Empirical climate models of coupled tropical atmosphere-ocean dynamics

Matt Newman CIRES/CDC and NOAA/ESRL/PSD

Work done by Prashant Sardeshmukh, Cécile Penland, Mike Alexander, Jamie Scott, and me

Outline of talk

- ENSO and MJO: Two tropical phenomena that coupled GCMs need to get right
 - But do they?
- Diagnosis of dynamics via empirical model
 - Penland and Sardeshmukh (1995) Linear Inverse Model ("LIM")
- Tropical dynamics on weekly timescales
 - Atmosphere-SST model
- Tropical dynamics on seasonal timescales
 - Surface winds-Ocean model
- Key conclusion: linear stochastically-forced empirical model simulates large-scale tropical dynamics as well as fully nonlinear coupled GCMs

El Nino-Southern Oscillation (ENSO)

- Dominant mode of interannual atmosphere-ocean variability in Tropical Pacific, with 2-7 yrs spectral peak
- Oscillatory theories (driving thermocline to change sign)
 - Delayed oscillator (Kelvin/Rossby waves + western reflection)
 - Recharge/discharge oscillator (mass/warm water transport)
 - Advective/reflective oscillator (warm pool edge is advected)
 - Western pacific oscillator (Western pacific coupling)
- Episodic theories (precursor initiates development)

ENSO in IPCC AR4 "20thcentury" CGCMs compared to observations, 1950-1999

Power spectra of Leading PC of Tropical SST monthly anomalies, 1950-1999

Madden-Julian Oscillation (MJO)

What are the GCMs missing?

- Is the problem in the AGCM and/or OGCM?
- Is the problem related to air-sea coupling?

How can we diagnosis this?

- theoretical models
- "intermediate complexity" models
- empirical models

Some requirements for an empirical model

- Capture the *evolution* of anomalies
 - Growth/decay, propagation
 - need anomaly tendency: *dynamical* model
 - Can relate to physics/processes and estimate predictability?
- Limited data + Occam's razor = not too complex
 - How many model parameters are enough?
 - Problem: is model fitting signal or noise?
 - Test on independent data (or at least cross-validate)
- Testable
 - Is the underlying model justifiable?
 - Where does it fail?
- Previous success of linear diagnosis/theory suggests potential usefulness of linear empirical model

Two types of linear approximations

- "Linearization" : *amplitude* of nonlinear term is small compared to *amplitude* of linear term
 - → Then *ignore* nonlinear term
- "Coarse-grained": time scale of nonlinear term is small compared to time scale of linear term
 - Then parameterize nonlinear term as (second) linear term + unpredictable white noise: N(x) ~ Tx + ξ

For example, surface heat fluxes due to rapidly varying weather driving the ocean might be approximated as

$$\frac{dT_o}{dt} = -\lambda T_o + \text{ white noise}$$

(SST-only) Linear Inverse Models (LIMs)

Penland and Sardeshmukh (1995) suggested that tropical SST variability can be viewed as

$$\frac{d\mathbf{T}_{O}}{dt} = \mathbf{L}\mathbf{T}_{O} + \mathbf{F}_{s}$$

 T_O = SST (state vector) maps L = stable linear dynamical operator F_s = white noise

- "Effectively linear" -- stochastic approximation when decorrelation time scale of nonlinear processes << decorrelation time scale of linear processes
- Multivariate extension of univariate red noise (e.g., Frankignoul and Hasselmann)
- Determine L in an *inverse* sense through data analysis

Skill of SST forecasts from SST-only LIM is comparable to (bias-corrected) NCEP's CFS (NOAA's ENSO forecast GCM)

6-month CFS seasonal forecasts (verified against GODAS SSTs)

6-month lead

6-month lead

0.7

0.8

0.9

Coupled LIM ("C-LIM")

- State vector is atmosphere + SST
- Weekly time scales
- How important is air-sea coupling for ENSO and the MJO?

x(t) = 47-component vector whose components are the time-varying coefficients (PCs) of the leading EOFs of:

L is thus a 47x47 matrix

Tropical (25[°]S-25[°]N) EOFs constructed from 7-day running mean anomalies, 1982-2005 (annual cycle removed)

Atmos: chi-corrected NCEP Reanalysis SST: NCEP OI V2

Trained on 6-day lag

Linear inverse model (LIM)

A multilinear system driven by white noise:

