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Outline of talk

ENSO and MJO: Two tropical phenomena that

coupled GCMs need to get right

— But do they?

Diagnosis of dynamics via empirical model

— Penland and Sardeshmukh (1995) Linear Inverse Model
(“LIM”)

Tropical dynamics on weekly timescales

— Atmosphere-SST model

Tropical dynamics on seasonal timescales

— Surface winds-Ocean model

Key conclusion: linear stochastically-forced empirical

model simulates large-scale tropical dynamics as well
as fully nonlinear coupled GCMs



El Nino-Southern Oscillation (ENSO)

 Dominant mode of interannual atmosphere-ocean
variability in Tropical Pacific, with 2-7 yrs spectral peak
* Oscillatory theories (driving thermocline to change sign)
— Delayed oscillator (Kelvin/Rossby waves + western reflection)
— Recharge/discharge oscillator (mass/warm water transport)
— Advective/reflective oscillator (warm pool edge is advected)
— Western pacific oscillator (Western pacific coupling)

« Episodic theories (precursor initiates development)

El Ninho Conditions Normal Conditions La Nina Conditions
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ENSO in IPCC AR4 “20th-
century” CGCMs compared
to observations, 1950-1999

log10(Power)

Power spectra of Leading PC of Tropical SST monthly anomalies, 1950-1999
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Madden-Julian Oscillation (MJO)

A broad area of active
precipitation (blue) and

2 suppressed precipitation (red)
e e | propagating eastwards around
the equator at intervals ranging
wiware | petween about 30 to 60 days.
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What are the GCMs missing?
— |s the problem in the AGCM and/or OGCM?
— |Is the problem related to air-sea coupling?

How can we diagnosis this?
— theoretical models
— “intermediate complexity” models
— empirical models



Some requirements for an empirical model

o Capture the evolution of anomalies
— Growth/decay, propagation
— need anomaly tendency: dynamical model
— Can relate to physics/processes and estimate predictability?

« Limited data + Occam’s razor = not too complex

— How many model parameters are enough?
— Problem: is model fitting signal or noise?

— Test on independent data (or at least cross-validate)
* Testable

— Is the underlying model justifiable?
— Where does it fail?

=>» Previous success of linear diagnosis/theory suggests
potential usefulness of linear empirical model



Two types of linear approximations

= “Linearization” : amplitude of nonlinear term is small
compared to amplitude of linear term
=>» Then ignore nonlinear term

» “Coarse-grained” : time scale of nonlinear term is
small compared to time scale of linear term

=» Then parameterize nonlinear term as (second) linear term +
unpredictable white noise: N(x) ~ Tx + §

For example, surface heat fluxes due to rapidly varying

weather driving the ocean might be approximated as
dT,
dt

= —AT, + white noise



(SST-only) Linear Inverse Models (LIMs)

Penland and Sardeshmukh (1995) suggested that tropical SST
variability can be viewed as

dT T,= SST (state vector) maps
0 =LT, +F ’

df L = stable linear dynamical operator
F. = white noise

« “Effectively linear” -- stochastic approximation when
decorrelation time scale of nonlinear processes <<
decorrelation time scale of linear processes

« Multivariate extension of univariate red noise (e.g.,
Frankignoul and Hasselmann)

 Determine L in an inverse sense through data analysis



Skill of SST forecasts from SST-only LIM is comparable to
(bias-corrected) NCEP’s CFS (NOAA’s ENSO forecast GCM)

8-month LIM seasonal forecasts 6-month CFS seasonal forecasts
(verified against HadISST SSTs) (verified against GODAS SSTs)
MJJ 1982-2003
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Coupled LIM (“C-LIM?)

