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Syllabus

0.1 Course Descriptions

0.1.1 GEOLO0350 Mathematics of Fluid and Solid Geophysics and Geology

Intended for undergraduates conalphcentrating in geological and physical sciences or engineering,
especially those interested in the quantitative study of Earth. Problem sets will cover common
approaches to quantify the dynamics and chemistry of solids and fluids in nature. Mathematical
topics to be introduced include linear algebra, vectors and tensors, differential equations, dynamical
systems, eigenvalues and eigenvectors, empirical orthogonal functions, fractals, chaos, and statistics.
Applications include waves in the oceans, atmosphere, and solid earth, convective and conductive
heat flow, reaction rates, gravitational potential energy, Newtons laws on a rotating planet, mea-
suring coastlines and ranges, and dating errors in stratigraphy. Prerequisites: GEOL 0220 and
(MATH 0100, 0170, 0190, 0180, 0350 or 0200).

0.2 Contacts

Portions of the website are password-protected to ensure that fair use and copyrights are correctly
obeyed as I share images from books, etc. You can access these by using:

username: 1io
password: ocean

0.3 Getting Help!

We are usually available by email. Baylor’s office hours will be Monday 1:30-2:30 and Thursday
2-3 or by appointment (see my schedule at http://fox-kemper.com/contact). You can also drop
into the Math Resource Center (MRC, http://www.math.brown.edu/mrc/) or sign up or drop in
to a tutoring session (http://www.brown.edu/academics/college/support/tutor).

vii


http://fox-kemper.com/contact
http://www.math.brown.edu/mrc/
http://www.brown.edu/academics/college/support/tutor

viii 0.4. MEETINGS AND PLACES

0.4 Meetings and Places

We will meet Monday, Wednesday, and Fridays from 10:00 to 10:50AM in GeoChem 0390. Baylor’s
office hours will be Monday 1:30-2:30 and Thursday 2-3 or by appointment (see my schedule at
http://fox-kemper.com/contact) in his office (GeoChem 133) or lab (GeoChem 134). You should
also have signed up for a lab/practicum/practice session for one of MTWR 3:00-3:50.

0.5 Website and Canvas

The primary resource for this class is the webpage: http://fox-kemper.com/0350. The class
webpage is where all of your assignments will be announced, solution sets posted, links to additional
reading will be posted, etc. Assignments should be turned in as pdfs using canvas. The copiers in
GeoChem and elsewhere can be used to scan handwritten assignments (for free).

You will want to familiarize yourself with Wolfram Alpha (http://www.wolframalpha.com), it is
a great resource for looking up math definitions. Wikipedia is also handy in a pinch (due to the
armies of math & physics grad students who apparently have so very few social commitments that
they punch in all the details of their dissertation appendices).

0.6 Required Course Activities, Expected Times, and Structure
of Classtime

The regular class time will be presentation of new materials and discussion. This format requires
buy-in from you, the student, however. You must do the reading of the notes before class, and
preferably also at least skim the associated chapters in the book before class. If an individual
student fails to do this, it will negatively influence her or his ability to follow, and if the class fails
to do this I will have to expand the lecture mode—decreasing the problem-solving mode—which is not
good for learning. In addition, you will visit the lab/practicum/practice sessions once a week (you
signed up for one day from MTWR at 3-3:50), where you can work on homework problems in small
groups, with input from the TA. The TA will be scheduling students from GEOL2300 to come to
discuss your understanding and help with homework problems during this time. You should provide
feedback to the TA or the professors about these interactions, because the GEOL2300 students are
being assessed on how well they interact with you.

Magdalene Lampert, a researcher in math education, has shown that learning and retention in
mathematical methods is improved by inverting the common classroom presentation order. Lecture,
followed by discussion, followed by individual homework is not as effective as individual effort, group
effort, full discussion. We will use the discussions and the practicum sessions to adhere to the latter
format as best as possible.

Your individual effort begins with reading the notes and skimming the chapter before lectures.
Then you will be challenged with questions throughout the class and practicum. In the practicum
sessions, you will work individually for a few minutes, and then discuss in a group for a few minutes,
and ask the leader for guidance or clarification. Finally, the whole class will discuss approaches to
problems and the correct solutions. You will then review these problems again as you review the
chapter reading and finalize your (related) homework problems, and study for exams.
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CHAPTER 0. SYLLABUS ix

0.6.1 Assignments, Exams, and Expected Time for Activities

e Scheduled class meetings, which will be suspended in the Reading Period (3 hours/week; 38
hours) and practicum meetings, which will continue in the Reading Period (1 hours/week; 13
hours) [Grading: 10% Attendance and participation.|

e Reading and reviewing class work (2 hours/week; 26 hours)
e Weekly assignments (6 hours/week for 12 weeks; 72 hours) [Grading: 50% Weekly homework|

e Weekly peer reviews (1 hours/week for 12 weeks; 12 hours) [Grading: 10% Reviews of other
students’ homework assignments.]

e Preparation for Midterm and Final (16 hours) [Grading: 20% Final, 10% Midterm)]
e Final Exam (3 hours)
e Total: 180 hours [Grading: 100%)]

What can I do to get a good grade? Turn in all of the assignments on time. For the format of the
course to work, ON TIME matters, so that we can get to the reviewing. Also, BONUS POINTS
are available on homework and exams for spotting typos in the notes, homework assignments, and
exam problems. The more promptly you point them out (by email), and the more important they
are, the more points you get!

The scheduling of the assignments are listed on the webpage, and other than the exceptional weeks
around holidays will be as follows.

e Weekly assignment due by class time on Monday.

e Solution sets distributed by midnight Monday (assignments not accepted afterward).
e Peer reviewing and grading due by following Friday.

o [lterum usque ad finem

All of this will be charted out on the calendar on the website and in canvas.

Peer review

In addition to doing the problem sets, you will each be performing reviews of each others work. We
will be using a rubric based on the AGU guidelines for review. A-F for presentation quality and 1-5
for science/math. Such a guide is useful to go by, and when you do reviews of your fellow students,
I'll expect to get a Al or B2 or B1 score, etc. An Al will count for 100%, and presentation and
accuracy will be equally weighted (an F5 will be 20%). There are a few lessons to be learned here,
that will help you write your own papers and will help you provide effective and useful reviews in
your career.

e Learning to spot unfounded claims
e Learning how to properly support claims
e Learning to distinguish poor writing/presentation from poor thinking

e Learning to label equations, graphs, and numerical information understandably
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X 0.8. TEXTBOOKS AND SOFTWARE

e Revisiting problems from a different perspective

You will have each of your homework assignments peer-reviewed by more than one person, and
inconsistent results will be rechecked. The assignments for reviewers will rotate (ensuring fairness
in grading by randomization). You should feel free to contact me with any concerns about the
process or specific issues.

0.6.2 Calendar

The main webpage for the class http://fox-kemper.com/0350 will have the calendar with all
assignment deadlines, readings, etc. set up by the first class session. There will be weekly problem
sets, one midterm, and a final exam.

0.7 Goals

In this class you will:
e Learn how to quantify some of the physical processes of the earth system.

e Learn how observations and budgets are quantified, evaluated and quality-controlled, and
compared.

Get practice solving diverse geophysical and geological problems using new mathematical
techniques.

e Gain a broader perspective and more practice by peer reviewing and collaborating.

This class cannot possibly provide a complete understanding of all of the mathematical topics
presented, instead the goal is to introduce the most basic ideas and give geophysical and geological
examples where the mathematical tools are useful. A key goal is to introduce the mathematical
language, so that students can better choose later mathematics classes and look up mathematical
concepts on their own (e.g., using Wolfram Alpha).

0.8 Textbooks and Software

We will work from the course notes. There is not a required textbook, although for reference you
should familiarize yourself with a copy of something like Boas (2006) or Arfken et al. (2013). You
might also check out Wilks (2011), and Snieder (2004), which are in the library. Arfken et al.
(2013), which is similar to Boas, is available electronically through the Brown Library.

We will solve problems drawn from many geophysics and geology textbooks (LeBlond and Mysak,
1978; Turcotte, 1997; Schubert et al., 2001; Turcotte and Schubert, 2002; Aki and Richards, 2002;
Drazin and Reid, 2004; Holton, 2004; Snieder, 2004; McWilliams, 2006; Vallis, 2006; Marshall and
Plumb, 2008; Cushman-Roisin and Beckers, 2010; Fowler, 2011; Kaper and Engler, 2013; Bour-
guignon et al., 2015), but these books are not required for the course. If electronic copies of them
are available at Brown, I have added an url to the bibliography here and on the course website.
Sufficient background will be provided along with each problem so that no further reading will be
required. You may want to use software, which is allowed for homework (although not required and
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CHAPTER 0. SYLLABUS xi

you must still be able to explain your work without the program). I strongly recommend Matlab
and Mathematica, but there are lots of others.

0.8.1 Applications

Geophysical and geological applications touched on in this class are:
e Global Energy Balance
Ice Ages
Energy Balance Models
e Data constrained models and maps
Climate Variability Patterns
Stochastic versus Deterministic Variability
e Waves and Oscillations
Ocean Waves, Tides, and Tsunamis
Earthquakes and Seismic Waves
Diurnal, Seasonal, and Orbital Variation Cycles
Dispersive Wave Kinematics: Phase & Group velocity
e Transport Budgets
Diffusion and Advection
Heat transfer
Tracers in Fluids
Rheology
e Boundary Layers
e Landscape Evolution
e Flows
Oceanic
Atmospheric
Groundwater
Mantle Convection
e Chemical Reactions, Rates, and Equilibria
e Mechanics
of Solids
of Fluids
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xii 0.8. TEXTBOOKS AND SOFTWARE

e Gravity

Potential and Conservative Forces
e Stratigraphy

Dating and errors

Mapping

0.8.2 Math Tools & Critical Concepts
A list of the mathematical topics to be touched on in this class, and associated critical con-
cepts:
e Review of Mathematical Preliminaries (1.5 Weeks)
Series and Sequences
Real, Imaginary, Complex
Trigonometry
Exponentials and Logarithms
Units and Dimensions
Derivatives and Integrals
e Linear Algebra (2 Weeks)
Vector Spaces
Matrices and Linear Equations
Bases and Orthogonality; Rank; Null Space and Span
Inverse Methods

Eigenvalues and Eigenvectors; Singular Value Decomposition/Empirical Orthogonal Func-
tions/Principal Component Analysis

e Multivariate Calculus and Differential Geometry (2 Weeks)
Vectors
Coordinate Transformations
Rotation & Reflection, Angular Momentum, and Vorticity
Vector Differentiation and Integration: Div, Grad, Curl; Gauss, Green & Stokes
Tensors
Cartesian Tensors
Inner and Outer Products versus Matrix Multiplication

Symmetries: Principle of Tensor Covariance, Tensor Invariants, & Anisotropy
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CHAPTER 0. SYLLABUS xiii

Curvilinear Coordinates and Transforms, especially Spherical Coordinates
Deriving Calculus Identities from Tensor Symmetries
e Differential Equations

Linear Ordinary Differential Equations and Dynamical Systems (2 Weeks)
Rate equations
First and Second Order Equations
Homogeneous and Inhomogeneous Equations
Linear and Nonlinear Equations
Series Solutions: Perturbation Analysis, Asymptotics, and Linearization
Sturm-Liouville Problems: Free Modes of Oscillation, Superposition
Time Series and Fourier Analysis

Linear Partial Differential Equations and Dynamical Systems (2 Weeks)
Boundary and Initial Value Problems
Separation of Variables
Laplace and Poisson Equations (applications of Elliptic PDEs)
Heat Flow and Wave Equations (applications of Elliptic and Hyberbolic PDEs)
Separation of variables in linear wave problems: Cramer’s Rule and Oscillation Modes

Decompositions: Helmholtz Streamfunction and Potential, Toroidal and Polloidal, Po-
larization

e Chaos and Nonlinear Dynamics (1 Week)
e Probability and Statistics (1.5 Weeks)

0.9 Policies

0.9.1 Deadlines

Because of the reviewing process, the scheduling of assignments is tight. Thus, I will have to insist
that all problem sets be turned in on time. If they are late, they will drop a letter grade. If they
are really late (so that they mess up the next step in the reviewing process) they will be counted
as missed and can not be made up. If you foresee that there are big problems coming up (medical,
family, etc.) let me know before an assignment is due and we can figure something out.