 $d\mathbf{x}/dt = \mathbf{L}\mathbf{x} + \mathbf{F}_s$

has τ_o -lag and zero-lag covariance related as

 $\mathbf{C}(\tau_{o}) = exp(\mathbf{L} \tau_{o})\mathbf{C}(0) = \mathbf{G}(\tau_{o})\mathbf{C}(0)$

So we can determine **L** from data. *Test* for linearity: $\mathbf{L} \neq f(\tau_0)$, $\mathbf{C}(\tau) = exp(\mathbf{L}\tau)\mathbf{C}(0)$

- Forecasts: $\mathbf{x}(t+\tau) = exp(\mathbf{L} \tau) \mathbf{x}(t) = \mathbf{G}(\tau) \mathbf{x}(t)$
- Eigenmodes (u) of L : $Lu = u\lambda$
 - "Optimal" growth due to interference of *nonnormal* eigenmodes (λ can be complex)

ENSO in C-LIM and IPCC AR4 "20th-century" CGCMs compared to observations, 1950-1999

C-LIM simulation of observed variability is just as good as in coupled GCMs, so we can use it to reliably quantify coupling effects.

<u>Test of linearity</u> C-LIM predictions of SST spectra

<u>Test of linearity</u> C-LIM predictions of heating spectra

What are the effects of the SST-atmosphere coupling?

Turn "off" coupling

LIM can be written in its component parts as:

$$\frac{d\mathbf{x}}{dt} = \frac{d}{dt} \begin{bmatrix} \mathbf{T}_{o} \\ \mathbf{x}_{A} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{oo} & \mathbf{L}_{Ao} \\ \mathbf{L}_{oA} & \mathbf{L}_{AA} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{o} \\ \mathbf{x}_{A} \end{bmatrix} + \begin{bmatrix} \text{SST noise} \\ \text{atmospheric noise} \end{bmatrix}$$

To "uncouple" ocean from atmosphere, define

$$\mathbf{L}_{uncoupled} = \begin{bmatrix} \mathbf{L}_{OO} & \mathbf{0} \\ \mathbf{0} & \mathbf{L}_{AA} \end{bmatrix}$$

This is not the same as constructing separate A-LIMs and O-LIMs.

Removing coupling: greatly decreases interannual power almost no effect on intraseasonal power

Coupling has minor effect on leading internal (MJO-like) eigenmode

"MJO" eigenmode, full operator

"MJO" eigenmode, uncoupled operator

Project tropical state vector **x** into "coupled" and "internal" subspaces of full operator **L**

Define

$$\mathbf{x} = \mathbf{x}^{\text{coup}} + \mathbf{x}^{\text{int}}$$

where

$$\mathbf{x}^{\text{coup}} = \sum_{j} \mathbf{u}_{j}^{\text{coup}} \alpha_{j}^{\text{coup}}(t) \qquad \mathbf{x}^{\text{int}} = \sum_{j} \mathbf{u}_{j}^{\text{int}} \alpha_{j}^{\text{int}}(t)$$

Note: **x**^{coup} and **x**^{int} need not be orthogonal

Projection on coupled and internal modes

Variability in coupled space

Variability in internal space

Projection on coupled and internal modes

Conclusions (part I)

- C-LIMs useful for diagnosis of tropical air-sea coupling
 - Forecast skill competitive with coupled GCMs (C-LIM forecasts: http://www.cdc.noaa.gov/forecasts/clim/)
 - Reproduces observed spatio-temporal statistics, even on much longer time periods
- In Tropics, two nonorthogonal linear dynamical systems:
 - Slow (~interannual) coupled space
 - Fast (~intraseasonal) internal atmosphere space
- MJO: an internal atmospheric phenomenon only weakly coupled to SST
- Why, then, does coupling in GCMs affect MJO?
 - Impacts MJO anomalies through changes in *mean* climate
 - May improve ENSO-related evolution confused with MJO

One drawback: these LIMs generally use SST (T_o) as a proxy for the entire ocean.

This is ok if the remaining ocean state vector Z is

$Z = BT_o + white noise$

since then the **Z**-dependence of \mathbf{T}_o is implicit.

Even then: how do we interpret an SST-only LIM?

Extended LIM

- State vector is SST + thermocline + wind stress
- Seasonal time scales
- How do longer subsurface time scales matter in SST LIM?

