
 

CHAPTER 6. INTEGRALS 85

Now for variable density, choosing coordinates so that z0 = 0:

M =

ˆ h/2

�h/2

ˆ 2⇡

0

ˆ R

0
(⇢0 + az)r dr d� dz = ⇢0⇡R2h,

x · î =

´ h/2
�h/2

´ 2⇡
0

´ R
0 (⇢0 + az)r2 cos � dr d� dz

M
,

x · ĵ =

´ h/2
�h/2

´ 2⇡
0

´ R
0 (⇢0 + az)r2 sin � dr d� dz

M
,

x · k̂ =

´ h/2
�h/2

´ 2⇡
0

´ R
0 (⇢0 + az)zr dr d� dz

M
,

x = (0, 0,
a⇡h3R2

12M
) = (0, 0,

ah2

12⇢0
)

Sphere (keeping center of mass in x, y, z coordinates):

M =

ˆ 2⇡

0

ˆ ⇡

0

ˆ R

0
⇢r2 sin ✓ dr d✓ d� = ⇢

4

3
⇡R2,

x · î =

´ 2⇡
0

´ ⇡
0

´ R
0 ⇢r3 cos � sin ✓ dr d✓ d�

M
,

x · ĵ =

´ 2⇡
0

´ ⇡
0

´ R
0 ⇢r3 sin � sin ✓ dr d✓ d�

M
,

x · k̂ =

´ 2⇡
0

´ ⇡
0

´ R
0 ⇢r3 cos ✓ sin ✓ dr d✓ d�

M
,

⇢ = (⇢ + ar cos ✓).

We note that all of these center of mass integrals would vanish if ⇢ were a constant ⇢0, but if it
varies, then the vertical (z) direction has a center of mass not located at the origin.

6.5 Homework Problems

6.5.1 Manipulation

Exercise 6.1 (Volumes) Set up and evaluate integrals to calculate the volume of an Lx⇥Ly ⇥Lz

rectangular solid, a cylinder of radius R and height h, and a sphere of radius R.

V =

ˆ Lz

0

ˆ Ly

0

ˆ Lx

0
dx dy dz = LxLyLz,

V =

ˆ h

0

ˆ 2⇡

0

ˆ R

0
r dr d� dz = ⇡R2h,

V =

ˆ 2⇡

0

ˆ ⇡

0

ˆ R

0
r2 sin ✓ dr d✓ d� =

4

3
⇡R3.

6.5.2 Application

Exercise 6.2 (Earth) Redo the cylinder and sphere volume calculations from exercise ??, but
with all integrals and integrands expressed in earth coordinates. Hint: It is easiest to consider the
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´ h/2
�h/2

´ 2⇡
0

´ R
0 (⇢0 + az)r2 sin � dr d� dz

M
,

x · k̂ =

´ h/2
�h/2

´ 2⇡
0

´ R
0 (⇢0 + az)zr dr d� dz

M
,

x = (0, 0,
a⇡h3R2

12M
) = (0, 0,

ah2

12⇢0
)

Sphere (keeping center of mass in x, y, z coordinates):

M =

ˆ 2⇡

0

ˆ ⇡

0

ˆ R

0
⇢r2 sin ✓ dr d✓ d� = ⇢

4

3
⇡R2,

x · î =
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´ 2⇡
0

´ ⇡
0

´ R
0 ⇢r3 sin � sin ✓ dr d✓ d�

M
,

x · k̂ =

´ 2⇡
0

´ ⇡
0

´ R
0 ⇢r3 cos ✓ sin ✓ dr d✓ d�

M
,

⇢ = (⇢ + ar cos ✓).

We note that all of these center of mass integrals would vanish if ⇢ were a constant ⇢0, but if it
varies, then the vertical (z) direction has a center of mass not located at the origin.

6.5 Homework Problems

6.5.1 Manipulation

Exercise 6.1 (Volumes) Set up and evaluate integrals to calculate the volume of an Lx⇥Ly ⇥Lz

rectangular solid, a cylinder of radius R and height h, and a sphere of radius R.

