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Weather vs. Climate

DEEPS, Brown University, Providence, RI, USA

ABSTRACT

This is a tale involving partial differential equations, chaos, predictability, ergodicity, models, and statistics. We will be discussing for
about 2 weeks. There are homework problems at the end which we will present in class when the lectures are complete.

1. Introduction

We hear a lot in the news about climate change, weather
events, and weather or climate disasters. What is only
generally covered is exactly what we mean by weather and
climate and how this conception came to be accepted.

Defining what constitutes the climate is a matter of law
and policy. According to the UN FCCC, “The Paris Agree-
ment is a legally binding international treaty on climate
change. It was adopted by 196 Parties at the UN Climate
Change Conference (COP21) in Paris, France, on 12 De-
cember 2015. It entered into force on 4 November 2016.
Its overarching goal is to hold ‘the increase in the global av-
erage temperature to well below 2 ◦C above pre-industrial
levels’ and pursue efforts ‘to limit the temperature increase
to 1.5 ◦C above pre-industrial levels.’ ” This quotation
suggests that the global average temperature is the mea-
sure of the climate, or at least the measure consistently
enough defined to be counted. By global average tem-
perature, they mean the area-weighted surface temperature
(GMST) which is easy to observe from satellites or some-
times the air temperature at 2 m above the surface (GSAT),
which is a little easier to calculate in models.

As you may have noticed this past July, 2023–the
warmest July recorded thus far–it is tricky to define pre-
cisely what we mean. The average global surface tem-
perature in July was 1.12◦C above average, ranking it as
the warmest July in NOAA’s 174-year record. Earth’s
average land and ocean surface temperature in 2022 was
0.86 ◦C above the 20th-century average of 13.9 ◦C — the
sixth highest among all years in the 1880-2022 record.
The IPCC (2021a) reported that “ Global surface temper-
ature was 1.09 [0.95 to 1.20] °C higher in 2011–2020 than
1850–1900, with larger increases over land (1.59 [1.34 to
1.83] °C) than over the ocean (0.88 [0.68 to 1.01] °C).”
In the IPCC version, brackets are used to denote a range
of estimates (90% confidence window, or the very likely
range).

These statements reveal many things, including:

1. It matters what background temperature you are com-
paring to. It is not clear from these definitions alone
how they relate to “pre-industrial” conditions per the
Paris Agreement.

2. It matters whether you are using a month’s tempera-
ture, or a decade, or longer.

3. There is a difference in magnitude between the warm-
ing of the land and the warming of the ocean.

4. None of these mention the warmest day or warmest
temperature ever recorded.

In fact, there is some dispute about what tem-
perature captures the warmest recorded temper-
ature (https://en.wikipedia.org/wiki/Highest_
temperature_recorded_on_Earth) with the present
World Meteorological Organization-certified one being
back in 1913. Wouldn’t we think that climate change
would have made recent temperatures warmer? Appar-
ently, weather has something to do with these more tran-
sient measurements, while the longer decadal averages are
taken to be indicative of the climate state.

2. Climate is what you expect, Weather is what you get

The title of this section is a quotation attributed to Mark
Twain. It has the sense of a statistical claim, where we are
used to distinguishing between measured values and ex-
pectation values (i.e., the average of all possible outcomes
weighted by their likelihood).

a. The Mean, Histogram, and Expectation

There is another way to calculate the mean of a random
variable which is closely related to the mean over a volume
or area. Suppose we have a (not normalized) histogram
ℎ(𝑥) over a set of 𝑛 different values of 𝑥 over 𝑁 different
experimental results. We could sum up all of the columns
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of the histogram like this

𝑁 =

𝑛∑︁
𝑗=1

ℎ(𝑥 𝑗 ). (1)

to arrive at the total number of experiments. Or, we could
form a normalized histogram like this

1 =

𝑛∑︁
𝑗=1

ℎ(𝑥 𝑗 )
𝑁

. (2)

Note that here 𝑗 runs over all of the possible outcomes of 𝑥,
hitting each only once. Since each value of the histogram
is associated with one particular value of the variable 𝑥𝑖 ,
we can compare this to the ordinary average, which runs
over all 𝑁 measurements,

⟨𝑥⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 . (3)

Suppose we rearranged the order of the sum in the average,
so that we first summed all of the occurrences that equal the
first possible value 𝑥1, then the occurrences of the second
value 𝑥2, etc. The number of terms of each type in the sum
would just be the histogram! Thus,

⟨𝑥⟩ = 1
𝑁

𝑁∑︁
𝑖=1

𝑥𝑖 =
1
𝑁

𝑛∑︁
𝑗=1

𝑥 𝑗ℎ(𝑥 𝑗 ). (4)

The first expression shows the expected value is just the
mean over all of the experiments, and the final one shows
that this is equal to the likelihood-weighted expectation
value from the histogram summed over all of its bins. We
can think of a few ways of expressing the same idea,

⟨𝑥⟩ = 1
𝑁

𝑛∑︁
𝑗=1

𝑥 𝑗ℎ(𝑥 𝑗 ) =
𝑛∑︁
𝑗=1

𝑥 𝑗ℎ(𝑥 𝑗 )
𝑁

=

∑𝑛
𝑗=1 𝑥 𝑗ℎ(𝑥 𝑗 )∑𝑛
𝑗=1 ℎ(𝑥 𝑗 )

. (5)

Each of these is exactly equal to the sample average over
the experiments included in the histogram.