0.9.2 Collaboration

I encourage you to work together, and I do not mind at all if you have similar problem sets or
share figures or computer code. However, in this case, I want you to list all of your study group on
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xiv 0.9. POLICIES

each homework assignment (so I can avoid you peer-reviewing your group). You are all required
to submit a version of each assignment as first author (that is, one that you wrote yourself), so
don’t submit identical versions of a problem. You need to be careful to cite your colleagues or the
textbooks, websites, or papers you might be working from.

0.9.3 Miscellany
e Attendance is expected. If you will miss a class, please let me know when and why so I can
be sure you’ll get any announcements, etc.

e Clothing and behavior (e.g., cell & laptop use) should be appropriate for a learning environ-
ment.

e Discrimination and harassment will not be tolerated.

e Please contact me if you have any disabilities that require accommodation.
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Chapter 1

Series Expansions

1.1 Why Start Here?

There are no exact relationships, exact measurements, or exact theories in science. Instead, each
generation of scientists examine the relationships they can find and quantify them with working
definitions and units to suit the best techniques of their era. Through observation or by experiment,
this study leads them to hypothesize, theorize and construct models that share or approximate sim-
ilar relationships among variables. Field science is never exact, but it is always quantitative.

Mathematics, on the other hand, is often expressed in exact relationships, precise definitions and
proofs, and exact solutions. This work is challenging, and often just proving that a solution exists
is the goal. Even probability and statistics, where variables are “random”, is often built using
equalities among random variables and definitions that only become true after an infinite number
of experiments.

One way to build an increasingly accurate theory is to begin with a first guess, then add dependence
on more variables and larger and larger excursions of each variable from their initially guessed value.
Mathematically, this approach is comfortably set in the language of series, where each term in the
series is a correction to the terms that came before. Technically, a series has an infinite number
of small corrections, but in regular scientific practice a finite set of corrections will capture the
accuracy possible today.

A classic example from atmospheric sciences illustrates. Jule Charney, while working on his Ph.D.
on the origin of storms in the late 1940s, found a simple equation that he believed described the
evolving waves. It could be related to a known equation, whose solutions were called the confluent
hypergeometric functions. Great! All he needed to do was look up the values of these functions
he wanted and plot the solutions to his theory. After some research in the library, Jule found
that the confluent hypergeometric functions cannot be written in closed form! And, in the 1940s,
computers were rare. There wasn’t a table of sufficient accuracy for Charney’s purpose-no one had
ever calculated these functions at sufficient precision.

So Jule did what any mathematically-minded geoscientist' would do when the values of a special
function were needed, Charney got a calculator, found a series that converged to the function, and
started crunching away. In fact, even though his thesis results turned out to be really important

'Like you will be after reading this book!



2 1.1. WHY START HERE?

(the equations of motion he derived made the first numerical weather predictions possible), many
people looked up his thesis mostly to get at the table of hypergeometric function values he had
tabulated in the appendix.

Let’s suppose we wanted to determine the value of a particular hypergeometric function, F'[z] at the
point z = 1.0.2 Let’s first assume that we can make accurate observations of the function (maybe
even by observing the weather!), but not exactly at the point z = 1.0. We might make a series of
figures like those in Fig. 1.1.

F(2) F2)

35|

st

251

0 9‘95 1 C;OO 1 605 1 6102
Figure 1.1: Zooming in on the hypergeometric function F'[z] near z = 1.0.

We can see that as we make the measurements more and more precise, we can better and better de-
termine the values of the function: 10, 8.9,8.85,... This list is a sequence of numbers which converge
to the true value, which these days a computer quickly reveals is very close to 8.849906238720033 . . .
Here the trailing dots indicate that additional digits were not printed.

Definition 1.1 (Sequence) A set of quantities ordered by association of each quantity to a natural
number, which may be finite or infinite in length.

Alternatively, perhaps we can’t make such figures directly, but we can begin with an initial guess,
and then improve it by adding or subtracting increasingly small bits at a time. The Taylor series
method, described later in this chapter and closely related to Charney’s method, is just such a
procedure. The hypergeometric function is exactly 1 at z=0, so the Taylor series allows us to
approximate the function in the neighborhood of z=1 by adding correction after correction to it’s
value nearby at z=0. Here are the first few terms in the series, rounded off to three digits:

1+442.5440.969 4 0.266 + 0.057 + 0.010 = 8.847 ~ 8.849906238720033 . .. (1.1)

Definition 1.2 (Series) The sum of a sequence, which may be finite or infinite in length and may
converge, diverge, or oscillate.

2The confluent hypergeometic function actually has three inputs, but two of them have been chosen to have
arbitrary values here.
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CHAPTER 1. SERIES 3

When Charney went to tabulate his values, he had to use an approximation method—a sequence
or series—for each datum he wanted to plot or put in his table. A research sequence often begins
toward a scientific goal, then turns to mathematics, then returns to science with new mathematical
tools, then returns to mathematics to develop new tools, and so on. Will your sequence oscillate,
converge, or diverge?

1.1.1 Rigor, Difficulty, and Intuition

Precise definitions and statements, rigorous rules for manipulation and computation, and thorough
proofs are the basis of mathematical rigor. The difficulty of a mathematics course or textbook
or proof often stems from the rigor required. Mathematical intuition stems from having studied
enough rigorous systems as to be able to rapidly appreciate what are the defining features of a new
system when first exposed to it.

Geoscience also importantly works from definitions and statements, but they tend to be deliberately
imprecise or inclusive to begin with—“working definitions”—until the world reveals itself through
experiment to make additional precision valuable. The difficulty of a scientific course or textbook
or experimental design usually stems from the complexity, subtlety, and unfamiliarity of the topic,
the challenge of mastering measurement, field, experiment, and modeling techniques, and finding
the dedication required to access remote locations or spend long hours in the lab acquiring this
mastery. Scientific intuition stems from familiarity with how measurements and experiments tend
to go wrong, a judicious sense of how many results can be squeezed out of an experiment accurately,
and deep familiarity with the workings of a particular geophysical system.

Often, geoscientists find the rigor of mathematics unappealing and constrictive, while mathemati-
cians find geosciences lacking in precision and lacking in the comforts of staying near home. Both
disciplines are challenging and progress in both is is triumph of human achievement, but what
makes each difficult is quite different. Mathematical geosciences—the topic of this book—strives to
bring modest levels of rigor to geosciences and modest levels of geoscientific knowledge to mathe-
matics, but the key idea is to build the kind of intuition that helps advance both fields. Thus, the
level of rigor is not as high as in a mathematics course covering similar topics, nor is the level of
geological information as broad or as deep as in a geosciences course.

1.2 Numbers as sequences and series

Sequences and series are so much a part of mathematics that even the numbers we use can be
thought of—or derived or proven to exist—by considering sequences and series and the numbers they
approach as the sequence gets longer and longer. Here are some examples, can you see some ways
how they relate sequences and series?

Definition 1.3 (Natural Numbers) The “counting numbers”: 1, 2, 3, ...

Definition 1.4 (Integer Numbers) The set of all natural numbers and their sums and differ-
ences.

Definition 1.5 (Rational Numbers) The set of all integer numbers and their ratios.
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Definition 1.6 (Real Numbers) The set of all rational numbers, and all the numbers to which
a converging® sequence of natural numbers can converge.

Definition 1.7 (Decimal Representation) A series approzimation to the value of a number,
based on the number of digits on most human hands. The leading digit gives the nearest value at
that order, and then each successive digit is the remainder fraction in units of 1/10 toward the next
increment. Most rational and real numbers are represented by an infinite decimal series.

Definition 1.8 (Binary Representation) A series approzimation to the value of a number,
based on a series of ones and zeroes. The leading digit gives the nearest value at that order,
and then each successive digit is the remainder fraction in units of 1/2 toward the next increment.
Most rational and real numbers are represented by an infinite binary series. In computers, each
term in a binary series requires one bit of storage.

Definition 1.9 (Floating Point Numbers) The way that real and rational numbers are approz-
imately represented in computers. Floats are rational numbers, but not all rational numbers can be
represented as floats due to limited precision (i.e., the number of computer bits used to distinguish
the number from similar numbers). Like scientific notation (e.g., 6.23 - 1023) there are computer
memory bits used for the leading digits and bits used for the exponent and a bit used for positive
and negative. It is important to remember that computer data types cannot directly represent most
real numbers, just rational approximations to them.

Bonus question: Which of the preceding sets of numbers has the most numbers in it?

1.3 Common Sense, Common Series: The Geometric Series

The geometric series is a useful standard series, because it is easy to find out what the sum of the
terms is. A finite number (n) terms in a geometric series is

Sy =a+ar+ar®+ard+- +ar” (1.2)

The series is called geometric, because each term is proportional to the preceding term. In this
sense, geometric means “involving products or powers” much like the line, area, volume, etc.,
spanned by a unit length r involve successive powers of r.

Consider what happens to the sum as the number of terms increases. If |r| > 1, the terms get bigger
with each increase in n. While the partial sum (or finite series) S, for any n can be calculated, as
n goes to infinity the sums don’t head anywhere in particular. Each is large and the next is larger.
In fact, for any big number N you choose, it is fairly easy to find an n such that |S,| > N. For
such a series, where each term gets successively larger, we can be sure that the series is divergent
(i.e., it diverges away from the value it has for any finite number of terms).

If » = —1, then we have an oscillating series, since S, =a—a+a—a---+ a(—1)". Each new term
brings a change of magnitude |a| in the sum, so the series never settles down! An oscillating series
is also not convergent.

If, on the other hand, if each term gets smaller then we can imagine the case where the corrections
become negligibly small, and we can identify a limit of the series. If |r| < 1, is this enough to say
that the series converges? Well, in this case each term in the series is smaller than the one that

3Technically, converging in the Cauchy sense.
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precedes it, or [r"~1| > |r|[r"~!| = |r"|. For example, with r = 0.1, then r? = 0.01,73 = 0.001, ....
For large n, the additional terms are very small compared to the preceding ones, so as the sequence
continues the partial sum stops changing much with each new term, and we can consider the limit
as n goes to infinity of the sequence of finite-length sums, which we take as a definition of the sum
of the infinite series S.

S = lim S,. (1.3)

n—o0

We will show that for all geometric series, if |r| < 1 then

n
__* _ _ n
S = T where S—nlirglosn and S, _Zoar . (1.4)
]:

Demonstrating this result is part of the next example problem.

Example 1.1 (Prove the Formula) Find a simple formula for a finite geometric series and an
infinite geometric series when |r| < 1.

We can compare a partial sum with r times itself,

S, =a+ar+ar® +ar® + -+ ar" !, (1.5)
7Sy = ar+ar’+ar’+-+ar" +ar” (1.6)

Subtracting the two equations, we find the value of any partial sum in a convenient form.

Sn,—1S,=a—ar",
a(l —r™)

S —
" 1—r

(1.7)

Now, we can examine the limit of the partial sums as n gets large,

S = lim S, = lim a(l—r") _ _a [1 lim r]

n—o0 n— 00 1—7r 1—7r n— 00

If |r] < 1, then the limit in the last term is zero, and (1.4) is proven.

Example 1.2 (Purity) In a water purification process, one-m™ of the impurity is removed in the
first stage. In each succeeding stage, the removal gets harder, so the amount of impurity removed
is only one-m™ of that removed in the preceding stage. If m = 2, how pure can the water be made?
If m=37¢

The purification removes a factor of 1/m more each stage. The impurity remaining after the n'"
refining process, I, is therefore

Ln=1-1/m—1/m*>=1/m?-- - —1/m"=1—(1/m+1/m? +1/m>+...). (1.8)
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6 1.4. CONVERGENCE

We use (1.7) to find a convenient form of the impurity at the n'®

R ) -

stage,

1—r 1-1/m
1 2
- 1—-= m-2
: 1 _ m _ mo_ :
T}Ln;olnfl I m 1—L w1 it  m>1 (1.10)
1

So for m =2, lim I,, =0, and for m = 3, lim [,, = —.
n—00 n—00 2

1.4 Convergence

Geometric series can be applied to some scientific problems (e.g., Example 1.2), but they are more
commonly valuable as a benchmark for other more complicated series. The problem is that for
many series, it is not clear whether they converge or not. By comparing them term-by-term to a
carefully selected series, their rate of increase can be proven to be larger than that of a diverging
series or smaller than that of a converging series.