V =

ˆ Lz

0

ˆ Ly

0

ˆ Lx

0
dx dy dz = LxLyLz,

V =

ˆ h

0

ˆ 2⇡

0

ˆ R

0
r dr d� dz = ⇡R2h,

V =

ˆ 2⇡

0

ˆ ⇡

0

ˆ R

0
r2 sin ✓ dr d✓ d� =

4

3
⇡R3.

6.5.2 Application

Exercise 6.2 (Earth) Redo the cylinder and sphere volume calculations from exercise ??, but
with all integrals and integrands expressed in earth coordinates. Hint: It is easiest to consider the

September 28, 2021 Version

86 6.5. HOMEWORK PROBLEMS

cylinder as sitting with its base on the origin (rather than centered on the origin). Then break up
the integral into two parts. First, there is the conic section that extends from # = tan�1(h/R) to
# = ⇡/2 and is bounded at the surface of the top of the cylinder. This surface can be described by
z = h/ sin #. The other surface to consider is the outer shell of the cylinder. This surface can be
described by the function z = R/ cos #, and it is relevant for # = 0 to # = tan�1(h/R).

Rectangular Solid: The earth coordinates are based on a sphere of radius r0, which is supposed
to be the mean radius of the earth. We can make this problem a little cleaner by assuming that
the radius of our cylinder is much larger than the r0, and therefore just using r0 = 0. It is also
easiest to consider the cylinder as sitting with its base on the origin (rather than centered on the
origin). We break up the integral into two parts. First, there is the conic section that extends
from # = tan�1(h/R) to # = ⇡/2 and is bounded at the surface of the top of the cylinder. This
surface can be described by z = h/ sin #. The other surface to consider is the outer shell of the
cylinder. This surface can be described by the function z = R/ cos #, and it is relevant for # = 0 to
# = tan�1(h/R). Thus,

V =

ˆ tan�1(h/R)

0

ˆ 2⇡

0

ˆ R/ cos#

0
z2 cos # dzd� d# +

ˆ ⇡/2

tan�1(h/R)

ˆ 2⇡

0

ˆ h/ sin#

0
z2 cos # dzd� d#,

= 2⇡

ˆ tan�1(h/R)

0

ˆ R/ cos#

0
z2 cos # dzd# + 2⇡

ˆ ⇡/2

tan�1(h/R)

ˆ h/ sin#

0
z2 cos # dzd#,

=
2⇡

3

ˆ tan�1(h/R)

0

R3

cos2 #
d# +

2⇡

3

ˆ ⇡/2

tan�1(h/R)

h3 cos #

sin3 #
d#,

=
2⇡R3

3

0

B@tan #

�����

tan�1(h/R)

0

1

CA +
2⇡h3

3

0

@ �1

2 tan2 #

�����

⇡/2

tan�1(h/R)

1

A ,

=
2⇡R3

3

✓
h

R

◆
+

2⇡h3

3

✓
0 +

1

2h2/R2

◆
,

=
2⇡R2h

3
+

⇡R2h

3
,

= ⇡R2h.

Sphere: The sphere is much easier, because it is a surface of uniform z. Let’s choose r0 = R,
then

V =

ˆ ⇡/2

�⇡/2

ˆ 2⇡

0

ˆ 0

�R
(z + R)2 cos # dzd� d#,

=
2⇡R3

3

ˆ ⇡/2

�⇡/2
cos # d#,

=
4⇡R3

3
.

Exercise 6.3 (Oblate Earth) Suppose the reference sphere for r0 in earth coordinates is not
su�cient, e.g., for calculating local sea level or the gravitational anomalies due to melting ice
sheets. Find the Jacobian matrix and its determinant if the geoid does depend on latitude and
longitude: r0(�, #).
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CHAPTER 6. INTEGRALS 87

x = (z + r0(�, #)) cos � cos #, (6.27)

y = (z + r0(�, #)) sin � cos #,

z = (z + r0(�, #)) sin #.

