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Motivation

• Ocean-atmosphere partitioning of anthropogenic carbon

• Glacial-interglacial problem
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Carbon in the ocean

• CO2 dissolves in seawater: pCO2 = [CO2]
K0

• Carbonate chemistry: CO2 +H2O ↔ HCO−

3 +H+,

HCO−

3 ↔ H+ + CO2−
3

• DIC = [CO2](0.01mM) + [HCO−

3 ](1.8mM) + [CO2−
3 ](0.2mM)

3



Southern Ocean & Carbon Cycle
∼

2
3 of deep water originates south of 30◦S (Gebbie & Huybers, 2010)

→ Southern Ocean largely sets whole-ocean properties that determine

carbon partitioning (Toggweiler et al., 2003)

Investigate impact of whole-ocean properties on air-sea carbon

partitioning
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Analytical modelling

Why do analytical modelling if you have computer models?

• Provide more insight

• Aid interpretation of numerical model outcomes

• Save time and effort
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Revelle buffer factor

• R ≡
∂ln(pCO2)
∂ln(C)

≈ 10 (Bolin & Eriksson, 1959): pCO2 ∝ C10

• Defined for estimation of air-sea carbon partitioning

6



Problems with Revelle factor

Observations of Revelle factor at ocean surface along transect at 170◦W
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not constant & not transparent: particularly large variation within

Southern Ocean!
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A new buffer factor

O ≡ −

∂ln(pCO2)

∂ln[CO2−
3 ]

= 1+ 4
[CO2−

3 ]

[HCO−

3 ]
(1)

O and R along same transect at 170◦W
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Analysis of numerical simulations of air-sea
carbon partitioning

• Goodwin et al. (2007): impact of total carbon

• Omta et al. (2010): impact of ocean temperature
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Goodwin et al. (2007) simulations

• Two- and three-box ocean models + atmosphere / MITgcm

• Put different amounts of carbon in the system

• See how carbon equilibrates between atmosphere and ocean and

investigate impact on Revelle factor
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Goodwin et al. results: Revelle factor

11



Goodwin et al. results: Carbon uptake
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Analysis of R

R ≡

∂ln(pCO2)

∂ln(C)
=

C

[CO2−
3 ]

O
+ [CO2]

(2)

R (red) has maximum if both [CO2−
3 ] (blue) and [CO2] (green) small!
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How to derive air-sea carbon partitioning

Atmosphere (M)
Carbon

Ocean (V)

Global carbon conservation equation:

MpCO2 + V C = Ct (3)

Differentiate conservation equation with respect to Ct
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Analysis of air-sea partitioning

∂lnpCO2

∂Ct
=

1

(M + V
KH

)pCO2 + V
[CO2−

3 ]
O

≡

1

IB
(4)

Current regime: IB constant → exponential dependence of pCO2 on Ct

High-carbon regime: IB ≈ (M + V
KH

)pCO2 → linear dependence

In the high-carbon regime, the ocean has lost its buffering capacity,

because the CO2−
3 ions have been neutralised!
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Simulations of temperature impact

• 3◦×3◦ horizontal resolution, 15 levels vertical

• 20000-year spin-up with biogeochemistry

• Change SST in steps of 2◦C
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Biogeochemical model

• Productivity depends on light and phosporus

•
1
3 of net production is exported, remineralised according to empirical

power law

• Fixed carbon:phosphorus stoichiometry & fixed rain ratio
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Dependence of air-sea carbon partitioning on
temperature: analytical calculation

Carbon conservation equation, differentiate with respect to T :

dpCO2

dT
=

(a+ bO[CO2]

[CO2−
3 ]

)pCO2

1+ MpCO2O

[CO2−
3 ]V

+ O[CO2]

[CO2−
3 ]

≈ 0.038pCO2 (5)
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Comparison of theory with simulations
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Comparison of theory with simulations
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Conclusions

We have developed a new theoretical framework that:

• Theory predicts behaviour of full 3-D coupled flow/biogeochemical

model → you can think of climate problems without performing

simulation

• Provides insight: explains different carbon regimes

• Appears applicable to analyse impact of different water masses (e.g.,

AABW) on carbon partitioning
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