Obviously, if the terms in an infinite series do not tend to zero then the series diverges. If they do
tend to zero, does it imply convergence? Take, for example, the harmonic series

1 1 1
I+ -4+ -+ +... 1.11
totgtgt (1.11)

It seems like this series converges, but does it? Each term is smaller than the preceding one, but is
there a related series that doesn’t converge?

Example 1.3 (Harmonic) By comparison to a divergent series, show that the harmonic series
does not converge.

The harmonic series is bigger, term by term, than a geometric series with r = %

T 1+1]+ 1+1+1+1}+...
2 |1374] |56 7" 8

SS R 1]+ 1+1+1+1}+...
2" |4 8 '8 8 8

e E .
2" |2 2

The last series is clearly divergent. The key to this comparison is noticing that

1
2 (1.12)
>k>0 (1.13)

>

0=

>

OO\H
| =

>

- 1
"5

o |
W =

>

DN =

1
8’
if on—1

Vo s =

1
. 1 E
or in general o-—— > o

This series (1.11) is called harmonic, because the sequence 1/n is related to the harmonies—i.e.,
the overtones—in musical instruments. A guitar string, for example, might vibrate with the whole
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1/3

Figure 1.2: The harmonic sequence relates to vibrations of a string fixed on each end (source:
Wikimedia commons).

string moving in the same direction (1/1), half of the string moving up and half moving down (1/2),
thirds of the strings moving in opposite directions (1/3), and so on (Fig. 1.2). We will see that this
sequence is important in describing many “wavy” phenomena, such as waves on the ocean, waves
in the atmosphere, tides, and seismic waves in the Earth.

A digital readout is an interesting example. Definition 1.7 reveals that a decimal representation is
closely related to a series. Obviously, any finite number of decimals is a meaningful number, but is
it possible that the series might diverge as we take on more and more digits?

Example 1.4 (Decimal) By comparison to a geometric series, show that the a decimal represen-
tation of a finite number must converge.

First, divide whatever number we are considering by a convenient neighboring round number of
the same sign, so we need only consider numbers N between 0 and 1. Its decimal representation
up to the n'™ digit is therefore a finite series like

ay 1)? 1\*
N=0+2 s =) +...
O+10+“2<10> +C“(10) Feen

ai 1 2 1 3 1 n

Each of the coefficients a; is a number between 0 and 9. Subtracting, and comparing to these
limiting values, we see that

1 n+1 1 n+2

1 n+1 1 1 1 n+1 1 1 1 2
0 — — < | = 9+9( — 9( —
< <10> Ap+1 + Apto < ) + < (10> + <10> + <10> +

10
because each term in the coefficient is limited by either 0 or 9. If the inequality is true for each
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term, it is true for the sum. Using (1.4), we have

1\"" 9 1\" 9 1\"
0<N-N,<|[— (=) 2 (L) 1.14
= "= <10> - L <10> 101 <1o> (1.14)

Thus, for any n, we have limited how far N,, can be away from N, and with enough digits, we can
get N,, arbitrarily close to V.

1.5 Power

A power series is a series like that just examined in Example 1.4. It involves increasing powers of
a variable, but unlike the geometric series the coefficients ¢; may vary.

S =co+err + cor® + esrd + ... (1.15)

Many examples of power series are scientifically useful. As in Example 1.4, it is often useful
to compare the power series to a related geometric series if there are doubts about convergence.
Something must be known about the coefficients ¢; to make the comparison meaningful.

1.6 Taylor

The most important scientific series from calculus is the Taylor series expansion,

- (2 —a)"

f(z) = Z Tf(”)(a). (1.16)
n=0

This formula approximates any differentiable function as a power series (which may or may not

converge). Estimating a few terms in the Taylor series is often the basis for building a model to fit

data—and for estimating how much more would be known if one more term was measured. I used

a Taylor series to make (1.1).

Let’s see how the Taylor series can be generated, just by trying to fit a power series to a function
f(z) step by step. Consider the power series in powers of (xz — a),

S=co+ci(z—a)+cylr—a)+ez(x—a)+.... (1.17)

We can set x = a, which zeroes out every term but the first. Setting this equal to the value of the
function f(z) at x = a,

f(a) = co. (1.18)

Now, let’s take the derivative of every term in the series with respect to x and compare to the
derivative of f(x). Now, if we compare these two results when z = a,

% =5 =80 =0+¢ + 2eo(x —a) + 3es(x —a)? + ... (1.19)
PE) _ pa) = 1@, 1(0) = en. (1.20)
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Note that the number in parentheses in a superscript indicates the number of times the derivative
has been taken (or the number of primes). Taking the derivative again, and again setting = = a,
we find

f(Q)(a) =21 ¢y, (1.21)
f(3)(a) =3-2-1-cs, (1.22)

and so on. Solving each of these equations for ¢; results in (1.16), where the factorial (!) notation
has been used. For example, n!l=n-(n—1)-(n—2)---- 1.

Here are some Taylor series expansions to common functions (actually, these are Maclaurin series,
which are just Taylor series where a = 0).

oo
) ( 1)n$2n+1 $3 .%'5
— St e 1.23
s 7;) Gnrl T T3 (123)
o0
_ (_1)nx2n _ 12 .%'4
n=0
X n 2 3
x _ N Y _ r. .z
e _Zn!_1+z+2!+3!+... (1.25)
n=0
o
(_1)n+lxn :E2 .%‘3
In(1 = -t =r— — 4+ — — ... 1.26
n(l+z) nz_:l - z- + 3 (1.26)
oo
B (_1)n+1x2n—1 5133 1'5
t 1 = - = — — 4+ — — ... 1.27
an” " (x) nz:l 51 z—3 + 3 (1.27)
b= (P\ p! pl
1 = =1 1.28
e nzzo<n>x R (1:28)
1 o0
1_$:Zx":1+x+x2+x3+... (1.29)
n=0

A shorthand notation for the binomial coefficient is used in (1.28), which is equivalent to the
following factorial combination

(i) = n!(ppin)!. (1.30)

By examining these formulae, the conventions must be 0! = 1 and that all binomial coefficients are
taken to be zero when n > p.

Example 1.5 (Taylor Realize) Plot the sin(x) and e® functions in (1.23) and (7.1). Then over-
lay a) a plot of the first term, b) the sum of the first two terms, and c) the sum of the first three
terms in the series. You may use MATLAB, mathematica, excel, or other plotting software if you
like. Fxplain what is explained and what is missed by the truncated series approximations.
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=10}

The more terms that are kept, the more the fit resembles the function (blue line) near the y-axis.
Furthermore, the higher the polynomial order, the more maxima and minima can be represented,
Each wiggle in the function requires another polynomial order, as is clear in the sine approximation.
The leading term is a constant, the first two terms is a straight line tangent, and the higher order
approximations keep closer and closer to the function. The number of derivatives of the function
matched increases with the order of the approximation.

Example 1.6 (Climate Sensitivity) Climate sensitivity is the response of the climate system
(as measured in terms of a change in global mean surface temperature (6 GMST) or global surface
air temperature (0 GSAT)) to a change in atmospheric carbon dioxide. There are many ways to
quantify sensitivity, but three are in common scientific use. Equilibrium climate sensitivity (ECS) is
the change in temperature after a doubling of COy as measured after decades or centuries, allowing
the energy to disperse into the deep ocean. ECS is, by definition, the temperature after all of these
changes have occurred, but it is often estimated before the eventual value, because the changes in
temperature get smaller and smaller over time (i.e., a convergent sequence!). Transient climate
response (TCR) is the amount of warming that occurs just after COs doubles, in an experiment
where it is increased by 1% each year, roughly mimicking the historical record. As TCR is measured
instantaneously, rather than after equilibration, if the COo was held fized at the doubling level
changes in temperature would continue afterward. Finally, earth system sensitivity (ESS), includes
very long-term earth system feedbacks, such as changes in ice sheets or changes in the distribution
of vegetative cover, and is often measured similarly to ECS except in models featuring more aspects
of the earth system than just the atmosphere, oceans, and sea ice. The Intergovernmental Panel on
Climate Change (IPCC) fifth assessment report (), assesses the ECS to likely range between 1.5C
to 4.5C while TCR is assessed to be within 1C to 2.5C.

We’ll the Taylor Series to think a bit more deeply about ECS versus TCR. Let us imagine that
there are a variety of time series from experimental simulations—of global mean temperature (T')
and of atmospheric carbon dioxide concentration (C)-in experiments. The key difference between
ECS and TCR is at what time are the two quantities ECS and TCR estimated in these simulations
(Gregory et al., 2004). So, let’s think about this as choosing the a in the Taylor series.

If we take a simulation when the COq is increasing by 1% per year from 280ppm (a pre-industrial
estimate) to 560ppm 100 years later (doubling), and set a = tax to be the time when this doubling
occurs, then we can estimate the TCR by Taylor expanding the T(t) record. The first term in the
Taylor series T (tax) minus the pre-industrial temperature Ty is the TCR: TCR = T (tt,, ) — To.
However, at that moment, the temperature is still adjusting, so we have to wait until later, when
equilibration occurs, i.e., T(l)(t) = 0. If we set a at that time, a = tpa)_, then the ECS is the first
term in that Taylor series minus the pre-industrial temperature, EC'S = T (tpay_g) — To.
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1.7 Newton-Raphson Iteration

It might have occurred to you that in Exercise 1.5, some of the lower order approximations to the
function might be very useful since they are simpler to work with than sin(z), for example. Suppose
we wanted to use this simplicity to find an approximate solution to, e.g., sin(z) = 0.1. Perhaps
your calculator doesn’t have the function for inverse of sine, so solving this equation would be quite
hard. Perhaps you might try the repeated graphing and zoom approach from Fig. 1.1 to find an
approximate guess. Or, maybe you think sin(x) ~ z, based on the Taylor series (1.23), so maybe
the solution is approximately x = 0.17

Newton’s method (or the Newton-Raphson method) is a method for improving such guesses to the
solution of a equation that you can take the derivatives of (i.e., a smooth, continuous, differentiable
function), which can be iterated (repeated) until a desired accuracy is reached (or no solution is
found at all). Typically, the method results in a convergent sequence toward a solution of the
equation. The steps are as follows:

1. Arrange the equation so that it reads: f(z*) = 0. The * indicates a solution to the equation.
There may be more than one. ..

2. Make a guess x; of x*.

3. Find an improved version by evaluating the Taylor series of the function at x;, and choosing
the next z;11 where the Taylor series estimate is equal to zero,

F@iva) = f(x:) + FO (@) (wipr — ) =0, (1.31)
Ti+1 = T — f{l()x(;)z) (132)

Step 3 can be repeated indefinitely. When you are near a solution, the steps will become increasingly
small and you will converge. If the solution converged upon is not the desired one, or the iteration
method diverges (which is rare), repeat the whole process from step 2 with a different initial
guess.

Let’s try with sin(z) = 0.1. Step 1is f(z*) = sin(z*) — 0.1 = 0. For step 2, we'll use z = 0.1, as

mentioned above. For step 3, we find o = 0.1 — % =0.1—- % = 0.100167....

We could repeat the iteration again, but z = 0.1 was only wrong by 0.1%, and = = 0.100167 is
wrong by only 0.0004%.

Let’s work through a geophysical example.