The Jacobian is,

@(x, y, z)

@(�, #, z)
=

������������

@x

@�

@x

@#

@x

@z
@y

@�

@y

@#

@y

@z
@z

@�

@z

@#

@z

@z

������������

(6.28)

=

��������

�(z + r0) sin � cos # + @r0
@� cos � cos # �(z + r0) cos � sin # + @r0

@# cos � cos # cos � cos #

(z + r0) cos � cos # + @r0
@� sin � cos # �(z + r0) sin � sin # + @r0

@# sin � cos # sin � cos #
@r0
@� sin # (z + r0) cos # + @r0

@# sin # sin #

��������
(6.29)

= (z + r0)
2 cos #

So, even though the Jacobian matrix is di↵erent, the determinant of the Jacobian is not.

6.5.3 Scheming Schematics and Articulate Analysis

Exercise 6.4 Problem 5.4.25 Boas (2006). The volume inside a sphere of radius r is V = 4
3⇡r3.

Then dV = 4⇡r2dr = Adr, where A is the area of the sphere. What is the geometrical meaning of
the fact that the derivative of the volume is the area? Could you use this fact to find the volume
formula given the area formula?

The volume of a sphere is V = 4
3⇡r3, so dV = 4⇡r2 dr = A dr. The volume of a sphere is related

to the integral, with respect to r, of the surfaces of the spherical shells inside it. You can find the
volume from the area by integrating V =

´
dV =

´ r
0 A dr.
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We examine the averages of f(x), which is 1 from �⇡ to 0 and 0 from 0 to ⇡.

hf(x) cos 0xi =
1

2⇡

ˆ ⇡

�⇡
f(x)1 dx =

1

2⇡

ˆ 0

�⇡
1 dx =

1

2
,

hf(x) cos xi =
1

2⇡

ˆ 0

�⇡
cos x dx =

sin(0) � sin(�⇡)

2⇡
= 0,

hf(x) cos nxi =
1

2⇡

ˆ 0

�⇡
cos nx dx =

sin(n⇡)

2⇡n
,

hf(x) sin xi =
1

2⇡

ˆ 0

�⇡
sin x dx =

� cos 0 + cos(�⇡)

2⇡
=

�1

⇡
,

hf(x) sin nxi =
1

2⇡

ˆ 0

�⇡
sin nx dx =

�1 + cos(n⇡)

2⇡n
.

So, we want to expand the function in a series, which we do by multiplying and then averaging
both sides,

f(x) =
1

2
a0 +

1X

n=1

an cos nx + bn sin nx,

hf(x)i =
1

2
= hcos x

0

@1

2
a0 +

1X

n=1

an cos nx + bn sin nx

1

Ai =
1

2
a0 ! a0 = 1,

hf(x) cos xi = 0 = hcos x

0

@1

2
a0 +

1X

n=1

an cos nx + bn sin nx

1

Ai =
1

2
a1 ! a1 = 0,

hf(x) cos nxi =
sin(n⇡)

2⇡n
= hcos nx

0

@1

2
a0 +

1X

n=1

an cos nx + bn sin nx

1

Ai =
1

2
an ! an =

sin(n⇡)

⇡n
= 0,

hf(x) sin xi =
�1

⇡
= hsin x

0

@1

2
a0 +

1X

n=1

an cos nx + bn sin nx

1

Ai =
1

2
b1 ! b1 =

�2

⇡
,

hf(x) sin nxi =
�1 + cos(n⇡)

2⇡n
= hsin nx

0

@1

2
a0 +

1X

n=1

an cos nx + bn sin nx

1

Ai =
1

2
bn ! bn =

�1 + cos(n⇡)

⇡n
,

f(x) =
1

2
+

1X

n=1

�1 + cos(n⇡)

⇡n
sin nx =

1

2
� 2

⇡


sin x

1
+

sin 3x

3
+

sin 5x

5
+ . . .

