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Why Study the Southern Ocean?

* Unique geometry
— no longitudinal barriers

— physically connects all
three ocean basins

— hosts the Antarctic
Circumpolar Current (ACC)

* Important area for ocean-
atmosphere interactions
(e.g. carbon uptake) and
water mass formation
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Why Study the Southern Ocean?

Westerly Wind Stress Southern Ocean Response
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Why Study the Southern Ocean?

e The ACC is associated
with steep isopycnals that Wind stress (1
outcrop at high latitudes. O

At these outcrops, the - 9, M
sopycCna
deep ocean can exchange . e )

heat and carbon with the
atmosphere.

zZ A

e The Southern Ocean Y
makes up about 1/3 of
the oceanic carbon sink.



Southern Ocean Dynamics

 Wind-driven Ekman flow
tends to steepen Wind stress (1)
isopycnals

— Can be described by the
Eulerian mean circulation

(LIJm) surfaces (b)

* Mesoscale eddiestendto  *%
flatten isopycnals S

— Can be described by the
Eddy_induced circulation Adapted from Marshall & Radko (2003)

(b*)
U esigual = U + 0*




What About the Rest of the Ocean?

Southern Ocean Global pyenacline depth Northern Ocean

OW Ude

light water

Eddy return

Upwelling
TS(D)=TEkman_TEddy T (D)
U
Dense abyssal water

Gnanadesikan (1999)

* Each T represents a volume flux of water, with units [T] = m3/s.
* Each flux T depends on the global pycnocline depth D, which is itself set by

the balance of these three fluxes.
 The Southern Ocean interacts with the rest of the ocean through these fluxes!



10m eastward wind anomaly [m/s]

Observational Motivation
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 Thereis aclear trend in wind stress, but there is very little
change in isopycnal tilt.

* Our central question: Why didn’t the vertical density structure
respond much to the observed change in wind stress?



Why Didn’t the Isopycnals Respond?

* What mechanisms might
play a role in the ocean’s Wind stress (v+51)
response (or lack thereof) ©
to increased wind stress?

) Isopycnal
— Increased wind stress leads surfaces (b)

to stronger Ekman

transport (6U,,). A

— Hypothesis: Enhanced eddy > b, +0U,
activity (6y*) canceled out
the effect of increased
Ekman transport.

?
Boning et. al. (2008) 5 =8 +8 *'zo



Our Approach: Hierarchical Modeling

Sophisticated numerical
models

e Realistic topography and forcing
e Often much harder to interpret

Idealized numerical models

e Simplified topography and forcing
e Often harder to interpret

Simple conceptual models

e Small number of analytical
expressions

® Behavior relatively easy to interpret

Observational motivation

“... we typically gain some
understanding of a complex
system by relating its behavior to
that of other, especially simpler,
systems...we need a model
hierarchy on which to base our
understanding, describing how
the dynamics change as key
sources of complexity are added
or subtracted.”

— .M. Held, BAMS (2005).



Conceptual Model

Global pycnocline depth

Southern Ocean Northern Ocean
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Conceptual Model

* Alternatively, we could allow the eddies to have a
nonlinear dependence on pycnocline depth.

X ref D"

T =
eddy n-1
LY D ref

* n=1 corresponds to a constant background eddy
diffusivity (Gent and McWilliams 1990.)

n=12,3...

* n=2 roughly corresponds to a parameterization

based on baroclinic instability theory (Visbeck
1997.)



Conceptual Model

e To find the equilibrium pycnocline depth, set
dD/dt=0 and solve,

T,+T,-T, =0
D" +aD;, -bD, -c =0.

* To get the adjustment timescale, linearize the time-
dependent equation about equilibrium,
D=D,+D', |D)|>> D'

AD,

D(f)=De"'", T=
T, + 2T, + nTy,




Pycnoocline depth (m)

Conceptual Model Results
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 The pycnocline deepens in response to increased wind stress.
* The e-folding adjustment timescale is of multi-decadal order.

* Hypothesis: We haven’t observed a change in pycnocline depth




ldealized Sector Model
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Pycnocline depth (m)

|dealized Sector Model
Equilibrium Pycnocline Depth Experiment

* Experiment
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— This is consistent with our
conceptual model (lines.)



|dealized Sector Model
“Step Response” Experiment

* Experiment

— Allow the sector model to
spin up for 500 years with
a constant Southern Ocean

wind stress parameter
7=0.13 Pa.

— Run two configurations for
an additional 500 yr,

e control (no change in wind
stress,)

* doubled wind case (a.k.a.
perturbed case, 7=0.26 Pa.)

60

40}

207

Latitude
o

—Control

---Perturbation|

0 02
Zonal wind stress (Pa)

0.4



|dealized Sector Model

“Step Response” Experiment

* The global pycnocline
takes centuries to fully

Southern Ocean wind stress (t)
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_ Step Response N
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Sea surface height difference (m)
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Sea surface height difference (m)
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Northward Heat Transport [PW]

Heat Transport Anomalies

Net transport |
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e Low-resolution
* Anomaly = (Perturbed — control)
» 100 years after wind stress is doubled



Northward Heat Transport [PW]
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* High-resolution (eddy permitting)
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» 100 years after wind stress is doubled



ldealized Sector Model
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Conclusion

* Our central question: Why doesn’t the Southern
Ocean density structure respond much to
changes in wind stress?

* Our results suggest that

— Increased eddy activity works against increased
Ekman transport, but the compensation is not
complete.

— The small residual will connect with the rest of the
ocean on decadal to centennial timescales.

— As such, the global pycnocline may take many decades
to centuries to fully adjust to changes in wind stress.