« State vector is atmosphere + SST
* Weekly time scales

 How important is air-sea coupling for ENSO
and the MJO?



x(t) = 47-component
vector whose
components are

the time-varying
coefficients (PCs) of the
leading EOFs of:

20T, SST

¥ streamfunction
17H heating

3x velocity potential
L is thus a

47x47 matrix

Tropical (25°S-25°N)
EOFs constructed from
7-day running mean
anomalies, 1982-2005
(annual cycle removed)

Atmos: chi-corrected
NCEP Reanalysis
SST: NCEP OI V2

Trained on 6-day lag

Linear inverse model (LIM)

A multilinear system driven by white noise:
dx/dt =Lx + F,

has t_-lag and zero-lag covariance related as
C(x,) = exp(L 1,)C(0) = G(z,)C(0)

So we can determine L from data.
Test for linearity: L = f(t,) , C(t) = exp(L T)C(0)

* Forecasts: x(t+t) = exp(L ) x(t) = G(7) x(1)

« Eigenmodes (u)of L: Lu=uA

« “Optimal” growth due to interference of
nonnormal eigenmodes (A can be complex)



ENSO in C-LIM and IPCC AR4 “20th-century” CGCMs compared to
observations, 1950-1999

Power spectra of Leading PC of Tropical SST monthly anomalies, 1950-1999
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C-LIM simulation of
observed
variability is just as
good as in coupled
GCMs, so we can
use it to reliably
quantify coupling
effects.
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Test of linearity

C-LIM predictions of SST spectra

Power*frequency
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Test of linearity
C-LIM predictions of heating spectra

Power spectra of Heating PC 1
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What are the effects of the SST-atmosphere
coupling?



Turn “off” coupling
LIM can be written in its component parts as:
dx d|T,| (Lo, LolIT, SST noise
= = -+
d dr|x,| |L, L,|[X,| [atmospheric noise

To “uncouple” ocean from atmosphere, define

L o0
L led —
uncouple [ 0 LAA]

This is not the same as constructing separate A-LIMs and O-
LIMs.

Removing coupling: greatly decreases interannual power
almost no effect on intraseasonal power



Comparing L and L

uncoupled

Two distinct classes of
eigenmodes of L

“‘coupled”
Longer eft, low /
frequency modes

strongly modified
by coupling

“internal atmospheric”
Short eft, high
frequency modes
very slightly modified
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Coupling has minor effect on leading internal (MJO-like) eigenmode

“‘MJO” eigenmode, full operator

a) 'MJO' elgenmode of L /cos phase (400 hPa H) T 49.1 days, eft 20.5 days b) ‘MJO' eigenmode of L / sin phase (400 hPa H) T = 49.1 days, eft = 20.5 days
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“*MJO” eigenmode, uncoupled operator

c) 'MJO’ eigenmode of L,/ cos phase (400 hPa H) T = 48.1 days, eft = 20.4 days d) 'MJO' eigenmode of L ./ sin phase (400 hPa H) T = 48.1 days, eft = 20.4 days




Project tropical state vector x into “coupled” and “internal” subspaces of
full operator L

Define
X = XCoup 4 yint

where
¥ COUP EU(;OUPO{(;OUP(Z‘) xint _ Euiytai;t(t)
J J

Note: x°ur and xi"t need not be orthogonal



Projection on coupled and internal modes

Heating PC 1: Coupled
and internal spaces do
not overlap =

‘ENSO” and “MJO”
variance can be
separated

Variability in coupled space

B (o))

Power*frequency

Power spectra of Heating PC 1

= OBS

=== | |[M (mean)
95% confidence

wes | M, uncoupled

OBS, coupled filter
= = OBS, atmos filter

) n
0.0005 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2

Frequency (days™)

Variability in internal space



Projection on coupled and internal modes

Heating PC 1: Coupled
and internal spaces do
not overlap =

‘ENSO” and “MJO”
variance can be
separated

Heating PC 2: Coupled
and internal spaces
overlap =
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variance cannot be
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Conclusions (part |)

C-LIMs useful for diagnosis of tropical air-sea coupling

— Forecast skill competitive with coupled GCMs (C-LIM
forecasts: http://www.cdc.noaa.gov/forecasts/clim/)

— Reproduces observed spatio-temporal statistics, even on
much longer time periods

In Tropics, two nonorthogonal linear dynamical systems:
— Slow (~interannual) coupled space
— Fast (~intraseasonal) internal atmosphere space

MJO: an internal atmospheric phenomenon only weakly
coupled to SST

Why, then, does coupling in GCMs affect MJO?
— Impacts MJO anomalies through changes in mean climate
— May improve ENSO-related evolution confused with MJO



One drawback: these LIMs generally use SST (T )
as a proxy for the entire ocean.