Example 1.7 (Wave Solution) The equation that relates the speed of a wave on the ocean’s
surface to it’s wavelength (L) and the depth of the ocean (H) is

L 2mH
c= g—ﬂtanh [72} . (1.33)

This formula is tricky to solve for L, being a product of a square root of L times a hyperbolic
tangent! What if we want to know the wavelength of a wave whose speed (c) is 10ms~! in 100m
deep water?
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Approximating the acceleration due to gravity g as 10ms~2, we have
10L 27100
10 =/ —— tanh 1.34
0 5, tan [ 7 ] , (1.34)
27100 207
tanh —/— =0. 1.35
an [ T ] T (1.35)

The last equation can’t be solved in closed form, since there is an L both inside and outside of the
hyperbolic tangent. We could solve graphically, by looking for where the function on the left of
1.35 crosses equals zero (Fig. 1.3). But, we couldn’t easily draw this function. We can take the

F(L)

. I . . . I . . . I %-"_\ L
20 40 60 80 100

-0.5+

-1.0+

-1.5¢+

-20+

-2.5+

Figure 1.3: The value of the left hand side of (1.35) versus L.

derivative of it, though.

2
d% (tanh [%100} - 207r> 13/ /5 200msech’[(200m)/ L] (1.36)

L L L?

Since we can do that, we have all of the ingredients to use Newton’s method (1.32)!

tanh [%100} - 224
Lot = Li - A (1.37)
3/2\/7 2007sech| L(QQOOW)/LZ]

This is a bit scary to calculate, but using Matlab or Mathematica it is easily programmed. The
sequence of results, if we guess L1 =50m to begin with is:

L; —50m 60.8m, 62.8 m, 62.83 m, 62.832m, . (1.38)
) e N N e
=1 =2 =3 =4 1=5

So, you can see that this series for L; quickly converges with iteration number i. The corresponding
values of the left hand side of (1.35) are

27100 20
tanh | | — /2T = 012, -0.016, —0.00025, —0.000015, 1.1 - 1075, (1.39)

Thus, they quickly approach zero as intended.
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1.8 Introducing Fourier Series

Another common series is the Fourier series. Like the polynomial series that results from Taylor
expansions, the Fourier series is a sum of terms that are higher powered in each term in the series
when written in (complex) exponentials,

f@) = co + 1€ + c2e®™ + 3™ + . (1.40)

The ¢ coefficients are constants that can be chosen to select one particular Fourier series from the
general form written here. In the next chapter, we will see that these complex exponentials are
exactly equivalent to sines and cosines, which makes the Fourier series equivalent to

f(x) :%ao + ajcosx + azcos2x + azcos3x + + -+ + by sinx + bgsin 2z + bysin3z + ... (1.41)
At this stage, it is only important to appreciate that a Fourier series is another example of a
series, and that it is constructed from a set of oscillating functions. Some of you who are used to
thinking about the coefficients of the argument of sines and cosines as frequencies may note that
the frequencies here obey the harmonic progression (like Fig. 1.2)! After a few more chapters, we
will be in a position to see how a Fourier series can be fit to any periodic function, which is a
powerful idea.

1.9 More Wiggly with More Derivatives

Let’s examine the Taylor and Fourier series to think about whether integrals or derivatives of a
function tend to be smoother or wigglier. This will be an important concept in handling real
data.

First, let’s examine the degree of wiggles in the Fourier series. Each subsequent term oscillates more
quickly: %ao does not oscillate, a1 cos x oscillates, and as cos 2x oscillates with twice the frequency
of aj cosx. However, it’s not just the frequency of oscillation that contributes to wiggliness in the
overall series, it’s also the amplitude. We don’t know much about the initial amplitudes, as that
depends on the specific function being approximated with the Fourier series, but we do know about
the derivatives and integrals of the Fourier series in comparison to the original function. Since we
can distribute the derivatives over the sums constituting each series, then

1
f(z) ==ap + a1 cosx + ag cos 2z + azcos 3z + -+ - + by sinx + besin 2z + by sin 3z + . ..

2
(1.42)
df () _ : . .
7 =0 — a1 sinx — 2assin 2o — 3agsin3x + - - - + by cos & + 2b cos 2x + 3bs cos 3x + ...
T
(1.43)
1 b b b
/f(a:)d:c =cp + iaox + aysinx + %sinlac + %sin&x 4+ = Tlcosx — 5200821' — §3COS3$ + ...
(1.44)

While we can’t say how quickly the a,, and b, coefficients decrease in the original function, note
that taking the derivative tends to increase the coefficients more based on the frequency of the sine
or cosine, while taking the integral tends to decrease each terms contribution. Thus, the derivative
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is expected to be more wiggly, while the integral is less so. You might be concerned about the sines
being exchanged for cosines, and while thinking that through is a good exercise, it is easy enough
to take another derivative and another integral to illustrate.

1
f(x) ==ap + aj cosz + ag cos 2z + az cos3x + - - - + by sinx + by sin 2z + by sin3x + . ..

2

(1.45)

d f(z)
e =0 — aq cosx — 4as cos 2x — 9azcos3x — - -+ — by sinx — 4by sin 2x — 9b3sin 3z — . ..
(1.46)
b b b

//f(a:)da:da; =c1 + cox + apr® — aj cosx — %COSQ.’L‘— %COS&’L‘—FH-— Tlsina?— ZQSin2a:— gsin3x+...

(1.47)

Now it is clear that the second derivative function will be very similar to the original function, but
with amplification of the higher frequency terms, leading to a more wiggly function. Inversely, the
integral will be smoother.

How does this look in the Taylor series? Well, each term in the Taylor series is likewise easy to
integrate and differentiate. Let’s use the particularly easy case of a = 0.

. W)+ @0y L p®
Fl@;0) = F(0) + 2D (0) + T /A0) + T FO0) + .. (1.48)
dj;(;) — 0+ fM(0) + 2 £ (0) + ”;T FO0) + ... (1.49)
2 3
/f(a:)dx = co + 2.f(0) + %f(l)(o) + %f@)(o) ... (1.50)

So, since the higher powers are wigglier, the differentiation tends to reduce the power

What if the original function has a kink in it, where it is non-differentiable? Well, then any
Taylor or Fourier finite series approximations to it will not have the kink, but will have smooth
transitions over that part of the function. Indeed, since the Taylor and Fourier methods actually
require integration or differentiation, such a kink may make it difficult or impossible to calculate
the Fourier or Taylor series representations unless a smoothed approximation is first formed.

1.10 Small Corrections

1.10.1 Asymptotics

The convergence and accuracy of finite truncations of the geometric series and Taylor series depends
critically on the terms growing small with n. Most of the time, this is because some part piece of
the makeup of each term is already small ((z — a)™) or big (n!), and increasing n makes it smaller
still. Having a small or big parameter is called having an asymptotic parameter, because it can be
useful in finding a limit to which the series asymptotes as n goes to infinity. Asymptotics is the
mathematical formulation of considering such limiting behavior in a wide range of problems with
small or large parameters. Chapter 14 presents some of the most common techniques.

Science is always in the business of eliminating parameters with negligible contributions to the
theory. Asymptotic parameters take this one step farther. Suppose we are doing a Taylor series
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at a point x nearby a, so (x — a) is our small parameter. It may not be negligible on its own, but
(x — a)? will be smaller so it may be negligible, or (z — a)? which is smaller still.

1.10.2 Accuracy

Sometimes, we want to find the limit of the infinite sum S, and try to do so by summing only a
finite number of terms S,,. This approximation is called a finite truncation of the series. This may
be because we don’t know how to calculate S directly, or because (e.g., due to limited observations
or the cost of evaluating lots of terms) we only can evaluate a limited number of terms. We
know that ultimately the residual or truncation error R, between the two will become small, since
R, =S5-25, and lim,_, R, = 0, but without further study we don’t know how quickly.

Even when a series converges, it may do so excruciatingly slowly. For example, we know that
1 = cos(0) = sin(7w/2), since sine and cosine are nearly the same function except sine begins at
x = 0 with the climbing part of the function whereas cosine starts at a maximum. However,
evaluating the first few terms of the Taylor series expanding sin(x) near x = 0 in (1.23) at x = 7/2,
it takes up to the term derived from the fifth derivative of sine before the answer is within 1%
of 1. It takes up to the thirteenth derivative term to get the series to approximate the answer at
x = 3w /2 with similar accuracy. Taking derivatives of sine is easy (if you remember the formula),
but taking the derivative of some functions is costly, so a more rapidly converging series would be
valuable. Considering truncation and building better algorithms and series that converge faster are
important parts of computation (Chapter 15).

1.10.3 Small Compared to What? Introducing Units

Applying the preceding techniques to the real world is missing one major ingredient: units. For
example, if (x —a) is 0.1 meters, is it small? 0.1 is small, but 10 is big and that’s the same distance
when measured in centimeters. Which interpretation is right? Is it small in meters or big in
centimeters? Also, how do we compare (x —a) with units of meters to (z —a)? with units of meters
squared (area?). The answer lies in noting that we can really only compare meters to meters, or
apples to apples. Thus, smallness needs to be measured in a way that is independent of arbitrary
choices about units, and in a way that allows us to take small parameters to arbitrary powers and
still compare meaningfully. This idea forms the basis of dimensional analysis (Chapter 4), which
is a crucial part of mathematical science which we will revisit again and again.

For now, the critical precursor to doing a good job with units and dimensional analysis is being
careful to give units their due in problem sets. Don’t write bare numbers when a unit should be
attached!
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16 1.11. HOMEWORK PROBLEMS

1.11 Homework Problems

1.11.1 Manipulation

Exercise 1.1

14+01+0.01+0.001+---= (1.51)

Exercise 1.2
1+1/2+1/4+1/8+---= (1.52)

Exercise 1.3
1+1+14+1+---= (1.53)

Exercise 1.4 (Taylor Realize) Confirm the first two nonzero terms of each of the series in
(1.24), (1.26), and (1.28) by plugging into those formulae for n = 0,1,2,.... For some n, the
terms will vanish, so keep going until you get two nonzero ones. Then, use (1.16) and derive the
first two nonzero terms in the series by taking the derivatives of each function. Again, some terms
will vanish (and they may not match up one-to-one with the formula in (1.23-1.28) until you have
enough terms calculated).

1.11.2 Application

Exercise 1.5 (30N) An important parameter in the consideration of the physics of the rotating
Earth is the Coriolis parameter: 2Qsin(p), where ) is the angular rate of rotation of the earth in
radians (2w in a day, or 2w /(24hr/s - 3600s)) and ¢ is the latitude. Taylor expand the first terms
in this parameter around 30 degrees North, or 30° - (2mradians/360°) = 7 /6 radians. Carry out the
ezpansion to the term including (¢ — 7/6)3.

Exercise 1.6 (Rocking with Taylor Swiftly) Consider pushing on the rock depicted in Fig. 3.2.
If you push or pull gently, the rock will push back. If you push or pull hard, not so much. We will
use this example to consider how nonlinear functions are sensitive to amplitude in a way that linear
functions are not.

a, Equal and Opposite: Make a graph depicting the force applied, F4 (positive=push in horizon-
tal direction, negative=pull in horizontal direction) versus the force back from the rock Fr (after
equilibration). You can suppose that all forces go in the same direction. (Hint: prevent acceleration
up to a point, and Fy + Fr = ma.

b, Constant Approximation: If the function Fr(Fa) is fit with a Taylor series around Fy =0
and truncated at the first (constant) term (Fr(Fa) = co). Describe this system’s response to applied
forces.

¢, Linear Approximation: If the Taylor series for Fr(Fa) around Fy = 0 is truncated after two
terms (Fr ~ co + c1F4), it predicts how much Fgr for Fq4 =1 Newton? 2 Newtons? 10° Newtons?
Can fracture happen?

d, Breaking Point: What is the minimum number of terms in the Taylor series that must be
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CHAPTER 1. SERIES 17

Figure 1.4: A situation that’s sensitive to perturbation amplitude.

retained to make Fr do something other than double when Fx is doubled?

e, Extremes: Consider the response force Fr at positive and negative Fy4. Is it approrimately an
even or odd function? If this were exactly true (i.e., symmetry or antisymmetry between pushing
and pulling) what is the first term in the Taylor series that could make Fr sensitive to amplitude
of Fa?

Exercise 1.7 (Taylor rhymes with Baylor) Suppose the function h(x) plotted in the figure is
found by measuring topography along the x direction, and in particular consider fitting it with a
series expansion near the point marked A. Sea level is h = 0, so we are particularly interested in
h(x) = 0, which indicates the location of coastlines. The function is not known, but we consider

the possibility of approximating a Taylor series expansion to it.

