the ocean circulation which is driven by density
differences (as opposed to wind and tides).

Because the ocean density is a function of femperature (thermo)
and salinity (haline), this circulation is referred to as the
themohaline circulation and indicates a driving mechanism.

These density differences are primarily caused by surface fluxes of
heat and freshwater and subsequent interior mixing.

The oceanic density distribution is itself affected by the currents
and associated mixing. Thermohaline and wind driven currents
interact with each other, and therefore cannot be truly separated.

THC IS NOT AN OBSERVATIONALLY MEASURABLE QUANTITY!



THERMOHALINE CIRCULATION PATHWAYS
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While temperature acts as the driver, salinity provides the break!



WHAT IS MERIDIONAL OVERTURNING CIRCULATION (MOC)?

It is a related field, referring to a streamfunction on the depth-
latitude plane. It can be obtained from

east

Y(y,z,t)= fdsz(x V,Z,t)dx

west

where
x: longitudinal (zonal) direction (+ve eastwards)
y: latitudinal (meridional) direction (+ve northwards)
z: height (+ve upwards)
t: time
V: meridional velocity component

This field is often used in the modeling community, because it is
easy to diagnhose.

MOC INCLUDES WIND-DRIVEN CIRCULATIONI
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OCEANIC NORTHWARD HEAT TRANSPORT
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SEA SURFACE TEMPERATURE SEA ICE CONCENTRATION
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WHAT DRIVES THC / MOC?

MECHANISM I: Cooling at high latitudes. For steady state, downward
penetration of heat by mixing is necessary.

surface cooling
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Turbulent mixing supplies energy.



WHAT DRIVES THC / MOC?

MECHANISM TII: Westerly winds over the Southern Ocean. No
meridional flow can be supported at infermediate depths at the
latitude band of the Drake Passage due to lack of topographic barriers
that can support east-west pressure gradients.
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Many coupled general circulation models (CGCMs) exhibit multi-decadal
or longer time scale (20 - 100+ years) variability in their AMOCs.

Time series of the AMOC maximum from CCSM3 present-day control simulations

- v Y Y ' Al Y Al ' Y Y v 4 v A Y ' \l Al Y 1

{ T85x1

L L T42x1

T31x3

800 1000

Bryan et al. (2006, J. Climate)



HEAT CONTENT CHANGES between mid-1990s and mid-1950s
(CCSM3 20 Century simulations - 1870 control integration)
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CHANGE IN SOME FIELDS BETWEEN HIGH AND LOW AMOC
PERTIODS IN THE GFDL CM2.1 CONTROL SIMULATION
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AMOC IN THE 20t CENTURY ENSEMBLE INTEGRATIONS

Max. NH Atlantic Overturning ( 3 pt. smooth)
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Time series of AMOC
maximum from 5
members of a 30-
member ensemble of
CCSM3 (T42x1) A1B
scenario simulations
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2000-2007 year trend in annual AMOC timeseries 2007-2016 year trend in annual AMOC timeseries
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Max MOC 25°N(Sv)

TIME SERIES OF NORTH ATLANTIC MOC AT 25°N
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ATLANTIC MULTI-DECADAL OSCILLATION (AMO)
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QUESTIONS

Since Delworth et al. (1993) study, there is a broad consensus that
the density anomalies in the "sinking region” of the AMOC drives
this variability.

However, many fundamental questions still remain largely
unanswered:

- mechanism [nature of this mode, role of atmospheric variability],
- robustness of mechanism,

- time-scale,

- implications for initialization (and predictability),

- implications for our assessments of 20" century, future
scenario, etc. climates,



AMOC IN CCSM3 T85x1 RESOLUTION, PRESENT-DAY CONTROL

SIMULATION AMOC EQF1 (var=71.2%)
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SEA SURFACE TEMPERATURE (SST)

SST EOF1 (var=24.3%)  SST EDF1 TIME SERIES
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NORTH-SOUTH GYRE BOUNDARY FLUCTUATION and
WIND STRESS CURL SIMULTANEOUS REGRESSION
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MARCH-MEAN BOUNDARY
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WIND STRESS CURL
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SUMMARY

» Although they refer to different concepts, THC and MOC are
often used as synonyms.

* There are no long-term observational estimates of the MOC
Transport.

* Many CGCMs exhibit multi-decadal or longer time scale
variability in their AMOCs.

» This variability is usually associated with variations in the ocean
heat transport, ocean heat content, North Atlantic SSTs (e.g.
AMO), climate changes over North America, Western Europe,
and Africa.

* There are indications of potential predictability.



IN CCSM3 T85x1 RESOLUTION, PRESENT-DAY SIMULATION:

* This multi-decadal variability shows rather large amplitudes in
both AMOC and SST. Comparisons of the latter with observations
indicate that neither the pattern nor the magnitude of the SST
anomalies is realistic. However, the role of the mean-state biases
remains unclear.

* These SST anomalies are created by the fluctuations of the
subtropical -subpolar gyre boundary driven by small scale WSC
anomalies.

* The present results do not support an ocean mode that relies on a
phase lagged relationship between temperature and salinity in
their contributions to the total density in the model's associated
deep water formation region.

- Atmospheric variability associated with the model's NAO appears
to play a prominent role in maintaining this variability.

- It is likely that the processes setting the 21-year time scale have
oceanic origins.



ATLANTIC NORTHWARD HEAT TRANSPORT (NHT)
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LABRADOR SEA ADVECTIVE HEAT FLUX REGRESSIONS
WITH AMOC PC1 TIME SERIES
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SIMPLIFIED DTAGRAM OF PHASE RELATIONSHIPS
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