Taking this idea to the limit of infinite experiments,
where our histogram approximates a probability distribu-
tion, we see that we can write the expected value as

⟨𝑥⟩ =
𝑛∑︁
𝑗=1

𝑥 𝑗 𝑝(𝑥 𝑗 ). (6)

For a probability density function of a continuous variable
𝑥, the equivalent form is

⟨𝑥⟩ =
∫ ∞

−∞
𝑥𝜌(𝑥)d𝑥. (7)

Notice that the normalization of the probabilities and prob-
ability density means that we do not need the denominator
if we sum or integrate over all possible values.

b. Climate as an expectation

Metrics, or measures, of climate describe the statistics
of atmospheric and oceanic variables at a given location
and time of year. Weather on the other hand is the specific
outcome one gets at a given time and location.

Which statistics make up the climate? Well, expectation
value for one, but also variation about the expected value,
which could be described by “variability” or “extremes” or
other words capturing not just the center of the probability
distributions of atmospheric and oceanic variables, but also
their tails. One way to measure these tails that’s just an
extension of the expected value is through the moments of
probability distributions.

The term moment is used to describe an operation like
the average above over a distribution or density function.
Thus, the first moment of the probability density function
is the average:

` = ⟨𝑥⟩ =
∫ ∞

−∞
𝑥𝜌(𝑥)𝑥. (8)

The second moment is

⟨𝑥2⟩ =
∫ ∞

−∞
𝑥2𝜌(𝑥)𝑥. (9)

The 𝑚𝑡ℎ moment is

⟨𝑥𝑚⟩ =
∫ ∞

−∞
𝑥𝑚𝜌(𝑥)𝑥. (10)

This name comes from the close relationship between this
form and moments in physics, such as the moment of iner-
tia.

The moments are sometimes centralized and normal-
ized. The central moments are the moments about the
mean. The 𝑚𝑡ℎ centralized moment is

`𝑚 = ⟨(𝑥− ⟨𝑥⟩)𝑚⟩ =
∫ ∞

−∞
(𝑥− ⟨𝑥⟩)𝑚 𝜌(𝑥)𝑥. (11)

The moments can be normalized using the standard de-
viation 𝜎𝑥 =

√︁
⟨𝑥2⟩ − ⟨𝑥⟩2. The 𝑚𝑡ℎ normalized moment

is

⟨𝑥𝑚⟩
𝜎𝑚
𝑥

=
⟨𝑥𝑚⟩(√︁

⟨𝑥2⟩ − ⟨𝑥⟩2
)𝑚 . (12)

The standardized moment, which is just the normalized,
centralized moment is

`𝑚

𝜎𝑚
𝑥

=
⟨(𝑥− ⟨𝑥⟩)𝑚⟩(√︁
⟨𝑥2⟩ − ⟨𝑥⟩2

)𝑚 . (13)

In this language, the first moment is the mean, the second
centralized moment is the variance, the third centralized,
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normalized moment is the skewness, and the fourth cen-
tralized, normalized moment is the kurtosis.

Climate certainly contains expectations about the mean
and variance of environmental variables, but sometimes
also the higher moments as well. Generally, the higher you
go the more data you need to measure moments and the
better your model needs to be to predict them.

c. Direct statistical simulation

There are ways to directly simulate the evolving prob-
ability distribution of the climate (e.g., Li et al. 2021;
Allawala et al. 2020) or the evolving expectation value
and variance (e.g., Nicklas et al. 2023). However, it is far
more common to use a deterministic model to simulate
an example climate trajectory. Often an ensemble of tra-
jectories is considered together, each with different initial
conditions but with the same climate forcing. This ensem-
ble is thought to map out the probability space of the range
of possible trajectories.

One other important limitation of simulations should
be mentioned: limited resolution. The Earth is very big,
and we know that in order to directly numerically simu-
late fluid motion we have to resolve down to the scales
where dissipation and viscosity dominate. On Earth, the
dissipation scale for the atmosphere and oceans are tiny–
just cubic centimeter or millimeter scales–so we’d need
many, many gridpoints to simulate at this scale. The vol-
ume of the atmosphere is 4.2× 1018 m3 and of the ocean
is 1.4× 1018 m3. Assuming we need 1 mm3 grid cells to
reach direct numerical simulation, this means our models
would have 4.2×1036 and 1.4×1036 grid cells in the atmo-
sphere and ocean. Present computing power barely reaches
kilometer-scale modeling (Hewitt et al. 2022), which have
about 4×1016 times fewer gridpoints that global direct nu-
merical simulation would require. Even with Moore’s law
doubling computing power every 18 months, it will still be
another 105 years before we’ll be able to carry out these
simulations.

