Chapter 9 HW key:

9.7.1 Manipulation

Exercise 9.1 Problem 8.2.1 of Boas (2006). For the following differential equation, separate variables and find a solution containing one arbitrary constant. Then find the value of the constant to give a particular solution satisfying the given boundary condition.

$$xy' = y$$
 (9.52)

You do not need to compare to a computer solution.

$$x \frac{\mathrm{d}y}{\mathrm{d}x} = y,$$

$$\frac{\mathrm{d}y}{y} = \frac{\mathrm{d}x}{x},$$

$$\int \frac{\mathrm{d}y}{y} = \int \frac{\mathrm{d}x}{x},$$

$$\ln y = \ln x + \ln C,$$

$$\ln y = \ln Cx,$$

$$y = Cx.$$

Where C is an arbitrary constant. The second step is to evaluate C such that y = 3 when x = 2, thus

$$y = \frac{3}{2}x$$

Exercise 9.2 Problem 8.5.1 of Boas (2006). Solve the following differential equation by the methods discussed in Boas. You do not need to compare to a computer solution.

$$y'' + y' - 2y = 0 \tag{9.53}$$

$$\begin{aligned} \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \frac{\mathrm{d}y}{\mathrm{d}x} - 2y &= 0, \\ y &= Ae^{mx}, \\ m^2 + m - 2 &= 0 \to m = \frac{-1 \pm \sqrt{1+8}}{2} = -2 \text{ or } 1, \\ y &= Ae^{-2x} + Be^{1x}. \end{aligned}$$

Now, to add the boundary conditions (y(0)=1, y'(0)=0), we note

y(0)=1=A+B y'(0)=0=-2A+B

Subtracting the second equation from the first, we find: 1=3A

Thus, A=1/3And then by substitution into the second equation B=2/3

Exercise 9.3 Show that the general solution to the first-order, linear differential equation on pg. 401 of (Boas, 2006) is the same as the guess \mathcal{C} check solution in (10.1) of these notes.

The solution in (10.1) is

$$\left\langle \mathcal{P} \right\rangle \approx \left\langle \mathcal{P}_{ss} \right\rangle + A e^{-t \frac{V_{out}}{V_{ol.}}} = \left\langle \mathcal{P}_{ss} \right\rangle \left(1 - e^{-t \frac{V_{out}}{V_{ol.}}} \right)$$

So, let's work on the one in pg. 401 of (Boas, 2006). The problem is stated as

$$y' + Py = Q.$$

The solution is formally,

$$ye^{I} = \int Qe^{I} dx + c,$$
 or
 $y = e^{-I} \int Qe^{I} dx + ce^{-I},$ where
 $I = \int P dx.$

Our problem is

$$\frac{d}{dt}\langle \mathcal{P} - \mathcal{P}_{ss} \rangle + \frac{V_{out}}{\text{Vol.}}\langle \mathcal{P} - \mathcal{P}_{ss} \rangle \approx 0$$

Thus,

$$\begin{split} y &= \langle \mathcal{P} - \mathcal{P}_{ss} \rangle, \\ x &= t, \\ P &= \frac{V_{out}}{\text{Vol.}}, \\ Q &= 0, \\ I &= \int \frac{V_{out}}{\text{Vol.}} \, \mathrm{d}t = \frac{V_{out}t}{\text{Vol.}} \end{split}$$

Thus, the solution is

$$y = \langle \mathcal{P} - \mathcal{P}_{ss} \rangle = e^{-I} \int Q e^{I} \, \mathrm{d}x + c e^{-I} = c e^{-\frac{V_{out}}{V_{ol}}t} = A e^{-t \frac{V_{out}}{V_{ol}}t}$$

Which is the same as the solution given in (10.1).

Exercise 9.4 Find the leading order differential equation, by Taylor series expansion of the radiation forcing, to the Energy Balance Model of Section 9.2.3 for the remaining steady state solution (near $T_{ss3} = 174.438 \text{ K}$). Solve this differential equation, and decide if this third steady state is a stable or unstable steady state solution.

Evaluating the Taylor series near T_{ss3} ,

$$\begin{aligned} R_i &= 51.375 \,\mathrm{W} \,\mathrm{m}^{-2} \left(1 + \dots \right), \\ -R_o &= 51.375 \,\mathrm{W} \,\mathrm{m}^{-2} \left(-1 - 0.02218 (T - T_{ss3})\right), \\ \frac{\mathrm{d}T}{\mathrm{d}t} &\approx \underbrace{\frac{-1.1395 \,\mathrm{W} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}}{c}}_{\mathrm{neg. \ feedback}} (T - T_{ss3}) + \dots \\ T - T_{ss3} &\approx \Delta T e^{-t/\tau}, \qquad \tau = \frac{1.1395 \,\mathrm{W} \,\mathrm{m}^{-2} \,\mathrm{K}^{-1}}{c} \end{aligned}$$

This steady-state solution is stable.

