
16 1.11. HOMEWORK PROBLEMS

1.11 Homework Problems

(Answer Key Provided in Blue)

1.11.1 Manipulation

Exercise 1.1

1 + 0.1 + 0.01 + 0.001 + · · · = 1.1111 . . . (1.53)

Which can be understood by the sequence of partial sums Sn, or from (1.4) with a = 1 and
r = 0.1.

Exercise 1.2

1 + 1/2 + 1/4 + 1/8 + · · · = 2 (1.54)

Which can be understood by the residual of the sequence of partial sums versus 2, 2 � Sn =
1, 1/2, 1/4, 1/8, . . . , or from (1.4) with a = 1 and r = 1/2.

Exercise 1.3

1 + 1 + 1 + 1 + · · · = 1 (1.55)

Which can be understood by the sequence of partial sums being the natural numbers.

Exercise 1.4 (Taylor Realize) Confirm the first two nonzero terms of each of the series in
(1.24), (1.26), and (1.28) by plugging into those formulae for n = 0, 1, 2, . . . . For some n, the
terms will vanish, so keep going until you get two nonzero ones. Then, use (1.16) and derive the
first two nonzero terms in the series by taking the derivatives of each function. Again, some terms
will vanish (and they may not match up one-to-one with the formula in (1.23-1.28) until you have
enough terms calculated).

(For clarity, three terms are worked out here) From (1.23-1.28)
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From (1.16)
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1.11.2 Application

Exercise 1.5 (30N) An important parameter in the consideration of the physics of the rotating
Earth is the Coriolis parameter: 2⌦ sin('), where ⌦ is the angular rate of rotation of the earth in
radians (2⇡ in a day, or 2⇡/(24hr/s · 3600s)) and ' is the latitude. Taylor expand the first terms
in this parameter around 30 degrees North, or 30� · (2⇡radians/360�) = ⇡/6 radians. Carry out the
expansion to the term including (' � ⇡/6)3.
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Exercise 1.6 (Rocking with Taylor Swiftly) Consider pushing on the rock depicted in Fig. 3.2.
If you push or pull gently, the rock will push back. If you push or pull hard, not so much. We will
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18 1.11. HOMEWORK PROBLEMS

Figure 1.4: A situation that’s sensitive to perturbation amplitude.

use this example to consider how nonlinear functions are sensitive to amplitude in a way that linear
functions are not.
a, Equal and Opposite: Make a graph depicting the force applied, FA (positive=push in horizon-
tal direction, negative=pull in horizontal direction) versus the force back from the rock FR (after
equilibration). You can suppose that all forces go in the same direction. (Hint: prevent acceleration
up to a point, and FA + FR = ma.
b, Constant Approximation: If the function FR(FA) is fit with a Taylor series around FA = 0
and truncated at the first (constant) term (FR(FA) ⇡ c0). Describe this system’s response to applied
forces.
c, Linear Approximation: If the Taylor series for FR(FA) around FA = 0 is truncated after two
terms (FR ⇡ c0 + c1FA), it predicts how much FR for FA = 1 Newton? 2 Newtons? 105 Newtons?
Can fracture happen?
d, Breaking Point: What is the minimum number of terms in the Taylor series that must be
retained to make FR do something other than double when FA is doubled?
e, Extremes: Consider the response force FR at positive and negative FA. Is it approximately an
even or odd function? If this were exactly true (i.e., symmetry or antisymmetry between pushing
and pulling) what is the first term in the Taylor series that could make FR sensitive to amplitude
of FA?

a:

b: As FR(0) = c0 = 0, this system has no response, so ma = FA.

c: FR = �1Newton, �2Newtons, �105Newtons. This system cannot fracture, as FR = �FA.

d: At least one nonlinear term must be retained.

e: It is an odd function. Thus, we expect the c3(FA)3 term to be the first amplitude sensitive
one.

Exercise 1.7 (Taylor rhymes with Baylor) Suppose the function h(x) plotted in the figure is
found by measuring topography along the x direction, and in particular consider fitting it with a
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series expansion near the point marked A. Sea level is h = 0, so we are particularly interested in
h(x) = 0, which indicates the location of coastlines. The function is not known, but we consider
the possibility of approximating a Taylor series expansion to it.
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Figure 1.5: A function to be fit by Taylor expansion near point A at the star.

a, Counting: How many coastlines are there, that is how many solutions to h(x) = 0 are there?
b, Constant: If the function is fit with a Taylor series and truncated at the first (constant)
term, and if the truncated approximation is denoted h̃0(x), then how many solutions are there to
h̃0(x) = 0?
c, Variations: If the Taylor series is instead truncated after two terms (h̃1(x)) then how many
solutions are there to h̃1(x) = 0, and what is the approximate value of the solution x?
d, How many?: What is the minimum number of terms in the Taylor series that must be retained
to approximate all of the coastlines in the real function h(x)? Why?
e, Extremes: Consider the function at large magnitudes of positive and negative x. If the truncated
Taylor series matches this behavior at large |x|, predict the sign of the coe�cient in the largest power
of x and whether the power is even or odd.

a: 4

b: None.

c: One, near x = 12.

d: Since there are 4 roots to the equation h(x) = 0, h̃(x) must be at least a fourth-order polynomial
to have this many roots, which has 5 terms of the Taylor series retained.

e: Positive and even power. Negative would tend toward �1, and even power since the function
increases on both sides of A or 0.