Thus, global models tend to be coarser than the fluid
dynamics of the real world requires. This means that some
of the variability in the real world on small space and time
scales is just missing from these simulations. Does that
mean that we are only simulating the large-scale “climate”
and not the small-scale “weather”? Not quite, because
even our weather models are limited in resolution. We
also parameterize some of the key unresolved effects on
resolved scales, because there is no guarantee that just re-
solving the largest scales does a good job of capturing the
key processes important for climate and weather. Some-
times, stochastic variability, or random noise, is added to
the equations to resemble the variability that would have
been stimulated by the unresolved scales. In these stochas-
tic models, it is expected that one would run an ensemble

of trajectories with different noise each time to find the
average result across these simulations.

3. Boundary vs. Initial: The heat equation

We are beginning to gather a statistical sense of the
meaning of weather vs. climate, but there is also a math-
ematical/numerical sense of the distinction based on the
kinds of equations that are solved by climate and weather
models. Both the atmosphere and the ocean are fluids,
and they also carry climatically important tracers such as
thermal energy (equivalent to measures of temperature),
humidity, salt, and trace gasses such as carbon dioxide or
the many forms of carbon in the ocean. All of these pro-
cesses are simulated using partial differential equations,
specifically those of fluid mechanics. Other important cli-
mate changes, in sea ice, ice sheets, glaciers, seasonal snow
and ice on land, and the hydrological cycle are also sim-
ulated in climate models or in conjunction with climate
models in offline calculations; these phenomena are also
simulated using partial differential equations, but not of the
fluid equations, instead solid mechanics, percolation the-
ory, and other hybrids of different variants of continuum
mechanics are used. Finally, the changes to biology and the
land surface, such as forests changing to grasslands, fire,
and sometimes ocean biology, are simulated with different
approaches, such as agent-based models, lookup tables,
data-driven approaches, and other ways to generate out-
comes from the changing weather and climate conditions
that may feed back onto the energy cycle through albedo,
the water cycle through transpiration, or the carbon cycle
through growth for example. The combined equation set
including all of these different aspects is far beyond our
consideration here, but we can examine one equation that
is suitable for illustrative purposes.

The thermal equation in the ocean is

𝜕𝑡Θ+v · ∇Θ = ∇ · ^ · ∇Θ (14)

where Θ is a measure of the temperature and v is the
velocity of the seawater (including a boost from unresolved
motions similar to Stokes drift). The diffusivity ^ is an
anisotropic tensor that varies in space and time with the
flow to parameterize the kinds of turbulent motion that
are expected. The right side has the divergence of ^ · ∇Θ,
because that is just the divergence of the diffusive heat flux,
which will heat or cool at the location of its divergence.
Thus both the advective term (the one with the velocity) and
the diffusive term (the one with the ^) are nonlinear, as they
depend on nonlinear products of the predicted variables
(v, ^,Θ).

a. Solving the heat equation

A related equation is the heat equation, which we can
solve analytically and understand a bit better. Suppose we
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neglect the advective term and just take ^ to be a constant,
then

𝜕𝑡Θ = ^∇2Θ (15)

Let’s make the added simplification that we’ll neglect the
spherical nature of the Earth and just consider depth (𝑧) and
meridional location (𝑦). Finally, notice that any constant
added to Θ doesn’t change the equation, so we can think
of Θ as just a temperature anomaly from a background
temperature.

One way to attack this problem is by separation of vari-
ables.

Θ =
∑︁
𝑘

𝜙𝑘 (𝑦, 𝑧)𝑇𝑘 (𝑡), (16)

^𝑇𝑘 (𝑡)∇2𝜙𝑘 (𝑦, 𝑧) = 𝜙𝑘 (𝑦, 𝑧)𝜕𝑡𝑇𝑘 (𝑡), (17)
^∇2𝜙𝑘 (𝑦, 𝑧)
𝜙𝑘 (𝑦, 𝑧)

= −^𝑘2 =
𝜕𝑡𝑇𝑘 (𝑡)
𝑇𝑘 (𝑡)

. (18)

The last step introduces a new constant, 𝑘 , chosen to have
convenient units by multiplication with ^. We know this
must be a constant because the left side of the equation
depends on space only and the right side of the equation
depends only on time. We can exploit this to split apart the
equation into two separate ones,

∇2𝜙𝑘 (𝑦, 𝑧) + 𝑘2𝜙𝑘 (𝑦, 𝑧) = 0 (19)
and 𝜕𝑡𝑇𝑘 (𝑡) + ^𝑘2𝑇𝑘 (𝑡) = 0. (20)

So, we have two equations left for any chosen constant 𝑘 .
Since we picked this constant somewhat randomly, there
are likely to be many of them, and there will be a different
solution for each of them (hence the subscript 𝑘 on each
of the functions). In the end, we’ll sum up all of these to
arrive at a complete solution.