This is ok if the remaining ocean state vector Z is
Z = BT, + white noise
since then the Z-dependence of T, is implicit.

Even then: how do we interpret an SST-only LIM?



Extended LIM

State vector is SST + thermocline + wind
stress

Seasonal time scales

How do longer subsurface time scales matter
in SST LIM?



Extending LIM to the thermocline

A multilinear system driven by white noise:
dx/dt = Lx + F,
has T -lag and zero-lag covariance related as

C(x,) = exp(L 7,)C(0) = G(x,)C(0)

(0)

So we can determine L from data.
Test for linearity: L = f(t,) , C(t) = exp(L T)C(0)

* Forecasts: x(t+7) = exp(L t) x(t) = G(t) x(?)
« Eigenmodes (u)of L: Lu = uA
« “Optimal” growth : Eigenvectors of GDG'

x(t) = 23-component
vector whose
components are

the time-varying
coefficients (PCs) of the
leading EOFs of:

13T, SST

72, 20°C depth

3T, zonal wind stress
L is thus a

23x23 matrix
(“SST-only”: 23 Ty)

Tropical (25°S-25°N)
EOFs constructed from

3-month running mean
anomalies, 1959-2000
(annual cycle removed)

SST: HadISST

Depth: SODA

Wind stress: NCEP/NCAR
Reanalysis

Trained on 3-month lag




o * Power

o * Power

Test of linearity
LIM prediction of SST, Z,, spectra for 1959-2000
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Adding thermocline depth to an SST-only LIM improves statistics of the simulation
of SST anomaly evolution (lag-covariability).

Red = positive (persistence) Blue = negative

9-month lag-covariance

Observed (1959-2000)

18-month lag-covariance

Observed (1959-2000)

36-month lag-covariance

Observed (1959-2000)
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Adding thermocline depth to an SST-only LIM has
a small effect on medium-range (<9 months)
forecast skill both in the Nino3.4 region (right) and
throughout the tropical Pacific (below).

Anomaly correlation skill

Month 9
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However, adding thermocline depth to an SST-only 07
LIM improves long-range forecast skill both in 0.6/

the Nino3.4 region (right) and throughout the
tropical IndoPacific (below).

Nino 3.4 cross-validated forecast skill
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Adding thermocline depth to SST-only LIM changes the
nature of “optimal” anomaly growth for time
intervals > 9 months

Maximum ENSO Amplification for full and SST-only LIMs
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Loop: evolution from 9-month and 18-
month optimal structures



Diagnosing ocean processes in the LIM

LIM can be written in its component parts as:

T,]1 [L, L, L_.|IT,] [ sstnoise
dx d . :
= Z,[=|L., L, L_|Z,]|+]|thermocline noise
5 l : :
7. | |k L, L f{7.] |wind stressnoise

We can then diagnose how different terms impact dynamics:

ﬂo @ |
= : sst noise
dt -
This

_ — Stand-in for
includes local turbulent and
This has both local thermocline and radiative

(damping) and non-local upwelling feedbacks,
(advection, eddy mixing) and non-local advective
parts feedback

heat fluxes?
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Evolution from 18-month optimal structure
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Adding thermocline depth to
SST-only LIM improves
relevance of “optimal”
anomaly structures

Panels show

projection of data on optimal initial
condition

VS.

projection of data on final “evolved”
anomaly
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Key eigenmodes contributing to optimal
growth (loop)



Conclusions (part Il)

« Adding thermocline depth to SST-only LIM improves
linear model on longer time scales

— Enhanced forecast skill (predictability limit?)
— Statistics of anomaly evolution better simulated
— “New” optimal anomaly growth over > 9 months

* LIM can be used to diagnose ENSO dynamics
— Optimal growth due to a few stable eigenmodes
— Details of wind response to SST crucial
* Full “climate” LIMs possible?
— from observations (maybe)
— from GCMs (for diagnosis)



