Exercise 6.1 (Volumes) Set up and evaluate integrals to calculate the volume of an Ly x Ly, x L,
rectangular solid, a cylinder of radius R and height h, and a sphere of radius R.
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6.5.2 Application

Exercise 6.2 (Earth) Redo the cylinder and sphere volume calculations from exercise 77, but
with all integrals and integrands expressed in earth coordinates. Hint: It is easiest to consider the

cylinder as sitting with its base on the origin (rather than centered on the origin). Then break up
the integral into two parts. First, there is the conic section that extends from ¥ = tan~'(h/R) to
Y = 7/2 and is bounded at the surface of the top of the cylinder. This surface can be described by
3 = h/sind. The other surface to consider is the outer shell of the cylinder. This surface can be
described by the function 3 = R/ cos¥, and it is relevant for 9 =0 to ¥ = tan"'(h/R).

Rectangular Solid: The earth coordinates are based on a sphere of radius rg, which is supposed
to be the mean radius of the earth. We can make this problem a little cleaner by assuming that
the radius of our cylinder is much larger than the 7o, and therefore just using ro = 0. It is also
easiest to consider the cylinder as sitting with its base on the origin (rather than centered on the
origin). We break up the integral into two parts. First, there is the conic section that extends
from 9 = tan"!(h/R) to ¥ = m/2 and is bounded at the surface of the top of the cylinder. This
surface can be described by 3 = h/sind. The other surface to consider is the outer shell of the
cylinder. This surface can be described by the function 3 = R/ cos ¥, and it is relevant for ¢ = 0 to
¥ = tan"!(h/R). Thus,
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Sphere: The sphere is much easier, because it is a surface of uniform 3. Let’s choose rg = R,
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Exercise 6.4 Problem 5.4.25 Boas (2006). The volume inside a sphere of radius r is V = %7['7"3.
Then AV = 4rr’dr = Adr, where A is the area of the sphere. What is the geometrical meaning of
the fact that the derivative of the volume is the area? Could you use this fact to find the volume
formula given the area formula?

The volume of a sphere is V = 37rr , 50 AV = 4nr?2dr = Adr. The volume of a sphere is related
to the integral, with respect to r, of the surfaces of the spherical shells inside it. You can find the
volume from the area by integrating V = [dV = [ Adr.

Exercise 7.2 (Sines, Cosines, Exponentials) Problem 7.5.12 of Boas (2006). Show that in
(5.2) the average values of sin(mz)sin(nz) and of cos(mzx)cos(nx), m # n, are zero (over a
period), by using the complex exponential forms for the sines and cosines as in (5.3).
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The last equality takes advantage of the oddness of sine.
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Quod erat demonstrum.



Exercise 7.3 (Derivatives) a) Show that the following function f(x) and Fourier series g(x) are
equivalent on the interval from —m to m up to order of sin(2z). To do so, multiply the f(x) and
g(x) functions by each of the following in turn: sin(x),sin(2x) and cos(0z), cos(x), cos(2z). Show
that the average value of the product from —m to 7 is the same, for example that (f(x)sin(2x)) =
(g9(x)sin(2z)). (see Boas, 2006, pg. 351).

Vi—m<zx<m,
flx) =2(r —z)(7 + x),

g(x) = Z (=) 12 sin(nx).
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n=1

b) Take the first derivative of f(x) and g(x) (by taking the derivative of the generic term in the
series). Show that the resulting derivatives are equivalent, using the same method as in a).

(a) Exploiting the fact that any odd function will be zero on average, and explicitly calculating the

even functions, we find

{(f(z)) = (2(r —2)(m + x)) = 0, {9(x)) = 0.
(f(z)cosz) = (x(m — x)(m + z) cosz) =0, (9(x) cosz) = 0.
(f(x) cosmz) = (x(m — x)(7m + x) cosmz) = 0, (g(x) cosmzx) =
(f(z)sinz) = (z(r — x)(7 + ) sinz) (g(z)sinz) =6
= ((r%x — 2®)sing) =72 — (=6 +7%) =6
(f(z) sinmz) = (z(r — x)(7 + ) sin mzx) (9(z) sinmzx) = %6.
= ((r%x — 2®) sinnz) = 6 co;mw = 76(731)7”
(b) Now we check the derivative...
f(z) = (n* = 32%),
X 1\yn—1
J(x) = Z ( 132 12 cos(nx).
n=1
(f'(2)) = ((n* = 32%)) =7 —7* = 0, (g'(x)) =0.
(f'(z) cosz) = (7% = 32%) cosz) = 0 — (—6), (¢’ (z) cosz) = 6.
/ 2 2 / —6(—1)™
(f'(z) cosmz) = ((m° — 3z*) cosmzx) (¢'(z) cosmz) = —
6cosmm  —6(—1)"
=0~ m2 (mQ )

(f'(z)sinz) =0 (¢ (z)sinz) =0
(f'(z)sinmz) =0 (¢’ (z) sinmz) = 0.

Quod erat demonstrum.