1.11.3 Scheming Schematics and Articulate Analysis

Exercise 1.8 (Who is the Oddest?) Sometimes it is said that sin is an odd function and cos
is an even function. Examine the sin and cos functions in (1.23) and explain what this means in
terms of the exponents of x. Consider sin(x) versus sin(�x) and cos(x) versus cos(�x), how do
they compare? How do odd and even functions compare under the sign reversal of their argument
(i.e., the input to the function, x or �x) in general?

The powers of all of the terms in the (1.23) are either all odd (in the case of sine) or all even (in
the case of cosine). As odd powers reverse sign under reversal of the argument, e.g., (�x)3 = �x3,
sin(�x) = � sin(x). By contrast e.g., (�x)4 = x4, so cos(�x) = cos(x). Also, since taking the
derivative lowers the exponent of each term by one, it makes sense that the derivative of an odd
function is even and vice versa.
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20 1.11. HOMEWORK PROBLEMS

Exercise 1.9 (Biggie Smalls) Examine each factor in the product that makes up (1.16). What
makes them large or small as n increases?

It is important to think a bit about what leads the Taylor series to converge. The n! in the
denominator is a strong pull toward smaller and smaller numbers. In the examples (1.23)-(1.29),
this factorial remains in many of the series. However, keeping (x�a) small is also important–that is,
the approximation is better the closer to the location where the derivatives are evaluated. Finally,
the derivatives themselves need to not get larger and larger with repeated di↵erentiation. In series
where this occurs, such as (1.29), the factorial is cancelled out by the increasingly sharp derivative
functions.
The factorial always decreases the size with increasing n. The (x � a)n can increase or decrease
the size, depending on whether x is close to a. The derivative f (n)(a) tends to be noisier & larger
with increasing n (as integrals tend to be smoother than the original signal, hence averaging).
Examining the finite di↵erence approximation for the following combination,

(x � a)n�nf

�xn
, (1.78)

implies that “near” and “far” for (x � a) is measured in terms of how far in x you need to go to
make �f sizeable or make f “wiggle” appreciably. The units of f provide the units of the whole
Taylor approximation, while the units of x � a need to match the units of �x.

Exercise 1.10 (Getting Seri-us) The Taylor series and the Fourier series are methods to de-
termine the coe�cients in series expansions of a function f(x). They apply in approximating the
function near x = a and over a given interval where the function is periodic. Suppose we have a
function that is periodic when �⇡  x�a  ⇡, then we can write the Taylor and Fourier series–for
the same function f(x) as,

f(x) = c0 + c1(x � a) + c2(x � a)2 + c3(x � a)3 + . . . ,

f(x) = d0 + d1e
i(x�a) + d2e

2i(x�a) + d3e
3i(x�a) + . . .

Use these forms to answer the following questions. Hint:

eni(x�a) = 1 + in(x � a) � n2

2
(x � a)2 � in3

6
(x � a)3 + · · · +

(in)m

m!
(x � a)m + . . .

a, Constant: Is there a simple relationship between c0 and d0 very near x = a for all f(x)?
b, Variations: Does a specific term in the Fourier series, say d2e2i(x�a) always correspond to a
specific term in the Taylor series, regardless of what f(x) is?
c, Equivalence?: Assuming both series converge, is there a unique (though perhaps complicated)
relationship among all of the cn and all of the dn?
d, Specifically: If f(x) = ei(x�a), what are the values of all nonzero dn and cn?

a: No. Setting x = a yields c0 = d0 + d1 + d2 + d3 + . . .

b: No. Every term in the Fourier series will contribute to every term in the Taylor series, since
each has a part of it that goes as (x � a) to any given power, as seen clearly in the hint.

c: Yes. There is a unique Taylor series and a unique Fourier series for a given function f(x), and
either can be used to derive the other, so there is a unique relationship among all of the coe�cients
of each.

d: d1 = 1, all other dn are zero. cn are the coe�cients given in the hint, cm = (i)m

m! .
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1.11.4 Jargon to Argot

Exercise 1.11 (Sequence vs. Series) What’s the di↵erence between a sequence and a series?

A sequence is an ordered list of numbers, while a series is a sum of a sequence of numbers.

Exercise 1.12 (Asymptote, Asymptotic, Limit) An asymptote is a line that continually ap-
proaches a given curve but does not meet it at any finite distance. Contrast this definition to that
of the adjective asymptotic and the term limit.

An asymptote is a line that continually approaches a curve. A behavior is asymptotic if it becomes
increasingly true as a particular limit is approached, but it is not true at any finite distance. A limit
is a value that is approached by a function as a parameter becomes large or small. The asymptote
is a graphical description of an asymptotic limit.
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