15000
10000 -

5000 -

Figure 1.5: A function to be fit by Taylor expansion near point A at the star.

a, Counting: How many coastlines are there, that is how many solutions to h(x) = 0 are there?
b, Constant: If the function is fit with a Taylor series and truncated at the first (constant)
term, and if the truncated approximation is denoted fzo(az), then how many solutions are there to
ho(z) =07

c, Variations: If the Taylor series is instead truncated after two terms (hy(x)) then how many
solutions are there to hy () = 0, and what is the approzimate value of the solution ¢

d, How many?: What is the minimum number of terms in the Taylor series that must be retained
to approximate all of the coastlines in the real function h(x)? Why?

e, Extremes: Consider the function at large magnitudes of positive and negative x. If the truncated
Taylor series matches this behavior at large |x|, predict the sign of the coefficient in the largest power
of x and whether the power is even or odd.
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18 1.11. HOMEWORK PROBLEMS

1.11.3 Scheming Schematics and Articulate Analysis

Exercise 1.8 (Who is the Oddest?) Sometimes it is said that sin is an odd function and cos
is an even function. FEzamine the sin and cos functions in (1.23) and explain what this means in
terms of the exponents of x. Consider sin(z) versus sin(—x) and cos(z) versus cos(—x), how do
they compare? How do odd and even functions compare under the sign reversal of their argument
(i.e., the input to the function, x or —x) in general?

Exercise 1.9 (Biggie Smalls) Ezamine each factor in the product that makes up (1.16). What
makes them large or small as n increases?

Exercise 1.10 (Getting Seri-us) The Taylor series and the Fourier series are methods to de-
termine the coefficients in series expansions of a function f(x). They apply in approximating the
function near x = a and over a given interval where the function is periodic. Suppose we have a
function that is periodic when —m < x—a < 7, then we can write the Taylor and Fourier series—for
the same function f(z) as,

fl@)=co+eci(r—a)+ea(zr—a)?+cz(z—a)+...,
f(x) =do+ dlei(zfa) + d262i(xfa) + d3€3i(l«,a) L

Use these forms to answer the following questions. Hint:

2 03 s o\m

enilz=a) — 1+in(aza)n2(xa)2mg(za)3+~--+(zn)(xa)m+...
a, Constant: Is there a simple relationship between co and dy very near x = a for all f(x)?
b, Variations: Does a specific term in the Fourier series, say doe2i(z—a) always correspond to a
specific term in the Taylor series, regardless of what f(x) is?
c, Equivalence?: Assuming both series converge, is there a unique (though perhaps complicated)
relationship among all of the ¢, and all of the d,, ?
d, Specifically: If f(z) = e'@=) what are the values of all nonzero d,, and c,?

1.11.4 Jargon to Argot

Exercise 1.11 (Sequence vs. Series) What’s the difference between a sequence and a series?

Exercise 1.12 (Asymptote, Asymptotic, Limit) An asymptote is a line that continually ap-
proaches a given curve but does not meet it at any finite distance. Contrast this definition to that
of the adjective asymptotic and the term limit.
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Chapter 2

Real and Imaginary are Complex

Reading: Boas (2006, 2.1-2.2)

Somewhere during middle school, you probably were first amused by the phrase “imaginary num-
bers.” If your experience was like mine (or my kids’) it was years until they were formally intro-
duced. Plus, you were never told why this odd phrase was used to describe them. Worse yet, they
were just used to quiz your memorization of algebraic manipulations using the one key relation
i = v/—1. The deeper mysteries like why you can get away with only v/—1 and didn’t also need
{/—1 (which would very fairly be called complex!) are lost.

But, in geophysics, imaginary numbers are incredibly useful in a variety of ways. These notes will
introduce three key ways, which feed into many applications.

2.1 Maps, Distances, and Polynomial Roots

2.1.1 The Complex Plane

Reading: Boas (2006, 2.3-2.5)

We will spend much time this semester mapping lines and shapes and places and forces into locations
in space. The complex plane is a very simple way of laying out two-dimensional maps, and such
maps are also useful for manipulating complex numbers! For any complex number z = x + iy, it
can be mapped onto a plane with = as the horizontal coordinate and y as the vertical coordinate
(Fig. 2.1a).

We can express the same number in polar coordinates, by exploiting the triangle with hypotenuse
r and angle counterclockwise from the z axis 6, or

z=1x+ iy =r(cosf +isinf) = re'’. (2.1)

The last form uses the Euler relation (¢ = cos(f) + isin(f)), which is true for any 6. This
relationship can be taken for granted now, but it will be derived below using Taylor series. Look
at how this formula works out in Fig. 2.1b. Notice how increasing the power of the exponent in the
formula results in a rotation about the coordinate axis.
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20 2.1. MAPS, DISTANCES, AND POLYNOMIAL ROOTS

Le
I L
~
.
L L
T A
° ok

a)

Figure 2.1: a) Points plotted on the complex plane: 0+ 07,1 + 3i,—3,1i,2 — i. b) Points plotted
on the complex plane, based on polar representation: 0,1, —1 = 1e'™,j = 1ei™/2 ¢in/3 ¢3in/2

Once we are in this framework of expressing points in the complex plane with single complex
numbers, we can do many manipulations of these number to map and remap points on the plane
to other points. If the remapping goes from the complex plane (or a subset) to the complex plane
(or a subset) and is differentiable, then we say it is analytic. Complex analysis is the study of such
operations, and it is a very powerful tool in 2-dimensional mapping. We will soon move to other
systems (vectors, tensors) that are capable of handling higher dimensionality, but in 2d mapping
the complex analysis is pretty tough to beat!

2.1.2 The Real Numbers

Reading: Boas (2006, 2.1)

Thus, there are really two real numbers (z and y) hiding inside of one complex number: z. In
computer memory, complex numbers typically require twice as much storage space as real numbers
(floating point number or floats).

So, let’s return to why we don’t need v/—1 in addition to v/—1. In complex multiplication, the
absolute value of the product of two numbers is the product of the absolute value, while the angle
of each number away from the z-axis is summed together.

2129 = rlei(el)rgeiw?) = rlrzei('91+92) = ]21||22|6i(91+92). (2.2)

So, since | — 1] = 1, the square root of —1 is just a unit distance away from the origin as 1, but
halfway in angle from 1 to —1. That is i. Finding /—1 is just the same, it is a unit distance away
from the origin and a third of the way to —1. By this method you can figure out lots of things (the
square root of positive real numbers are always real, for example).

Similarly we can do algebraic work to show that the magnitude of a complex number z is \/zzx,
where zx* is the complex conjugate of the number z, or x — iy, if z = x + iy.

2.1.3 How Did We Get So Complex? Root Finding
Reading: Boas (2006, 2.1)
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CHAPTER 2. COMPLEX 21

More generally, we can wonder where all these roots come from and why we need them. This takes
us back to the polynomial series we considered in the last chapter. Suppose we arrive at a physical
process where y results from = at a given level of approximation (truncation) as,

y=az’ +bz+c. (2.3)

For a while we are happy with this relation, providing real z values and finding real y outputs. But,
eventually we begin to wonder how we might predict what z will give us a particular y—that is, we
want to invert the quadratic relation. Long ago, we were taught that this can be solved as

_ b/ —da(c—y) (24)
2a . |

z

This gives two solutions (the + and the —) for every y where b?/4a — ¢ > —y. But what about if y
becomes negative? What then? Then we need complex numbers so we can say for that case,

_ —bEiy/[b? —da(c —y)|
z= 5 :

(2.5)
We could have used a more complicated initial series, going up to 22 (quadratic), 23 (cubic), or z*
(quartic). All of those polynomials can be solved without approximation with two, three, or four
solutions. However, there are less than or equal to that many solutions that are real. That is, what
complex numbers give us is the ability to keep track of how many solutions a polynomial will have,
even when they are not real (and so may not be measurable, hence the name imaginary).

This situation is no problem when we know the formulae to find the roots (quintic or above). Then
we must use numerical algorithms to find the roots. Typically, these methods are sophisticated
repeated cycles (recursions) of guess, check, and correct the guess. They converge well when you
guess an initial condition near a root, but erratically if not. It is very helpful in following such
a method to know how many we need to find! This knowledge is only available when complex
solutions are allowed.

2.2  Euler Rhymes with Boiler (not Ruler)

Reading: Boas (2006, 2.9, 2.11)

The Euler formula is sometimes taken to be one of the most astonishing results in mathematics, it
is:

¢ = cos + isiné. (2.6)

It can be easily derived from examining the Taylor series of sinz,cosz, and e, given in (1.23-
3.1).

It produces an even more amazing formula, which relates almost every high school mathematical
number to one another:

€T+ 1=0. (2.7)

But, this is only one example of the wonders of complex numbers and their relation to maps, circles,
and triangles.
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22 2.3. SINES, SINES, EVERYWHERE SINES

The Euler formula for € and e=% can be solved for a formula for sines and cosines.

0 _ —if i0 | ,—if
sinf = %, cosf = %. (2.8)

Note how the odd (sine) function comes out as odd under reversal of sign of  and the even (cosine)
function does not.

2.3 Sines, Sines, Everywhere Sines

Reading: Boas (2006, 2.11) The Euler formula is a very powerful one for compressing wavelike
features, which we often take to be a sine wave. If the wave has amplitude a, wavelength A, initial
phase 6, and phase speed ¢ in the z direction, we write for some wave variable ¢

¢ = acos(2m[z — ct]/X +0). (2.9)

As time t increases, the wave moves more toward larger x. It is pretty hard from this formula to
figure out how to measure 6 if you happened to miss the moment at x = 0,¢ = 0. Consider the
exponential form:

é = Re (aeiee%ri[ac—ct]/)\) — Re (ZGQWi[w—Ct]/A) (2.10)

Now, both the amplitude and the initial phase are captured in the complex parameter z, and all
of the manipulation of polar coordinate forms of complex numbers can be applied. Note that I use
Re for real part and Im for imaginary part.

2.4 Sinh It Up Tight, Cosh It’s a Rough Ride.

Reading: Boas (2006, 2.12)

How do we tell sine from cosine? Well

sin(0)
cos(0)

0, sin’(0) = cos(0) = 1 (2.11)
1, cos’(0) = —sin(0) = 0. (2.12)

As we will soon see, these simple boundary values make differential equations easy to solve because
the solution at 0 is simple. Similarly, the hyperbolic sine and cosine obey,

o _ 0 0 0
sinh @ = %, cosh = %. (2.13)

Similarly to the sines and cosines, these obey simple conditions at the origin.

sinh(0) = 0, sinh’(0) = cosh(0) = 1 (2.14)
cosh(0) =1, cosh’(0) = sinh(0) = 0. (2.15)

Thus, we can relate the hyperbolic function of an imaginary number to the corresponding trigono-
metric function. Similarly, we can extend the definitions of logarithm.
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CHAPTER 2. COMPLEX 23

2.5 Example Problems

2.5.1 Jargon to Argot

Example 2.1 (Amplitude and Phase) Look up the definitions of the amplitude and phase of a
sinusoidal wave. Write equivalent real-valued waves, at a given time t and for all x, using only sine,
cosine, and the real or imaginary part of a complexr exponential. Label the phase and amplitude
explicitly.

Any sinusoidal wave can be written as Asin(kz — wt + d5). The amplitude is A. According to
Wikipedia, “Phase in sinusoidal functions or in waves has two different, but closely related, mean-
ings. One is the initial angle of a sinusoidal function at its origin and is sometimes called phase
offset or phase difference. Another usage is the fraction of the wave cycle which has elapsed relative
to the origin.” By the latter definition, we take the phase at the origin (¢ = 0, x = 0) to be d..
Alternatively, the same wave can be written as A cos(kx —wt+9.) where 6. = d;—7/2. These equiv-
alences are made more clear by considering the complex exponential form of the waves (assuming

amplitude A is still a real measured quantity), ARe [e"(’”_wﬂr‘%) = Re |Ae®¢ | Re [ei(km_“’t)} . In
this form, it is clear that any phase or amplitude can be selected by choosing the real and imaginary

parts of the complex coefficient Ae?, and the sin form can be found by choosing it to be pure
imaginary and the cos form can be found by choosing it to be pure real.

