What can oxygen tell us about climate change in the oceans?

Taka Ito Colorado State University

In collaboration with Curtis Deutsch (UCLA)

Outline

- Background and motivation
 - Oxygen cycle, biogeochemistry and climate
 - Recent observations
- Understanding observed variability
 - A hierarchy of models
 - Detection: mode of variability
 - Attribution: mechanism
- Questions for future research

Global oxygen cycle

Oxygen, ocean biogeochemistry and climate

Land vs ocean CO₂ uptake

Oxygen and marine ecosystems

Vacquer-Sunyer and Duarte [2008]

Image from an ROV off the Oregon coast

Low O_2 can reduce the respiratory capacity of marine heterotrophs, leading to reduced physiological performance or death.

Understanding observed variability

- Outstanding questions
 - What controls the observed O_2 changes?
 - Why O₂ shows strong decadal variability?
 - Why O₂ variability is strongest at the base of thermocline?
- A hierarchy of models for oceanic O₂
 - Simple box model
 - Ocean circulation and biogeochemistry model
 - Interpreting observations

A simple model for thermocline O₂

- SST and gas exchange (O_{2,sfc})
- Ventilation of thermocline (λ)
- O₂ loss by respiration (OUR)

 $-\lambda \left(\left[O_2 \right] - \left[O_{2,sfc} \right] \right)$

Steady solution

$$\overline{[O_2]} = \overline{[O_{2,sfc}]} - \frac{\overline{OUR}}{\overline{\lambda}}$$

Long-term O_2 decline can be due to:

- Warmer SST

OUR

- Weaker ventilation

- Stronger biological O₂ consumption(?)

Variability of thermocline O₂

- Linearized perturbation equation
 - Three causes of O₂ variability
 - Outcrop variability (SST, gas exchange)
 - Circulation variability (λ')
 - Biological variability (OUR')

And is damped by the mean ventilation!

Stochastically forced O₂ variability

- What is the response of O₂ to random forcing?
 - $-\eta$ (t) : white noise
 - Hasselmann (1976) model

$$\left(\frac{d}{dt} + \overline{\lambda}\right) [O_2]' = \eta(t)$$

Random forcing can result in low-frequency variability due to mean ventilation

Application to observed O₂ data

- Subpolar North Pacific time-series data
 - Ocean Station Papa (50N,145W)
 - Long-term trend explains 15% of variance
 - Decadal variability (15-20 year timescale)

Lag-autocorrelation (de-trended)

Detecting modes of O₂ variability

• Is the signal beyond the noise?

– Can we reject the stochastic null hypothesis?

About 60% of variance is in 15-20 year timescale

Caveats: •Slightly above 95% confidence interval •Length of time series •Lack of clear mechanism

Physical-biological coupling

Coupling circulation and biology with time lag

Nutrient supply depends on circulation

$$\left(\frac{d}{dt} + \lambda\right) [O_2]' = \lambda'(t) \overline{\Delta[O_2]} - OUR'(\lambda'(t+\tau))$$

Increased power at decadal timescale emerges from the delayed response of biology.

 $\tau \sim 5$ year leads to a paek at 20 year timescale

Vertical structure of O₂ variability

Observations show relatively strong variability in lower thermocline

Explaining vertical structure

3) Circulation variability acting on spatially varying O₂ gradient

Spatial variation of the isopycnal O₂ gradient

Background O_2 gradient has somewhat similar structure to temporal O_2 variability.

Testing the hypothesis using ocean GCM and biogeochemistry model

Curtis Deutsch

- Isopycnal coordinate (Hallberg Isopycnal Model)
- North Pacific domain (20°S 60°N)
- 1 degree horizontal resolution, 14 isopycnal layers
- Hindcast simulation using NCEP forcing (1948-2000)
- Simple ocean biogeochemistry scheme (OCMIP)
 - Circulation variability
 - Biological variability
 - Variability in surface processes (heat, wind, gas ex)

Simulated annual mean O₂

(σ_{ϑ} 25.8)

• The model captures the overall magnitudes and the large-scale gradients

Decadal mean O₂ changes

1990's – 1980's

Attribution experiments

- Design sensitivity experiments by turning off each mechanism
- Control run
 - Circulation, surface and biological variability

 $\lambda'\Delta[O_2]$ -

- Constant surface O₂ run
 - Circulation and biological variability
- Constant surface and biology run
 - Circulation variability

$$\left(\frac{d}{dt} + \overline{\lambda}\right)[O_2]' =$$

Biological/Physical Contributions

1990's-1980's, σ_θ 26.6

Testing the hypothesis

Summary and more questions

- What can O₂ tell us about the climate change in the oceans?
 - $-O_2$ as a tracer of physical and biological changes
 - Sensitivity to ocean circulation and biology
- How do we know that it's changing?
 - Testing the null hypothesis
 - 15-20 year timescale in NPIW
- What causes observed O₂ variability?
 - Attribution experiments using ocean models
 - Circulation dominates in the North Pacific?