HW on Chps 2&3 Answer Key:

Exercise 2.2 (Crunch your abs!) Similar to problems in 2.5 of Boas (2006). Simplify the fol-
lowing number, z, to the z = x + iy form and to the z = re'® form. Then plot the number and all
of its fourth roots in the complex plane (Boas, 2006, see Section 2.10).
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Exercise 2.5 (The Buoyancy, or Brunt-Viisild, Frequency) In a density stratified fluid, dis-
placing a fluid parcel (without changing its density) upward or downward results in a restoring buoy-

ancy force, because a parcel displaced upward will be denser than its neighbors and a parcel displaced

downward will be more buoyant than its neighbors. The equation that describes the motion for the

position of the parcel Z can be written
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Where N is a function of the density (p) stratification in the vertical direction (z) as compared to
a background density po and gravitational acceleration g:
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The frequency N is called the buoyancy frequency or Brunt-Viisdald frequency after David Brunt
and Vilho Viisdld. Verify that Z = N, Z = ¢~*N', Z = cos(Nt), and Z = sin(Nt) satisfy this
equation.
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12 sin(Nt) = —N?sin(Nt) = —N2(sin(Nt)),
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;? COS(Nt) = —N? COS(Nt) = —N2(COS(Nt)).
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3.13.2 Application

Exercise 3.5 (Nontrivial Cramer’s) In Pedlosky (1987), Cramer’s rule is repeatedly used to
determine the dispersion relation for waves and instabilities that solve complex linear systems of
equations. One example is the derivation of Kelvin and Poincaré waves in a channel (x is along-
channel distance and y is the cross-channel distance, and L is the channel width). The waves (in
displacement of the ocean surface, or n) are assumed to have the form

n = Re(Acos ay + Bsin ay) e/ (3.63)

The parameter k is the wavenumber in x, o is the frequency, and « is the wavenumber in y. A
and B are amplitudes. In the derivation, the wave equations were used to show that must a depend
on other parameters (Co, a typical wave speed and f, the Coriolis parameter) in the following way:
o? = %ﬁ — k2. The remaining equations (the boundary conditions at the walls of the channel)
were boiled down to the following linear equations on A and B.
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acosaL + Ik sinaL|A + [ﬁ cosaL —asinaL| B = 0. (3.65)
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Using Cramer’s rule, prove that: a) If the determinant of the coefficients of A and B doesn’t vanish,
then the only solution is A =0, B =0. b) That a nontrivial solution is possible if the determinant
vanishes, and show that a vanishing determinant is equivalent to the condition (called the dispersion
relation which is used to solve for frequency given wavenumber or vice versa):

(0% = f?)(0? — C2k?*)sinaL = 0. (3.66)

Finally, c) the equations for A and B are linear, but the dispersion relation between o and k is
not. Which operation in the use of Cramer’s rule will virtually guarantee nonlinear polynomials?
(Hint: the order of the polynomials will be closely related to the number of columns or rows in the
coefficient matriz)

a) This is a homogeneous set of equations, so Cramer’s rule tells us the solution will be trivial
(A = 0,B = 0) because the column vector on the RHS is equal to zero, thus the numerator
(determinant of a matrix with a column replaced by the RHS vector) in Cramer’s rule will always