2.5.2 Manipulation

Example 2.2 (Plots on a Plane!) Problems 2.4.53, 2.4.7, 2.4.9 of Boas (2006). You can plot
them all on the same figure. Don’t forget the complex conjugates!

([ ] 2L
(]
1L
®
-2.0 -15 -1.0 -0.5 0.5 1.0
1L
(]
® -2+

2.4.3:1—iV3; (2, y) = (1,—V3); (r,0) = (2, —1/3); 2 cos(w/3) — 2isin(w/3); 2e~(™/3)

2.4.3" : 14 iV3; (x,y) = (1,V3); (r,0) = (2, 7/3); 2 cos(m/3) + 2i sin(r/3); 26" "/3)

2.4.7: —1; (z,y) = (—1,0); (,0) = (1,7); cos(n) + isin(r); '™

2.4.7° : —1; (z,y) = (—1,0); (r,0) = (1,7); cos(m) + isin(x); (™

2.4.9:2i — 2 (2,y) = (=2,2); (r,0) = (2V2,37/4);2V2 cos(3m/4) + 2iv/2sin (37 /4); 2v/2e/ 7/

2.4.9% 1 —2i — 2; (2,y) = (=2, -2); (1,0) = (2V2, —37/4); 2V/2 cos(3m/4) — 2iV/2sin(37/4); 2v/2e 3™/
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24 2.5. EXAMPLE PROBLEMS

Example 2.3 (Crunch your abs!) Problems 2.5.5, 2.5.6, 2.5.26, 2.5.28, 2.5.29 of Boas (2006).

2.5.5:(i +v3)2 = =14+ 3+ 2i/(3) = 2+ 2iV/3,
S\ 2 iT/4 2 in/2
2.5.6: (1“) - < V2e ) 27,

1—i J2e—in/4 | T 9e=in/2

6
re’ . .
2.5.28: —5| = 1, as same distance from origin

z
e

z re

2.5.29 : ‘(1 + 2@')3' - (\/5)3 = 5V/5.

Example 2.4 (Complex Solving) Problems 2.5.35, 2.5.43 of Boas (20006).

2.5.35 :x +1iy = 31 — 4,

x = —4,y = 3,as both variables are real: no mixing between parts of the equations.
2.5.43 :(x + iy)? = 2ix,

trivial solution: x =y = 0, or

2ixy = 2ix — y =1,

2?2 —y?=0— 2=+l

2.5.3 Application

Example 2.5 (Series!) Problems 2.11.1 of Boas (2006).
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3
z
=z-+4...,
sin(z) = z 5
2 4
cos()zl—%+;—4+.
F )2
elz—l—&—iz—i—(l;) + ...,
2
:1+iz—%+..
F )2
e‘”:l_iz+(z;)+ ,
52
=1—iz— T+
_ 2 2
e”—i—e_”:1—zz—%+~-—|—1+z’z—%—|—...,
2 A
—o1-2 42
= 2(cos(z)).
2 2
1z —iz z . z
P D PRI T
e e 12 2+ zz+2—|— )
3
z
= 2i(sin(z))

2.5.4 Evaluate & Create

Example 2.6 (Euler) Problems 2.9.1 of Boas (2006).

2.9.1: e = (1 —i)/V2 =

Sl-
sl

Example 2.7 Problems 2.4.2 of Boas (2006).

24.2: =1+ (z,y) = (=1,1); (r,0) = (vV/2,31/4); V2 cos(3m/4) + iv/2sin(37/4); /2 O™/ 1)
2.4.2°: —1 —i; (z,y) = (=1, —1); (r,0) = (V2, —37/4); V2 cos(37/4) — iv/2sin(31/4); v/2e37/4)
Example 2.8 Problems 2.4.4 of Boas (20006).

2.4.4: —/3+4i;(z,y) = (—V3,1); (r,0) = (2,57/6); 2 cos(57/6) + 2i sin(57/6); 2¢'™/6)
2.4.4% 1 =3 —i; (2,y) = (—V/3,—1); (1,0) = (2, —57/6); 2 cos(5m /6) — 2i sin(57/6); 2e~(>7/6)
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26 2.6. HOMEWORK PROBLEMS

Example 2.9 Problems 2.5.2 of Boas (2006).

1 1 _ ie—gm/zl _ 1

2.5.2: = —
i—1  \/2ei3r/4 /2 V2

[cos(3im /4) + isin(—3im/4)] =

M| .

-1
2

2.6 Homework Problems

Exercise 2.1 (Plots on a Plane!) Similar to problems in 2.4 of Boas (2006). Make a figure
where you plot z = 3 + 41 and its complex conjugate. Label these two points, as well as their
real and imaginary parts, in the multiple ways shown in the figure below (i.e., convert between the
forms).

1+iv/3
M (r.0=@2,%)
.
2(cos3 +4sm.3’.)
2?""3

[(x,y)ﬂ(l. V3)

ry=rsm0

‘=2sm§

= /3

x
3

\ /

x=rcosa=2cos§=l

Figure 3.3

Exercise 2.2 (Crunch your abs!) Similar to problems in 2.5 of Boas (2006). Simplify the fol-
lowing number, z, to the z = x + iy form and to the z = re? form. Then plot the number and all
of its fourth roots in the complex plane (Boas, 2006, see Section 2.10).

. [izr (2.16)

Exercise 2.3 (Complex Solving) Problem 2.5.44 of Boas (2006): Solve x + iy = (1 —4)? for
x,y.

Exercise 2.4 (Series!) Problems 2.11.2 of Boas (2006): Solve the equations e = cos 6+isinf,e " =
cos® —isinf, for cosf and sin® and so obtain equations (11.3) of Boas (2006).

Exercise 2.5 (The Buoyancy, or Brunt-Vaisila, Frequency) In a density stratified fluid, dis-
placing a fluid parcel (without changing its density) upward or downward results in a restoring buoy-
ancy force, because a parcel displaced upward will be denser than its neighbors and a parcel displaced
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CHAPTER 2. COMPLEX 27

downward will be more buoyant than its neighbors. The equation that describes the motion for the
position of the parcel Z can be written

A

2

Where N is a function of the density (p) stratification in the vertical direction (z) as compared to
a background density pg and gravitational acceleration g:

_—9dr

N2=_Z2"F
po dz

(2.18)
The frequency N is called the buoyancy frequency or Brunt-Vdisdald frequency after David Brunt

and Vilho Viisild. Verify that Z = Nt Z = eVt Z = cos(Nt), and Z = sin(Nt) satisfy this
equation.
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2.6. HOMEWORK PROBLEMS
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Chapter 3

Linear Algebra

3.1 Introduction—Babies, Bathwater, and Linearization

Reading: Boas (2006, 3.1, 3.2)

After discussing the roots of equations, and the complexity—and complex numbers—that arise from
solving polynomial equations of order two and higher, it seems like a relief to consider only linear
equations. But, what is lost? And, are linear equations interesting representations of the real
world?

Let us revisit the Taylor series expansion in
(1.16) and reproduced here in (3.1), 6or

f<w>=2(xn!a)nf<"><a>. (3.1) /
= /\,/ | |

As discussed in Chapter 1, this infinite series _7 . - ! : ¢
can be truncated, often to good accuracy if x is 201
near a, at a finite V. 40!

-60

Figure 3.1: Tangent to a function (3.3).
If N =1, then

fl@)~ f(a) + (x—a)f'(a),  (3.3)

which is a linear function in z. This approximation can be visualized as the tangent line to the
function f(z) at * = a (Fig. 3.1). This approximation is as good as a linear approximation can get in
a one-dimensional function of a single variable. As we saw from the Newton-Raphson method, such
approximations can be valuable even in highly nonlinear systems. However, geophysical problems
often consider multiple functions of multiple variables, which are even more complicated. The
power of linear algebra shines in multivariate systems, because there the tools of linear algebra,
matrix manipulation, and inversion techniques allow simultaneous and even-handed treatment of
all of the variables and functions.
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30 3.2. LINEAR SYSTEMS-LINE "EM UP, SOLVE "EM DOWN

Often, the equations that govern a physical system are so complicated that we forgo a formal Taylor
series expansion of a known solution and instead linearize the equations immediately, or assume
that the whole dynamics are linear. This method will be discussed more in the dimensional analysis
chapter, but the basic idea is to restrict consideration to situations where all the nonlinear terms
are small (by selecting = very near a for example, or by choosing a region of space where f”(a) is
small). If they are small, then we just drop them and proceed to find a solution to the remaining
(linear) set of equations. At the end, we can plug the solutions we find for the linear system
back into the original (nonlinear) set of equations and evaluate the (in)accuracy of our solutions.
There are even methods, called perturbation series or weakly nonlinear analysis where we use the
linear solutions to estimate some nonlinear solutions (much like calculating the n = 2 in the Taylor
series using the n < 1 terms). Very often, the key assumption in the linearization process is small
amplitude of perturbations away from a known state, which in our simple example so far amounts
to keeping x very near to a.

In practice, a linear approximation to a complicated nonlinear function is unlikely to be a very
good approximation unless x is very near a (in terms of how far f remains near its tangent). But,
linear equations are so much easier to solve, especially in multivariate situations, than nonlinear
equations, that often we linearize the equations anyway. We can then study the whole class of
linear solutions that do an excellent job of describing small amplitude phenomena and this study
may build intuition useful in the full nonlinear system.

One key failing of small amplitude solutions (i.e.,  near a) is that they lose precisely the terms in
the equation that distinguish between small and large amplitude. We will see this in action many
times, and exploit it to solve for all amplitudes (so long as they remain small) at the same time.
However, many geophysical systems are quite sensitive to how large a perturbation to their state
is (see Fig. 3.2 for a dramatic example), and to study such problems completely we need to return
to incorporate amplitude-sensitive (i.e., nonlinear) terms in the equations.

3.2 Linear Systems—Line ’Em Up, Solve ’Em Down

Reading: Boas (2006, 3.2, 3.3, 3.4, 3.6,
3.7)

We can write any one-dimensional linear equa-
tion in a similar way,

ar =y, (3.4)

which can be solved for z, so long as a #
0.

y=b/a. (3.5)

If a = 0, then the linear equation does not con-
strain the value of z at all, and the system can
only be solved if y = 0 as well. In that case,
any value of z will do.! This problem has one

Figure 3.2: A situation that’s sensitive to
perturbation amplitude.

T just looked at the Wikipedia page on linear equations and it is amazingly similar to what I wrote! Convergent
evolution. . .
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input or “source” (x) one coefficient (a) and one “response” or “output” y. Solving the equation

amounts to asking “what source results in this output?”

You probably spent much of middle school staring at the equations for a line, such as
y =mzx + b. (3.6)

This equation defines a line, but it is not a linear equation! It is an affine relationship, because it
doesn’t intersect the origin. The equations for lines are discussed in detail in Boas (2006, 3.5).

Definition 3.1 (Linear Function or Linear Operator) A function, or operator, f is linear if

f(@1+x2) = fz1) + f(22) and f(az) = af(z), (3.7)
for any constant a and any pair of arguments x1 and 3.

Definition 3.2 (Linear Equation) A linear equation is one consisting only of linear functions.

Consider two points on the line, y; = mz1 +b and yo = mxa+b. Since m(x; +x2) +b = y1 +y2 — b,
instead of y; + 2, this equation is not a linear one—at least when we take « and y as the only inputs
and keep m and b fixed. The right hand side of this equation is an affine function, which would
be linear if b = 0. To put it another way, linear functions can only be graphed as lines that pass
through the origin. Ordinarily, it is easy to redefine the origin to make the function and equation
linear.

Furthermore, we will often use the same definition of linear equation to describe differential
equations—equations that involve derivatives in some of the terms. The operation of taking a
derivative or integrating a function is linear (try it yourself and see!), so we can still use the defini-
tion of linear operators 3.1 and equations 3.2. However, the solutions to such equations are often
not straight lines! Instead, they are commonly exponentials, logarithms, and power series.