The first of the separated equations is just the Helmholtz
equation for 𝜙, which we can solve by a second round
of separation of variables (left for homework). The other
is a first-order, homogeneous, constant-coefficient, linear
differential equation for the time variation, which is just an
exponential.

In both cases, we can assume a solution of the form

Θ(𝑦, 𝑧, 𝑡) =
∑︁

𝑚,𝑛,𝜎

𝑇𝑚𝑛𝜎 =
∑︁

𝑚,𝑛,𝜎

𝐴𝑚𝑛𝜎𝑒
𝑚𝑦𝑒𝑛𝑧𝑒𝜎𝑡 , (21)

^(𝑚2𝑇𝑚𝑛𝜎 +𝑛2𝑇𝑚𝑛𝜎) = 𝜎𝑇𝑚𝑛𝜎 , (22)
∴ ^(𝑚2 +𝑛2) = −^𝑘2 = 𝜎. (23)

We now see that we chose the sign of 𝑘2 for two reasons.
We could have had either exponential growth (𝜎 > 0) or
exponential decay (𝜎 < 0) in time, and we are more inter-
ested in the latter. Also, it means that 𝑚2 +𝑛2 = −𝑘2, so at
least one of 𝑚,𝑛 will be imaginary (that is, the exponential
associated with it will become sinusoidal).

It’s clear that initial conditions can be met by setting 𝑡 = 0
and then evaluating 𝐴𝑚𝑛𝜎 over different 𝑚,𝑛 combinations
to match their spatial pattern. Similarly, boundary condi-
tions can be met by matching simple boundary conditions
such as “no anomaly along the boundaries” (Θ = 0 on the
boundaries) or “no heat transfer through the boundaries”,
which is n · ^∇Θ = 0 with n as an outward normal vector.

b. Heat equation behavior

So, now that we have a solution form, let’s consider some
applications that are climate and weather relevant. Suppose
we start out with a temperature anomaly within the ocean.
For example, if we take increasingly negative 𝑧 to be the
bottom of the ocean and 𝑦 = ±𝐿 to be its meridional limits,
then we might have a center-intensified blob of temperature
anomaly like

Θ(𝑦, 𝑧,0) = −𝐴 sin(𝜋𝑧/𝐻) sin(𝜋𝑦/𝐿) (24)

We can see that this anomaly already might be consistent
with no-anomaly, Dirichlet boundary conditions (Θ = 0)
on the bottom (𝑧 = 0, 𝑧 = −𝐻) and coasts (𝑦 = ±𝐿). We can
also see that if we choose 𝑚2 = −𝜋2/𝐿2 and 𝑛2 = −1/𝐻2

it will be easy to fit the general solution form (21). What
about its temporal behavior?

𝑛 = ±𝑖𝜋/𝐻, (25)
𝑚 = ±𝑖𝜋/𝐿 (26)

^(𝑚2 +𝑛2) = − ^𝜋2

𝐻2 − ^𝜋2

𝐿2 = 𝜎. (27)

We see that this anomaly will decay in time with a timescale
that depends on the lengthscales of the initial disturbance
and the rate of diffusion. The smaller the basin (𝐿,𝐻 → 0)
or the faster the diffusion (^ →∞), the quicker the decay.

Without changing the size of the basin, if the initial
disturbance had been smaller, then the decay would also
have been faster.

Θ(𝑦, 𝑧,0) = −𝐴 sin(2𝜋𝑦/𝐿) sin(2𝜋𝑧/𝐻), (28)
𝑛 = ±2𝑖𝜋/𝐻, (29)
𝑚 = ±2𝑖𝜋/𝐿 (30)

^(𝑚2 +𝑛2) = −4^𝜋2

𝐻2 − 4^𝜋2

𝐿2 = 𝜎. (31)

How do the boundary conditions come into play? As
mentioned, the anomaly has no anomaly (Θ = 0) at 𝑧 =

0,−𝐻, and 𝑦 = ±𝐿. We could instead have chosen a spec-
ified flux condition, (n · ^∇Θ = F (𝑦, 𝑧, 𝑡)), such as no flux
through the basin walls and a global warming flux through
the surface. In this case we’d expect the average tempera-
ture to rise, probably in a surface-intensified way. However,
this approach uses mixed boundary conditions (Neumann
and Dirichlet).
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A simpler way to illustrate this effect is to chose a dif-
ferent surface boundary condition. We would then have a
boundary source of anomaly. In order to match the sur-
face boundary condition, many of the vertical modes are
needed to work together to form a jump initially, which can
be superimposed on the previous initial condition. At the
beginning the added terms would cancel out everywhere
except right at the wall–thus satisfying the initial condi-
tions (with Θ = 0 on all four boundaries) and the nonzero
surface boundary condition together. Over time, first the
smaller scales then the larger scales would come to re-
flect the steady boundary condition instead of the decaying
anomaly from the initial conditions–a heat anomaly would
spread from the top into the domain. Thus, over time, the
impact of the initial conditions will decay and the impact
of the boundary conditions would grow and fill the do-
main. Eventually, after the decay of the smallest 𝜎 (the
one associated with the largest-scale sinusoids in the sum,
the same one to do with the initial conditions in (24)),
the initial conditions would be forgotten and the boundary
would be the whole of the solution. Note that we could use
a variety of different choices for 𝐴 in (24), and the final
answer would not vary–the initial conditions are forgotten
while the surface boundary anomaly would remain. Thus,
the initial conditions in this system have a finite duration
impact on the solution.