9.7.3 Evaluate & Create

Exercise 9.5 Verify that the sum of the characteristic solution (9.49) and the particular solution (9.44) constitute a solution to the original equations for the two sliding masses (9.43).

$$\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} x_{p1}\\ x_{p2} \end{bmatrix} + \begin{bmatrix} x_{c1}\\ x_{c2} \end{bmatrix},$$
$$\begin{bmatrix} x_{p1}\\ x_{p2} \end{bmatrix} = \begin{bmatrix} Vt - D - 2\mu S/k\\ Vt - 2D - 3\mu S/k \end{bmatrix},$$
$$\begin{bmatrix} x_{c1}\\ x_{c2} \end{bmatrix} = (Ae^{i\omega_1 t} + Be^{-i\omega_1 t}) \begin{bmatrix} 1 + \sqrt{5}\\ -2 \end{bmatrix} + (Ce^{i\omega_2 t} + De^{-i\omega_2 t}) \begin{bmatrix} 1 - \sqrt{5}\\ -2 \end{bmatrix},$$
$$\omega_1 = \sqrt{\frac{k}{m}} \sqrt{\frac{3 + \sqrt{5}}{2}}, \qquad \omega_2 = \sqrt{\frac{k}{m}} \sqrt{\frac{3 - \sqrt{5}}{2}}$$

So,

$$\begin{split} x_1 &= Vt - D - 2\mu S/k + \left[1 + \sqrt{5}\right] \left(Ae^{i\omega_1 t} + Be^{-i\omega_1 t}\right) + \left[1 - \sqrt{5}\right] \left(Ce^{i\omega_2 t} + De^{-i\omega_2 t}\right), \\ x_2 &= Vt - 2D - 3\mu S/k - 2(Ae^{i\omega_1 t} + Be^{-i\omega_1 t}) - 2\left(Ce^{i\omega_2 t} + De^{-i\omega_2 t}\right). \end{split}$$

Our overall governing equations are:

$$m \frac{\mathrm{d}^2 x_1}{\mathrm{d}t^2} = \left(k \left[Vt - x_1 - D \right] - k \left[x_1 - x_2 - D \right] - \mu S \right),$$

$$m \frac{\mathrm{d}^2 x_2}{\mathrm{d}t^2} = \left(k \left[x_1 - x_2 - D \right] - \mu S \right).$$

From our solutions, we have

$$\begin{aligned} \frac{\mathrm{d}^2 x_1}{\mathrm{d}t^2} &= -\omega_1^2 \left[1 + \sqrt{5} \right] \left(A e^{i\omega_1 t} + B e^{-i\omega_1 t} \right) - \omega_2^2 \left[1 - \sqrt{5} \right] \left(C e^{i\omega_2 t} + D e^{-i\omega_2 t} \right), \\ \frac{\mathrm{d}^2 x_2}{\mathrm{d}t^2} &= 2\omega_1^2 \left(A e^{i\omega_1 t} + B e^{-i\omega_1 t} \right) + 2\omega_2^2 \left(C e^{i\omega_2 t} + D e^{-i\omega_2 t} \right), \\ k[Vt - x_1 - D] &= 2\mu S - k \left[1 + \sqrt{5} \right] \left(A e^{i\omega_1 t} + B e^{-i\omega_1 t} \right) - k \left[1 - \sqrt{5} \right] \left(C e^{i\omega_2 t} + D e^{-i\omega_2 t} \right), \\ k[x_1 - x_2 - D] &= \mu S + k \left[3 + \sqrt{5} \right] \left(A e^{i\omega_1 t} + B e^{-i\omega_1 t} \right) + k \left[3 - \sqrt{5} \right] \left(C e^{i\omega_2 t} + D e^{-i\omega_2 t} \right). \end{aligned}$$

$$\begin{pmatrix} k \left[Vt - x_1 - D \right] - k \left[x_1 - x_2 - D \right] - \mu S \end{pmatrix} = -k \left[4 + 2\sqrt{5} \right] (Ae^{i\omega_1 t} + Be^{-i\omega_1 t}) - k \left[4 - 2\sqrt{5} \right] \left(Ce^{i\omega_2 t} + De^{-i\omega_2 t} \right), \\ \left(k \left[x_1 - x_2 - D \right] - \mu S \right) = k \left[3 + \sqrt{5} \right] (Ae^{i\omega_1 t} + Be^{-i\omega_1 t}) + k \left[3 - \sqrt{5} \right] \left(Ce^{i\omega_2 t} + De^{-i\omega_2 t} \right), \\ \frac{3 + \sqrt{5}}{2} (1 + \sqrt{5}) = 4 + 2\sqrt{5}, \\ \frac{3 - \sqrt{5}}{2} (1 - \sqrt{5}) = 4 - 2\sqrt{5}.$$

These results, when assembled, prove the governing equations are satisfied by the solutions found.