3.3 Arrays, Vectors, Matrices, & Things in MATLAB

Reading: Boas (2006, 3.6, 3.7)

So far, we have considered linear equations with only one unknown. Linear algebra is a set of tools
that generalizes the solution methods for the simple linear equation

axr =b (3.8)
to the matrix equation
Ax =b. (3.9)

Linear algebra is the study of linear functions, linear equations, their solutions, and the algebraic
objects that help in finding these solutions: matrices and vectors.

In the homework for Boas (2006, 2.2), you will have opportunities to remind yourself how to solve
sets of linear equations. The primary tool for solving them is adding and subtracting one equation
from another and multiplying every term in an equation by a constant. An alternative to this
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approach is also given in Boas (2006, 2.2), which is to express the system as a matrix equation.
For example, the system of equations

ar + by = e, (3.10)
cr +dy = f, (3.11)
can be written as a matrix equation:
a b x e
or simply
Ax = Db, (3.13)
where the coefficient matrix is A,
| a b
The vector of unknowns is x,
x
X = . 3.15
H (313

And the source vector is b,

bz[f]. (3.16)

Matrix algebra is a bit tricky, and involves patterns that are unfamiliar to the uninitiated. In
particular, matrix multiplication is very different from ordinary multiplication—indeed, AB # BA!
Boas (2006, 3.2, 3.3, 3.4, 3.6, 3.7) are an excellent tutorial and workout on these manipulations,
and we will work through many examples in class.

The symmetries of matrices are often useful in simplifying calculations, and certain types of matrices
are associated with certain types of physical phenomena. For example, symmetric matrices, where
the transpose of the matrix is equal to the matrix, are very common in geophysics. Stress, diffusion,
and viscosity are all associated with symmetric matrices. In our example, the matrix is symmetric
if b = c¢. It is antisymmetric if it is equal to minus its transpose, which occurs here when b =
—c,a = d = 0. Matrices involving complex entries are also possible, and often the combination
of taking the complex conjugate (of each matrix component) and transpose occurs in place of the
transpose for categorizing complex matrices.

In this specific example, the matrix is square, and so we are most interested in the inverse of the
matrix (if it exists), which allows us to solve for the unknowns in terms of the source.

! d b ] . (3.17)

ad — cb

x=A"'b, A7l =

—C a
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We might also be interested in eigenvalues (\;) and eigenvectors (v;) of a square matrix, which are
special in that when the matrix acts on an eigenvector or a vector proportional to one, it behaves
as though the matrix multiplication was just multiplication by a scalar (the eigenvalue). There are
only a limited number of eigenvector directions and eigenvalues, less than or equal to the number
of dimensions of

Av = )\v, (3.18)
1 a—d—q
A= 3 (a+d—q), v = 210 , (3.19)
1 a—d+q
Ao = B (a+d+q), vy = 210 , (3.20)
q=+/(a—d)?+ 4bc (3.21)

As you can see, it would be easy to imagine that the eigenvalues and eigenvectors would be imaginary
or complex. One useful result is that they are not for symmetric matrices. Can you see why?

Once we have the eigenvectors and eigenvalues, we can write the matrix as a product of matrices,
where one of them is diagonal.

A=VAV L VTIAV = A (3.22)

Here V is a matrix where each column has the same components as an eigenvector, and A is a
diagonal matrix whose elements are the eigenvalues. For the 2 x 2 example,

a—d—q a—d+q . —c a—QcH—q
V= 210 216 ) v = g dfa(,1+q ’ (323)
q 2q
1
s5(a+d—q) 0
A= |2l : 3.24
0 % (a+d+q) (3.24)

This is called diagonalizing the matrix A or transforming to the eigenvector basis (when the eigen-
vectors v are rescaled to have unit length).

You may be aware that the numerical and scientific computing program MATLAB was built to
exploit linear algebra to “speed the pace of discovery” as their slogan goes. Using MATLAB is,
indeed, a brilliant way to get faster at solving matrix equations, inverting matrices, calculating
determinants, etc. Mary Boas, on the other hand, seems quite skeptical of electronic computing
instead of pencil-based computation. Expansion in minors, cofactors, and other algorithms make
up much of her linear algebra chapter. I personally think this is like long division—most people
don’t remember how to do it and even if you did you’d still use a calculator or computer for any
nontrivial problem. And, for small problems in linear algebra, learning the algorithm is often just
as hard as memorizing the result. So, without further ado, here are the determinants, general
solutions, and eigenvector/eigenvalue sets for 1 x 1 and 2 x 2 problems. For 3 x 3 problems, a few
items are left out because they are messy.
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3.3.1 1x1
1
ax = b, la| = a, x = [} b. (3.25)
a
A=a,v=1[1]. (3.26)
3.3.2 2x2
a b x| | f
a b
e 4= ad — cb, (3.28)

M

a+d—\/(a—d)2+4bc), vy = [ad v (gc—d)2+4bc ], (3.30)

>~
=

Il
N =
/N

Ay =

(a+d+ \/(a—d)2—|—4bc), vy = [“_CH V(gc_d)2+4bc ] . (3.31)

3.3.3 3x3
a1 a2 ai3 1 b1
agr  az a3 Ty | = | be |, (3.32)
az1 azz2 as3 x3 bs

a1l a2 ais
a1 Qg2 G23 | = (11022033 + 012023031 + 021032013 — 413022031 — G12021033 — 423032011,
az1 asz2 as3

(3.33)
a22a33 — A230A32 A13A32 — A12A33 12023 — A13022 b1
a23a31 — A210a33 A114a33 — A134A31 13021 — 11423 ba
1 (21032 — (22031 Q12031 — Q11032 G11022 — G12021 b3
xTo = = . (334)
T3 11022033 + @12023a31 + 21032013 — 13022031 — A12021033 — 423032011

3.4 Vectors—Variables and Forcing

The unknowns x and the forcing b in the preceding section are both wectors. In the context of
linear algebra, a vector is just a list of items that can be operated on by matrices, or equivalently
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the input or output of a linear function. In terms of matrix algebra, you can just treat a vector as a
single row or a single column matrix, but there is more to them than just that, because a collection
of vectors defines a basis of possible inputs and outputs of matrices.

A vector has a dimension, which is how many components it has. As you have probably learned,
a vector also can be thought of as having a direction and a magnitude. Imagine multiplying one
vector by a scalar, you can make it longer, shorter, or zero; you can even make it point backward
by multiplying it by a negative scalar. In this sense a vector defines not just a single magnitude
and direction, but it can—together with multiplication by a scalar-be taken to span a whole range
of vectors that all share the same direction.

Now consider taking two vectors, and seeing what space they span. If they share the same direction,
then any comination of them span just the same one-dimensional space that either one of them at a
time would. We may say that they are parallel, or anti-parallel, or linearly dependent, and we know
that the following is true u-v = £|ul|v|. If this is not true, i.e., if the two vectors point in different
directions, then there is a whole two-dimensional surface of vectors that can be formed from their
combination together with two scalars, au + bv. Continuing to add more vectors, you can fill up
the whole space of possibilities (i.e., the space that has as many dimensions as the vectors has
components). In this case, the span of the set of vectors is the whole space. Adding more vectors
will only result in ones that are linearly dependent on the others. When a set of vectors spans the
whole space, you could use them as a basis set, since every vector in the space can be formed by a
combination of these vectors.

However, we often like our basis sets to be as simple as possible. That is, it is most useful when they
have unit length (i.e., they are normalized) and are orthogonal to one another (i.e., u-v = 0). When
they are both, they are orthonormal. In this case, you don’t get confused about which combination
of vectors is which—you can just assign every component of a vector to one of the orthonormal basis
vectors. In fact, that’s the essence of how we write vectors as components!

v=(WV-Xv-y,v-Z)=(v- X)X+ (v-§)¥y + (v -2)z.

3.5 Superpositions

Solutions to linear equations can be added together to form more solutions to linear equations, for
example

Ax; = by, Axy = bo, A(Xl + Xz) = by + bo. (335)

We have been associating b with the source or forcing that results in x. The fact that the matrix
operations are linear means that we can add these two solutions together and get another which is
the response to the combined forcing by 4+ bo. This process is called superposition of the solutions,
and it is useful both for considering the combined effects of two forcings and the kinds of solutions
allowed by free modes (for which b = 0).

If you think about it a bit, you will see that superpositions and the spaces spanned by input and
output vectors are closely related! If you have forcings spanning a space, what possibilities are
there for the size of the space of the unknowns? It turns out that the key question is what the
rank of the matrix A is. A full-rank matrix has every row and every column linearly independent
from one another. In this case, the size (i.e., number of dimensions) in the forcing space is equal
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to the size of the space spanned by the unknowns. If the matrix is not full rank (i.e., some rows or
columns are linear combinations of the others, or the matrix is rectangular and not square), then
other possibilities arise.

3.6 Counting Infinity—Under- and Overdetermination

Reading: Boas (2006, 3.8)

Like polynomials, which have as many (possibly degenerate) roots as the order of the polynomial
if complex solutions are allowed, linear solutions also have typical numbers of solutions.

If there are as many unknowns as equations, and none of the equations are repeated or linearly
dependent (basically, just repeated combinations of the other equations), and all of the variables
actually appear in the equations, then there is one solution of a specified magnitude (i.e., all
variables are determined). In matrix language, if the coefficient matrix is square and nonsingular
(the determinant is not zero), then there is a unique solution for x for a given b. I call this situation
just-determined.

However, if the matrix A is singular (determinant is zero), then either a) one of the equations is
redundant or linearly dependent on the others (that is, one row can be reduced to all zeros by row
reduction) or b) one of the variables is actually not constrained by the problem (one column can
be reduced to all zeros by row operations). We then say the matrix is not of full rank. In this
case, the matrix equation is not really one for a square matrix, and a row or a column doesn’t do
anything, and one of the cases below is the equivalent.

In the case where there are more unknowns that equations (or the matrix is not of full rank), there
will be a combination of the unknowns that is not constrained. So, it can take on any value, and
there are an infinite number of solutions. The dimension of the infinite set is governed by how
many extra unknowns there are (or how much less than the size of the matrix is the rank). The
infinite set is said to “span” a subspace of the given dimension, called the nullspace or kernel of
the matrix. For any vector in the nullspace v, Av = 0. It’s clear from this relation, that adding
any amount of v to a solution x won’t affect Ax = A(x+ av) = b. This result is why there are an
infinite number of solutions based on how much v you add.

Inferences from many geophysical problems are underdetermined, because it is impossible to mea-
sure everything over a broad area of the Earth (especially so underground or underwater). Inverse
methods are linear algebra methods for finding the possible solutions consistent with a set of ob-
servations that underdetermine the whole problem.

In the case where there are more equations than unknowns, the system is overdetermined. Boas
(2006) discounts this case as being unrealistic, but in fact it is very common in geophysics where data
tends to be noisy. Thus, we repeatedly measure the same thing imperfectly, and so find multiple
equations with no solution that solves them all. This is when solution optimization or regression
methods, such as least-squares, are used to help sort the signal from the noise. We will return
to this topic later when we study statistics. Due to the power of matrix algebra, mathematically
similar inverse methods can be applied to over- and under-determined problems.

An easy way to approach over-determined and under-determined systems is the Singular Value
Decomposition (SVD). This approach shares many similarities to the eigenvectors and eigenvalues,
but there is a right vector and a left vector and they are different sizes. In this method
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3.6.1 From Triviality to Infinity: Cramer’s Rule and Free Modes

Reading: Boas (2006, 3.3, 3.8) Cramer’s rule is a technique to find a solution, based on the evalu-
ation of determinants of the matrices and specialized submatrices that constitute an equation set.
In the simplest, 2 x 2 case, it is just a rewriting of (3.29) in terms of determinants.

[ﬂl[d _b”” (3.36)

b
d

The 3 x 3 version is a more complicated algorithm, because the entries inside of the matrix depend on
taking other determinants. Yet, note that the solution given in 3.34 is likewise inversely proportional
to the determinant of the coefficient matrix. Thus, if the coefficient matriz has a determinant of
zero, then Cramer’s rule doesn’t apply and there is no direct solution!