4. Boundary vs. Initial: Predictability

In realistic models, a similar takeover of initial condi-
tions by boundary conditions as in the heat equation tends
to occur. Consider the following example from Sane et al.
(2021): a coastal ocean model of Narragansett Bay and
nearby waterways driven by surface forcing (winds, pre-
cipitation, heating and cooling), river freshwater, and off-
shore forcing of oceanic temperature, salinity, velocities,
and tides.

The model is initialized simply, with uniform tempera-
ture and salinity and zero velocity. Over time, the model
approaches the observations (Fig. 1). This effect indicates
not only that the model works fairly well eventually, but
it does so as the initial conditions are forgotten. Just as
in the heat equation, initial conditions become increas-
ingly unimportant after some time and the boundary forc-
ing (constructed to be as close as possible to observed
boundary conditions) takes over to make the model tem-
perature converge on the observed temperature.

Are the initial condition effects guaranteed to eventually
decay while the boundary conditions take over in any dy-
namical system? Not necessarily. Consider if the initial
conditions produced a wave that just sloshed back and forth
over and over–in some non-dissipative models such a wave
could persist forever so the initial conditions would never
be forgotten. Forgetting the initial conditions is a feature
of the way weather, climate, and ocean models behave, and

Fig. 1. A comparison between modeled temperature (blue) and
observed temperature (red) at one location in Mt. Hope Bay. Figure
from Sane et al. (2021).

evidence suggests that this reflects a real behavior of the
earth system due to the chaotic behavior.

The timescale over which the initial conditions are for-
gotten is called the predictability timescale. Fig. 2 shows
a schematic of how this timescale can be measured. An

Fig. 2. A schematic of how a spin-up run (blue) is used to produce
an ensemble of realistic initial conditions drawn from states visited at
different times (black) to map the climatology and its uncertainty. The
red lines indicate an initially amplified anomaly which convergences into
the climatological ensemble over the predictability timescale. Figure
from Sane et al. (2021).

initial run is carried out to provide realistic states for the
model over a given time of year, and an ensemble of simu-
lations each with initial conditions drawn from a different
day of the initial run are used to map out the climatology.
For reasons we’ll explain below to do with chaos, the cli-
matology is not taken to be a single prediction, but instead
taken as an ensemble of predictions that stay close to one
another but not exactly equal.

To measure the timescale over which initial conditions
are forgotten, a second ensemble is created with larger
initial anomalies than the climatology ensemble’s initial
spread. The upper panel of Fig. 3 shows how the per-
turbation ensemble temperature converges to within the
climatology ensemble spread.
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Fig. 3. ((Upper) An example of how the perturbation ensemble (red)
converges onto the climatology ensemble (black) over time. (Lower)
the Shannon information entropy and mutual information between these
ensembles. Figure from Sane et al. (2021).

a. Information theory

However, an even clearer picture can be seen if instead
of raw temperatures, the similarities and distinctions in the
temperature trends across the ensemble are highlighted.
Sane et al. (2021) propose using metrics from information
theory to zoom in on the ensemble behaviors. The Shannon
(1948) entropy is defined for a random variable (𝑋) with
a histogram providing estimates of probability (𝑝(𝑥𝑖)) of
that variable being in bin 𝑥𝑖 for 𝑖 from 1 to 𝑀 as

𝐻 (𝑋) = −
𝑀∑︁
𝑖=1

𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖). (32)

Shannon famously named this “entropy” after a conversa-
tion with Von Neumann who said, “No one really under-
stands entropy. Therefore, if you know what you mean by
it and you use it when you are in an argument, you will win
every time.” Surely it was also not lost on Shannon that
the Boltzmann expression for thermodynamic entropy of
a physical system that can visit many microstates has the
same formula as (32) multiplied by the Boltzmann constant
𝑘𝑏.

Here we need the entropy because it measures how many
states are possible and what their probability is. The units
of measure of Shannon entropy are bits–i.e., the number
of binary numbers needed to count, or quantify, all of the
states visited by the system. If a system varies a lot, it needs

more bits to capture that variability, if it stays constant, then
only one bin in the histogram is filled and the entropy is
zero bits.