Extending LIM to the thermocline

A multilinear system driven by white noise:

 $d\mathbf{x}/dt = \mathbf{L}\mathbf{x} + \mathbf{F}_{s}$

has τ_0 -lag and zero-lag covariance related as

 $\mathbf{C}(\tau_{o}) = exp(\mathbf{L} \tau_{o})\mathbf{C}(0) = \mathbf{G}(\tau_{o})\mathbf{C}(0)$

So we can determine **L** from data. *Test* for linearity: $\mathbf{L} \neq f(\tau_0)$, $\mathbf{C}(\tau) = exp(\mathbf{L}\tau)\mathbf{C}(0)$

- Forecasts: $\mathbf{x}(t+\tau) = exp(\mathbf{L} \tau) \mathbf{x}(t) = \mathbf{G}(\tau) \mathbf{x}(t)$
- Eigenmodes (**u**) of **L** : $Lu = u\lambda$
- "Optimal" growth : Eigenvectors of GDG^T

x(t) = 23-component vector whose components are the time-varying coefficients (PCs) of the leading EOFs of:

L is thus a 23x23 matrix

("SST-only": 23 T_o)

Tropical (25^oS-25^oN) EOFs constructed from **3-month running mean** anomalies, 1959-2000 (annual cycle removed)

SST: HadISST Depth: SODA Wind stress: NCEP/NCAR Reanalysis

Trained on 3-month lag

 $\frac{\text{Test of linearity}}{\text{LIM prediction of SST, } Z_{20} \text{ spectra for 1959-2000}}$

Adding thermocline depth to an SST-only LIM improves statistics of the **simulation of SST anomaly evolution** (lag-covariability).

Red = positive (persistence) Blue = negative

From Newman, Alexander, and Scott (2009)

Adding thermocline depth to an SST-only LIM has a **small effect** on **medium-range (<9 months) forecast skill** both in the Nino3.4 region (right) and throughout the tropical Pacific (below).

Anomaly correlation skill of SST forecasts

From Newman, Alexander, and Scott (2009)

However, adding thermocline depth to an SST-only LIM **improves long-range forecast skill** both in the Nino3.4 region (right) and throughout the tropical IndoPacific (below).

Anomaly correlation skill of SST forecasts

From Newman, Alexander, and Scott (2009)

Adding thermocline depth to SST-only LIM changes the nature of "optimal" anomaly growth for time intervals > 9 months

Loop: evolution from 9-month and 18month optimal structures

Diagnosing ocean processes in the LIM

LIM can be written in its component parts as:

$$\frac{d\mathbf{x}}{dt} = \frac{d}{dt} \begin{bmatrix} \mathbf{T}_{O} \\ \mathbf{Z}_{20} \\ \mathbf{\tau}_{x} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{TT} & \mathbf{L}_{ZT} & \mathbf{L}_{\tau T} \\ \mathbf{L}_{TZ} & \mathbf{L}_{ZZ} & \mathbf{L}_{\tau Z} \\ \mathbf{L}_{T\tau} & \mathbf{L}_{Z\tau} & \mathbf{L}_{\tau \tau} \end{bmatrix} \begin{bmatrix} \mathbf{T}_{O} \\ \mathbf{Z}_{20} \\ \mathbf{\tau}_{x} \end{bmatrix} + \begin{bmatrix} \text{sst noise} \\ \text{thermocline noise} \\ \text{wind stress noise} \end{bmatrix}$$

We can then diagnose how different terms impact dynamics:

$$\frac{d\mathbf{T}_{O}}{dt} = \mathbf{L}_{TT}\mathbf{T}_{O} + \mathbf{L}_{ZT}\mathbf{Z}_{20} + \mathbf{L}_{\tau T}\boldsymbol{\tau}_{x} + \text{ sst noise}$$

This has both local (damping) and non-local (advection, eddy mixing) parts This includes local thermocline and upwelling feedbacks, and non-local advective feedback Stand-in for turbulent and radiative heat fluxes?

Evolution from 9-month optimal structure

Evolution from 18-month optimal structure

Adding thermocline depth to SST-only LIM **improves relevance of "optimal" anomaly structures**

Panels show

projection of data on optimal initial condition

VS.

projection of data on final "evolved" anomaly

Key eigenmodes contributing to optimal growth (loop)

Conclusions (part II)

- Adding thermocline depth to SST-only LIM improves linear model on longer time scales
 - Enhanced forecast skill (predictability limit?)
 - Statistics of anomaly evolution better simulated
 - "New" optimal anomaly growth over > 9 months
- LIM can be used to diagnose ENSO dynamics
 - Optimal growth due to a few stable eigenmodes
 - Details of wind response to SST crucial
- Full "climate" LIMs possible?
 - from observations (maybe)
 - from GCMs (for diagnosis)