�

Exercise 7.2 (Sines, Cosines, Exponentials) Problem 7.5.12 of Boas (2006). Show that in
(5.2) the average values of sin(mx) sin(nx) and of cos(mx) cos(nx), m 6= n, are zero (over a
period), by using the complex exponential forms for the sines and cosines as in (5.3).
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hsin nx sin mxi = �1

4

⌧⇣
einx � e�inx

⌘ ⇣
eimx � e�imx

⌘�
,

= �1

4

D
einx+imx � e�inx+imx � einx�imx + e�inx�imx

E
,

=

8
>>><

>>>:

�1
4 (1 � 0 � 0 + 1) if m = �n 6= 0

�1
4 (0 � 1 � 1 + 0) if m = n 6= 0

�1
4 (0 � 0 � 0 + 0) if m 6= ±n

�1
4 (1 � 1 � 1 + 1) if m = n = 0

=

8
><

>:

0, if m = n = 0,
0, if m 6= n,
1
2 , if m = n 6= 0.

The last equality takes advantage of the oddness of sine.

hsin nx sin mxi =
1

4

⌧⇣
einx + e�inx

⌘ ⇣
eimx + e�imx

⌘�
,

=
1

4

D
einx+imx + e�inx+imx + einx�imx + e�inx�imx

E
,

=

8
>>><

>>>:

1
4 (1 + 0 + 0 + 1) if m = �n 6= 0
1
4 (0 + 1 + 1 + 0) if m = n 6= 0
1
4 (0 + 0 + 0 + 0) if m 6= ±n
1
4 (1 + 1 + 1 + 1) if m = n = 0

=

8
><

>:

1, if m = n = 0,
0, if m 6= n,
1
2 , if m = n 6= 0.

Quod erat demonstrum.

7.4.2 Evaluate & Create

Exercise 7.3 (Derivatives) a) Show that the following function f(x) and Fourier series g(x) are
equivalent on the interval from �⇡ to ⇡ up to order of sin(2x). To do so, multiply the f(x) and
g(x) functions by each of the following in turn: sin(x), sin(2x) and cos(0x), cos(x), cos(2x). Show
that the average value of the product from �⇡ to ⇡ is the same, for example that hf(x) sin(2x)i =
hg(x) sin(2x)i. (see Boas, 2006, pg. 351).

8 : � ⇡  x  ⇡,

f(x) = x(⇡ � x)(⇡ + x),

g(x) =
1X

n=1

(�1)n�1

n3
12 sin(nx).

b) Take the first derivative of f(x) and g(x) (by taking the derivative of the generic term in the
series). Show that the resulting derivatives are equivalent, using the same method as in a).

(a) Exploiting the fact that any odd function will be zero on average, and explicitly calculating the
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even functions, we find

hf(x)i = hx(⇡ � x)(⇡ + x)i = 0, hg(x)i = 0.

hf(x) cos xi = hx(⇡ � x)(⇡ + x) cos xi = 0, hg(x) cos xi = 0.

hf(x) cos mxi = hx(⇡ � x)(⇡ + x) cos mxi = 0, hg(x) cos mxi = 0.

hf(x) sin xi = hx(⇡ � x)(⇡ + x) sin xi hg(x) sin xi = 6

= h(⇡2x � x3) sin xi = ⇡2 � (�6 + ⇡2) = 6

hf(x) sin mxi = hx(⇡ � x)(⇡ + x) sin mxi hg(x) sin mxi =
(�1)m�1

m3
6.

= h(⇡2x � x3) sin nxi =
�6 cos m⇡

n3
=

�6(�1)m

m3

(b) Now we check the derivative...

f 0(x) = (⇡2 � 3x2),

g0(x) =
1X

n=1

(�1)n�1

n2
12 cos(nx).

hf 0(x)i = h(⇡2 � 3x2)i = ⇡2 � ⇡2 = 0, hg0(x)i = 0.

hf 0(x) cos xi = h(⇡2 � 3x2) cos xi = 0 � (�6), hg0(x) cos xi = 6.

hf 0(x) cos mxi = h(⇡2 � 3x2) cos mxi hg0(x) cos mxi =
�6(�1)m

m2
.

= 0 � 6 cos m⇡

m2
=

�6(�1)m

m2

hf 0(x) sin xi = 0 hg0(x) sin xi = 0

hf 0(x) sin mxi = 0 hg0(x) sin mxi = 0.

Quod erat demonstrum.
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