Related to entropy is the mutual information of two ran-
dom variables (𝑋, 𝑦),

𝐼 (𝑋) = −
𝑀∑︁
𝑖=1

𝑁∑︁
𝑖=1

𝑝(𝑥𝑖 , 𝑦 𝑗 ) log2
𝑝(𝑥𝑖 , 𝑦 𝑗 )

𝑝(𝑥𝑖)𝑝(𝑦 𝑗 )
. (33)

where 𝑝(𝑥𝑖 , 𝑦 𝑗 ) is the joint probability of both 𝑋 being
in bin 𝑥𝑖 and 𝑌 being in bin 𝑦 𝑗 . If these variables are
unconnected, then they are independent and their joint
probability is just the product 𝑝(𝑥𝑖)𝑝(𝑦 𝑗 ). If 𝑋 = 𝑌 ,
then 𝑝(𝑥𝑖 , 𝑦 𝑗 ) = 𝑝(𝑦 𝑗 ) = 𝑝(𝑥𝑖) and the mutual informa-
tion equals the Shannon entropy (32). In the heat equa-
tion discussion of the last session, as the initial conditions
are forgotten then the solution approaches the boundary-
condition dominated solution. In the system considered by
Sane et al. (2021), the intrinsic variability of the system
prevents an asymptotic convergence but reaches a statistical
convergence, so the mutual information stays somewhere
between zero and the Shannon entropy.

Thus, the lower panel of Fig. 3 shows the Shannon en-
tropy range for all of the climatology ensemble members
(pink) versus the ensemble of mutual information values
when taken between the perturbation ensemble members
and the climatology ensemble members. When these two
distributions overlap, one can no longer distinguish be-
tween the two ensembles and convergence has occurred.
In this specific case, this happens just after 10 days, the pre-
dictability timescale, for the first time and holds for much
of the longer timescales as well.

b. Forecasts, predictions, and projections

Now that we have the idea of ensembles of predic-
tions with different initial conditions and the predictabil-
ity timescale, we can contrast predictions of the weather
from projections of the climate. The glossary of the IPCC
(2021b) contains the following definitions:

Climate prediction: A climate prediction or climate fore-
cast is the result of an attempt to produce (starting from a
particular state of the climate system) an estimate of the
actual evolution of the climate in the future, for example,
at seasonal, interannual or decadal time scales. Because
the future evolution of the climate system may be highly
sensitive to initial conditions, has chaotic elements and is
subject to natural variability, such predictions are usually
probabilistic in nature.

Climate projection: Simulated response of the climate
system to a scenario of future emissions or concentrations
of greenhouse gases (GHGs) and aerosols and changes in
land use, generally derived using climate models. Climate
projections are distinguished from climate predictions by
their dependence on the emission/concentration/radiative
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forcing scenario used, which is in turn based on assump-
tions concerning, for example, future socio-economic and
technological developments that may or may not be real-
ized.

Based on our previous section, we can then categorize
predictions as forecasts that are sensitive to initial condi-
tions, whereas projections provide a range of outcomes
under the effects of different forcing (i.e., the changes
that are under the control of boundary conditions). Of-
ten, when we think about “predictions” or “forecasts” we
really mean of the weather. Weather models tend to have
a predictability timescale of less than two weeks. Be-
yond this window, we just have projections of the climate–
which might be estimated by the span of an ensemble of
many weather outcomes describing the spread after the
predictability timescale. The fact that a projection of the
possible outcomes doesn’t just continue to spread out wider
and wider means that there is something else to describe
beyond the weather. The projection describing the bounds,
mean, or other statistics of multiple predictions beyond the
predictability timescale is a projection of the climate.

Things get a bit confusing because for some variables
in some models, the predictability timescale is so long
that it reaches levels we normally think of as governed by
climate rather than weather. Often the long predictability
stems from the slower but still predictable evolution of the
oceans, biology, or cryosphere in comparison to the faster
evolving atmosphere which becomes chaotic in only a few
weeks. Climate variability (e.g., El Nino) and climate
predictions blur these lines, as phenomena such as El Nino
may be predictable as much as 18 months ahead, even
though the atmospheric weather associated with them is
not. So, the terminology of projection and prediction helps
further distinguish.

c. Sources of uncertainty in climate projections

Hawkins and Sutton (2009) describe a method to cat-
egorize the three different types of uncertainty in climate
projections: internal variability, scenario uncertainty, and
model error. Internal variability is just the intrinsic error
due to different initial conditions leading to different, but
neighboring, outcomes. Scenario uncertainty stems from
the fact that we’re not sure what humans will do in the
future, so the boundary condition contributions which rep-
resent the effects of human emissions on the energy budget
of Earth are uncertain. Finally, model error reflects the fact
that models’ limited resolution and imperfect parameter-
izations of unresolved phenomena introduce uncertainty.
We cannot directly estimate the error in any one given
model, but we can analyze models developed by different
groups making different choices. Thus, the differences
between the models samples across the spread of these
choices and quantifies our ignorance in building models.

