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Outline

* Background and motivation
— Oxygen cycle, biogeochemistry and climate

— Recent observations

* Understanding observed variability
— A hierarchy of models
— Detection: mode of variability
— Attribution: mechanism

e Questions for future research
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Oxygen, ocean biogeochemistry
and climate
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Global changes in oceanic O,
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Land vs ocean CO, uptake
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without outgassing contribution

Outgassing 4

Slope = f
Accounting for ocean O, outgassing '°- | : Burning — Land — Ocean
implies that CO, uptake by land o |
must have been smaller, and ocean  ptake ™
CO, uptake larger than previously —aBurning + ﬁLand + Ocean

thought. Ocean outgassing




Oxygen and marine ecosystems
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Vacquer-Sunyer and Duarte [2008] Image from an ROV off the Oregon coast

Low O, can reduce the respiratory capacity of marine heterotrophs,
leading to reduced physiological performance or death.




Understanding observed variability

e QOutstanding questions
nat controls the observed O, changes?

ny O, shows strong decadal variability?

ny O, variability is strongest at the base of
thermocline?

* A hierarchy of models for oceanic O,
— Simple box model
— Ocean circulation and biogeochemistry model

— Interpreting observations




A simple model for thermocline O,

* SST and gas exchange (O, )

Sinking
Organic
Matter

* O, loss by respiration (OUR)

Thermocline
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Steady solution Long-term O, decline can be due to:
PaYa@il - Warmer SST
- Weaker ventilation
- Stronger biological O, consumption(?)




Variability of thermocline O,

* Linearized perturbation equation

— Three causes of O, variability

e Outcrop variability (SST, gas exchange)
 Circulation variability (A\)

Outcrop Circulation Biological

Three forcing terms : N
5 variability variability variability

Sfc

P R l
(— ¥ A)[021'= A0, . 1+AA[O,]- OUR'

dt

And is damped by the mean ventilation!




Stochastically forced O, variability

* What is the response of O, to random forcing?

—n(t) : white noise d -
—+ )\-)[02]'= n(?)
— Hasselmann (1976) model [R¥
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— Random forcing can result in low-frequency
variability due to mean ventilation




Application to observed O, data

e Subpolar North Pacific time-series data
— Ocean Station Papa (50N,145W)

* Long-term trend explains 15% of variance
e Decadal variability (15-20 year timescale)

NPIW : oy = 27.0 Lag-autocorrelation (de-trended)
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Detecting modes of O, variability

* |s the signal beyond the noise?
— Can we reject the stochastic null hypothesis?

. . Period [year
About 60% of variance is 10 5 Ly 3]

in 15-20 year timescale

Caveats:

*Slightly above 95%
confidence interval
*Length of time series
eLack of clear mechanism
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Physical-biological coupling

* Coupling circulation and biology with time lag

- Nutrient supply depends on circulation

(% . A)[021'= A'(DA[O,]- OUR'(X'(1 + 7))

Increased power at decadal Period (year)
timescale emerges from
the delayed response of
biology.

T ~ 5 year leads to a paek
at 20 year timescale

02 variance spectrum (uM?/year)

0.1 0.2 0.3
Frequency (cycle/year)




Vertical structure of O2 variability
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Observations show relatively strong variability in lower thermocline




Explaining vertical structure
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(% + X)[021'= MO, . 1'+A'AlO,]- OUR’

3) Circulation variability acting on spatially varying O, gradient




Spatial variation of the isopycnal O,
gradient

Spatial AO, Temporal AO,
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Background O, gradient has somewhat similar structure to temporal O,
variability.




Testing the hypothesis using ocean
GCM and biogeochemistry model

Curtis Deutsch

e |sopycnal coordinate (Hallberg Isopycnal Model)
e North Pacific domain (20°S — 60°N)
e 1 degree horizontal resolution, 14 isopycnal layers

e Hindcast simulation using NCEP forcing (1948-2000)

e Simple ocean biogeochemistry scheme (OCMIP)

- Circulation variability
- Biological variability

- Variability in surface processes (heat, wind, gas ex)
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* The model captures the overall magnitudes and the
large-scale gradients



Decadal mean O, changes
1990’s — 1980's

a0
45
40
35
30
25
20
15
140
5

[#)

o
&)

°
=

LATITUDE

}

0° —
120°E 140°E 160°E 180° 160°W  140°W 120  100°W
LONGITUDE




Attribution experiments

e Design sensitivity experiments by turning off each
mechanism

e Control run

- Circulation, surface and biological variability
e Constant surface O, run

- Circulation and biological variability
e Constant surface and biology run

- Circulation variability

d - v v
E + A [02] = A A[Oz] y



Biological/Physical Contributions
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Testing the hypothesis

—— QObservations
— Model

Constant surface and biology run has

maximum O, variability in lower

_27 i I thermocline, even without changes
from outcrop or OUR.
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Summary and more questions

* What can O, tell us about the climate change
in the oceans?

— O, as a tracer of physical and biological changes
— Sensitivity to ocean circulation and biology

* How do we know that it’s changing?
— Testing the null hypothesis
— 15-20 year timescale in NPIW

* What causes observed O, variability?

— Attribution experiments using ocean models
— Circulation dominates in the North Pacific?