Fig. 4. (Timeseries of the CMIP3 ensemble climate predictions (thin
lines). Different scenarios are in different colors, and observations are
in black. Historical simulations where there is no scenario uncertainty
are in grey. Figure from Hawkins and Sutton (2009).

Fig. 4 shows examples of the timeseries that go into
the error decomposition method. These Climate Model
Intercomparision version 3 (CMIP3) models were run at
modeling centers around the world and collected together
by Hawkins and Sutton (2009). Internal variability is mea-
sured by the temperature anomalies of each model from
a smooth fit to itself. Scenario uncertainty is measured
by the variance between the multi-model means for each
scenario. Model uncertainty is measured for each scenario
by the variance among the fits to each model for each sce-
nario. The total is just the mean temperature change of
all predictions. All temperatures are measured relative to
the 1971-2000 mean of that model, and the means and
variances were calculated with weighted averages based
on model performance during the historical period.

There are a few things to note about the estimates in
Fig. 5. For these decadal averages, the internal variability
is lower than the combined model plus scenario uncertainty
for the global temperature, but not so for the regional tem-
perature for short timescale projections. That is, the initial
conditions matter a lot for regional temperature projec-
tions soon after they are initialized. As time goes on, the
model uncertainty shrinks as the climate takes over from
the weather and these climate change signal gets large (i.e.,
the models agree more for larger change). Finally, the im-
pacts of scenario uncertainty increase through time, which
reflects both that the emission scenarios differ more at later
times (Fig. 4) and the fact that cumulative emissions con-
trol the temperature change, not instantaneous emissions.

5. Chaos and ergodicity

One remaining question has to do with how different the
initial conditions need to be for the models in an ensemble
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Fig. 5. (Decompositions of the CMIP3 ensemble climate projection uncertainties for global (left) and regional (right; British Isles only) decadal
temperature averages. Upper panels show uncertainty and lower panels show ratios of uncertainty sources (labelled colors) with the total (black).
Dashed lines illustrate the effects of optimizing ocean initial conditions. Figure from Hawkins and Sutton (2009).

to differ. This has to do with the chaotic nature of fluids
and the climate.

Since it was used by Lorenz (1963) to describe the re-
sults of simulations carried out by Ellen Fetter, chaos has
become a central theme in weather and climate science.
Chaotic behavior is not just disordered behavior, it is some-
thing quite a bit more specific.

In a deterministic dynamical system, everything is
known and in principle can be calculated to arbitrary ac-
curacy. Deterministic climate and weather models used
to make predictions are good examples: you get the same
answer over and over so long as you start with the bit-by-bit
same initial conditions and use the exact same boundary
conditions. However, in the real world, the initial and
boundary conditions are subject to some measurement un-

certainty; instruments are imperfect and not everywhere is
measured at the same time.

In nonchaotic dynamical systems, the closer your initial
conditions are, the closer your trajectories remain. Con-
sider a forecast function 𝐹 that predicts the location at a
future time for the distance between two initial locations.

𝐹 (x0,1,x0,2, 𝑡) = |x1 (𝑡) −x2 (𝑡) |. (34)

We can consider starting the initial locations arbitrarily
oriented but close to one another,

𝐹 (x0,x0 + 𝛿x̂, 𝑡) = |x1 (𝑡) −x2 (𝑡) |, (35)

where 𝛿 is a small scalar and x̂ is a unit vector in any
arbitrary direction. Putting in this way, we can make this
system resemble the tools from analysis, given a tolerance 𝜖
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and a time 𝑡, for what 𝛿 can we guarantee that the following
is true?

𝐹 (x0,x0 + 𝛿x̂, 𝑡) = |x1 (𝑡) −x2 (𝑡) | < 𝜖. (36)

If we can prove this is true, then

lim
𝛿→0

𝐹 (x0,x0 + 𝛿x̂, 𝑡) = 0. (37)

This kind of behavior is typically assumed for continuum
mechanics!

In chaotic systems, nearby initial conditions tend to di-
verge from one another quickly. In Figs. 6-7, we see the
complex behavior in time and in a projection of phase
space of the Lorenz (1963) system. Over time, trajectories
loop back and forth over the “butterfly” shape of the phase
space. Sometimes the trajectory loops repeatedly on one
side and sometimes it crosses between the two sides. It is
difficult to predict which will occur. Indeed, neighboring
initial conditions soon make different choices at the branch
and end up far apart from one another. However, the tra-
jectory never flies away to infinity, it stays near an attractor
which is s a structure in phase space. Our climate model
similarly was chaotic, but bounded in that its solutions stay
within the climatological range.

Fig. 6. Timeseries of the trajectory of 1 of three variables in the chaotic
model of Lorenz (1963). Figure from Hawkins and Sutton (2009).

The Lyapunov exponent is a measure of how quickly
initial conditions separate from one another in a chaotic
system. Applying this notion to our system above, the
Lyapunov exponent _ would appear as

𝐹 (x0,x0 + 𝛿x̂, 𝑡) = |x1 (𝑡) −x2 (𝑡) | ≈ 𝑒_𝑡𝛿. (38)

Does a limit exist in this case?

𝐹 (x0,x0 + 𝛿x̂, 𝑡) = |x1 (𝑡) −x2 (𝑡) | ≈ 𝑒_𝑡𝛿 < 𝜖, (39)

Fig. 7. Projections of trajectories in 3D of the chaotic model of Lorenz
(1963). Figure from Hawkins and Sutton (2009).

So, for a given time 𝑡 and a tolerance 𝜖 there is a 𝛿 small
enough that the separation stays together under a grow-
ing Lyapunov exponent, but it is very small–exponentially
small–for moderate times 𝑡,

𝛿 < 𝜖𝑒−_𝑡 (40)

For example, if _𝑡 = 1, then 𝛿 must be a little less than 𝜖/3.
If _𝑡 = 3, then 𝛿 must be a bit less than 𝜖/20. If _𝑡 = 10,
then 𝛿 must be a bit less than 𝜖/20000.

One further consideration is whether there are under-
lying patterns, such as the Lorenz attractor, that can be
understood. If so, then aspects of the climate system, such
as the bounds of the attractor, can be used to improve cli-
mate projections. The Earth system has many wobbles,
such as El Nino and the Madden-Julian Oscillation or the
Quasi-Biennial Oscillation and variability of the Atlantic
Meridional Overturning and Antarctic Circumpolar Cur-
rent transport. It is unclear if these wobbles are forced os-
cillations that are just weakly damped, chaotic variability
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on some undescribed underlying attractor, nonlinear or lin-
ear resonances with random weather forcing, or some other
mathematical description connecting the underlying pro-
cesses. An important consequence distinguishing among
these descriptions pragmatically is that applications could
take advantage of the underlying system rather than assum-
ing it is all just random.

Ergodicity is the property that any sizeable sample of
a process is representative, statistically speaking, of the
whole. We often assume that weather is ergodic, which
means that we can take averages of it over time, space,
or multiple initial condition ensembles and arrive at much
the same climate. This is implicit in the approaches of
Hawkins and Sutton (2009) and Sane et al. (2021). But,
chaos and dynamical systems can be much more interesting
than this, featuring strange attractors such as the one in the
Lorenz (1963) system–it appears to be just two connected
loops but later study has shown that it is in fact a fractal-
like shape, with underlying complexity. The Lorenz (1963)
produces quasi-periodic variability with deep underlying
structure, not just white noise or other ergodic signals.
Other classical nonlinear systems also do not reach ergod-
icity (e.g. Fermi et al. 1955). Oftentimes, we can use
systems that are much simpler than we know the dynamics
to be, such as Linear Inverse Models with added noise to
predict El Nino or other climate variability (e.g. Penland
and Magorian 1993; Weiss et al. 2019), in the hopes that the
distinctions between random noise and the deep underlying
structure is not consequential. On the other hand, decadal
predictions (e.g. Meehl et al. 2009; Lovenduski et al. 2019)
may have some support from the strange attractors of the
system.

Putting all of these pieces together, when we estimate a
predictability time 𝜏 in a chaotic system, we are estimating
something similar to when the Lyapunov exponent obeys
_𝜏 ≤ 1. For a more chaotic system, _ is bigger and 𝜏

is smaller. Beyond this predictability time the behavior
is inherently chaotic, but bounded in that solutions stay
within a climatological range. The study of climate is
better understanding what processes and conditions govern
this climatological range, while the study of weather seeks
to understand what processes and conditions govern the
predictable early phase and to extend where possible to the
farthest possible forecast window.

6. Homework

a. Computing Cost

Revisit the calculation of global Direct Numerical Sim-
ulation cost from the Direct statistical simulation section,
but calculate it if a grid that is 1 cm3 instead of 1 mm3

is adequate to resolve the atmospheric and oceanic fluid
mechanics.

b. Helmholtz

Use separation of variables on the Helmholtz equation
(∇2𝜙𝑘 (𝑦, 𝑧) + 𝑘2𝜙𝑘 (𝑦, 𝑧) = 0) to find two governing equa-
tions for a mode in 𝑦 and a mode in 𝑧. Show that if the solu-
tions to these are written in a separation of variables com-
bined form

∑
𝑚

∑
𝑛 𝜙𝑚𝑛𝑒

𝑛𝑦𝑒𝑚𝑧 , the whole system works if
a particular relationship between 𝑚,𝑛, 𝑘 holds.

c. Entropy

Consider rolling 1 die (6 equally likely states) and 2 dice
(36 equally likely states, but only 11 unequally likely sums
from 2 to 12). Calculate the Shannon entropy of 1 die, the
mutual information of 2 dice, and the Shannon entropy of
the sum of 2 dice.
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