Given the typical desire to find a solution mathematically, you might suspect that just-determined
systems where the determinant is nonzero would be the rule and the most interesting cases to study.
However, singular matrices and linear equations are common and interesting in interpretation of
under-determined and over-determined (but noisy) observations and in small perturbation theory.
Cramer’s rule gives the one solution for just-determined problems. Exercise 3.5 is an example of
what occurs when Cramer’s rule fails for singular matrices.

Let’s schematically examine such a problem. Suppose we have our usual system of equations, but
suppose it is homogeneous, which means that the sources are all zero. To put it another way, every
term in the equations is proportional to at least one unknown. Then the matrix equation is

x = 0. (3.37)
If we can invert A, then we get the trivial solution of every variable equals zero.
x=A"'0=0. (3.38)

However, if we fail to be able to invert A, then there may be nontrivial (i.e., nonzero) solutions to
this equation set. The common way for the inversion to fail is if the determinant is equal to zero. So,
we can use this information to make a different statement. If |A| = 0, then nontrivial solutions may
exist to the equation Ax = 0. It turns out that identifying wave solutions in linear systems always
follows this pattern; waves are the nontrivial solutions that occur when the coefficient matrix of
the wave equations obeys |A| = 0. In this case, a singular determinant allows free (unconstrained)
modes of the system, that arise to exploit and fill the nullspace.

3.7 Vector Bases

Reading: Boas (2006, 3.3, 3.8) As you may have inferred from the discussion of nullspaces, there is
an intimate connection between our conception of space and our use of vectors. We can, for example,
choose vectors that are not aligned and consider the space spanned by all linear combinations of
them. One vector spans a one-dimensional line, two a plane, three a 3d space, etc. We will soon see
how such a system is used in geophysics to describe positions, velocities, forces, and accelerations
on Earth (vector and tensor analysis).
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Describing such a space is most easily done when we choose a set of basis vectors, which are
normalized (unit length) and orthogonal (when they are all dotted into each other, except when
dotted with themself).

3.8 Eigenproblems and EOF's

One of the most important conceptual topics from this course is the idea of eigenvectors and
eigenvalues.? In matrix algebra, a square matrix M typically has as many eigenvectors as its size.
Each eigenvector v; satisfies the equation

MVZ‘ = )\Z‘VZ‘7 (339)

where J\; is the (scalar) eigenvalue for that particular eigenvector. We can make an equation for
the eigenvalue pretty easily, by introducing the identity matrix I.

MVZ' = >\iIVz‘7 (3.40)
(M- \I)v; =0. (3.41)

For the last equation to be true with a nontrivial v;, Cramer’s rule tells us that the determinant of
M — )\, I must be zero. Calculating the polynomial of the determinant and setting it to zero provides
an equation whose order is the number of columns or rows of M—and which therefore has this same
number of (possibly complex) roots. These roots are the eigenvalues. Once you have the list of
eigenvalues, you can solve (3.40) for the eigenvectors, which can be rescaled into an orthonormal
basis of orthogonal vectors of length 1.

Consider how peculiar (3.40) is, based on your experiences in the homework problems multiplying
matrices and vectors. How odd it would be to multiply a vector times a matrix and receive back
the same vector multiplied by a scalar! But in a deep sense, this is fundamental to the way that
square matrices work. They are a linear operation mapping from the space of vectors of a given
size back to vectors of the same size. Apparently, some vectors are special for each matrix, and
upon them the matrix acts only as a simple scalar multiplier.

We have seen one special kind of eigenvector already, although without acknowledging it. Vectors
that lie in the nullspace of a matrix are eigenvectors with eigenvalue A = 0. To see this, compare
(3.40) with the definition of a vector v lying the nullspace of M: Mv = 0.

In fact, the eigenvectors and eigenvalues are so intricately related to a given matrix that you can
reconstruct the matrix from the eigenvectors and eigenvalues. This process is related to diagonal-
izing the matrix, since a key matrix in the process is the similar diagonal. If we collect all of the
eigenvectors—scaled to have length 1-as columns of a matrix C, then when it is left-multiplied by
M, we find each column obeys (3.40), and

A 000
0 X 0 ...
MC=C| o o A (3.42)

2FEigen is a German adjective that roughly translates to proper or characteristic. Some books prefer characteristic
to eigen, but I do not, since characteristic applies to many things in English whereas eigen seems to be used only
with this particular meaning.
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This can be understood in a number of ways. The diagonalization approach considers C as a
rotation operation which transforms the matrix M into a different coordinate system where it is
diagonal:

c'MC =D. (3.43)

The other form of this equation that is useful is the one where M is constructed from the eigenvalues
and eigenvectors. It is

M = CDC™ . (3.44)

Thus, there is nothing about M that is unknown when all of the eigenvectors and eigenvalues are
known.

One last consideration about (3.44) worth mentioning is the determinant. In Boas (2006, 3.9)
it is shown that the determinant of the matrix product of square matrices is the product of the
determinants. Since C is a matrix formed of orthonormal vectors, its determinant is 1 or —1, and
thus the determinant of C~! will be the inverse: 1/1 or —1/1, respectively. Thus, (3.44) implies
that M and D have the same determinant. Since D is diagonal, its determinant is just the product
of the diagonal values. The important result, then, is that the determinant of square matrices is
the product of the eigenvalues.

3.8.1 Singular Vectors, Empirical Orthogonal Functions, and Principal Com-
ponent Analysis

Sometimes, when addressing under- or over-determined problems, we would like to take advantage
of something similar to eigenvectors and eigenvalues. First, let’s consider how we might form a
square matrix (M) related to a non-square one (IN). Well, NNT is square, as is NTN, but they
are not the same matrix (think about the size of each). But, we could form the eigenvectors and
eigenvalues of NINT and NTN and think about what they mean.

This idea is the basis of Singular Vector Decomposition (or SVD). The eigenvectors of NNT and
NTN can be used to deconstruct N into

N = USVT, (3.45)

where S is a diagonal matrix with the singular values on the diagonal, the columns of U and the
columns of V are called the left-singular vectors and right-singular vectors of N, respectively. Like
the eigenvector matrix, U and V are both unitary matrices so their columns (the singular vectors)
are an orthonormal set of vectors.

Consider NNT and NTIN. Since both product involve UUT =1 or VVT = I, the singular value
decomposition times its transpose collapses into the eigenvector/eigenvalue equation (3.44), with
S? = D. Thus, the singular values are the square roots of the eigenvalues of NNT or NTN, and
the singular vectors are the eigenvectors of one or the other as well.

One application of singular value decompositions deserves special mention here, because of its
importance in geophysics. The determination of Empirical Orthogonal Functions, also known as
Principal Component Analysis, is a popular way to compress large datasets and draw attention to
certain types of variability.
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Suppose N is an (N, N,) x N; matrix of a variable interpolated onto a uniform grid at a series of
snapshot times. Thus, a column of N contains all (N,N,) of the grid points at a given time, and a
row of N every value at a given location in each of the NV, snapshots. Then the EOFs are the left
singular vectors of N ( rearranged onto the spatial grid).

N =USVT, (3.46)

One of the matrices U and V is square of size min(N,N,, N;)?, and the other will be rectangular
of size max(Ny Ny, Ni) x min(Ny Ny, Ny).

EOF analysis is valuable because it provides the most efficient approximation to the matrix N,

K
Ni; ~ > UpSu Vi, (3.47)
k=1

where only the singular vectors (columns of U and V) corresponding to the the K largest singular
values are used. Since these are the most important singular values, these are also the most
important singular vectors. Thus, the most important spatial patterns of variability, and their
variability in time is captured quickly and efficiently by EOF analysis. A little care is needed in
interpreting these empirical modes as dynamical modes (which might be the eigenvectors of the
governing system of equations), because the empirical modes are generated from only one realization
of the data not the principles that really govern the system.

The EOFs may be equivalently defined as the orthogonal spatial basis functions which, when the
variability is projected onto them, maximize the amount of covariance explained. In this framework,
the reduction of the basis is called the Karhunen-Loeve decomposition. However, the relationship
between the eigenvectors/values and the singular vectors/values means that these two definitions
are equivalent.

3.9 Special Matrices

Reading: Boas (2006, 3.9)

While I will not detail them here, the special matrices and operations in Boas (2006, 3.9) are
important for you to be familiar with for building on later.

3.10 Logarithms Make Multiplication into Addition and Power
Laws into Linear Systems—LogLog Plotting

Back in the days of sliderules, everyone had lots of intuition about how logarithms work. Sliderules
are marked in logarithmic distances, which is why they work! Now that we use computers, we are
not as familiar with them.

Consider the following derivatives, which you may recall results in formulae involving the “natural
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logarithm” In,

d 1
iy | —— 4
—In(z) = —, (3.48)
d
—2% =2%In(2 3.49
— n(2), (3.49)
d
—10% = 107 In(10). (3.50)

dx

That differentiation rule is easy to apply, but there is a special case to consider. Note that In2 ~
0.6931 < 1 and In 10 ~ 2.302 > 1. So, the natural logarithm of big numbers is greater than one and
the natural logarithm of little numbers is smaller than one. Which leads us to the magic number
e =~ 2.718, the Euler number. It’s the breakpoint in natural logarithm between little and big, for
which Ine = 1. This implies the critically important rule about e®, which is that it is equal to its
derivative.

However, logarithms are still extremely useful, especially when combined with the tools of linear
algebra. For example, suppose we measure a physical quantity that is the product of three factors,
each with a different power:

f(A,B,C) = A*B°C*. (3.53)

Inverting for A, B, C' from measurements of f seems difficult. However, suppose we take the loga-
rithm of this equation first, and use the rules that govern them? Then,

In f(A,B,C) =In <A“BbCC> = aln(A) + bln (B) + cln (C). (3.54)

Thus, if we first take the logarithm, we arrive at a linear problem instead of a complicated nonlinear
one! Futhermore, there was nothing special about using the natural logarithm, log, or log,, would
have worked in just the same way. In the next chapter, we will exploit this conversion from products
of powers to linear functions to derive a deep and useful theorem about dimensional analysis.

Relatedly, when plotting linear or nearly so functions, it is a good idea to use carefully chosen
ranges for the axes to show the features one desires. However, when plotting functions that are
exponential or products of powers of the independent variables, it is a good idea to use semi-log
or log-log plots (or log paper if you're doing it old school). On semi-log plots (where one axis has
each power of ten at equal distance), exponentials come out as linear, as

y = A10™* will appear as 3y’ = ma’ + logy, A. (3.55)
On log-log plots, you get the same result as if you take the logarithm of both sides of the equation,
so as in (3.54), power law relationships are converted to straight lines. That is, by stretching the
coordinates on each axis, it has the same effect as plotting ' = log, 0(y), 2’ = log; 0(z) on linear

coordinates.
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3.11 Derivatives are Linear—Intro. to Diff. Eq.

Many of the equations of geophysics are differential equations, which relate the rate of change in
space or time of variables to combinations of the variables themselves. One reason why linear
algebra is so important is that differential equations are often linear equations, as differentiation
and integration are linear operations.

Thus, in many ways linear differential equations can be treated with similar concepts as in linear
algebra. We can think of functions spanning parts of function space, as functions being linearly
dependent (e.g., sint,cost and 10sint + 20 cost) and functions being linearly independent (sint
and cost). A key tool in this translation is the Wronskian, which is a matrix of functions defined
on a set of functions fi(z), fa(z),..., fn(n) as

f}(w) fg(w) e f7(n)
@) @) o M)

The eigenvalues of the Wronskian help describe the space spanned by these functions and their
derivatives. The determinant of the Wronskian will reveal linear independence, dependence, and
whether a set of functions and their derivatives can be used a basis of dimension n.

3.12 Example Problems

3.12.1 Manipulation

Example 3.1 (Solving Equations) Problems 3.2.3 and 3.2.5 of Boas (2006). For these, write
the equation set as a matriz and row reduce. Determine the solutions, or if there are no solutions
or an infinite set of solutions.

3.2.3:

r—2y=—13
—4dx +y =17

1 -2 -13 N 1 -2 -13 . 1 2 —-13 . 10 -3
-4 1 17 0 -7 =35 01 5 01 5
Unique solution of x = =3,y = 5. 3.2.5:

204y —2z=2
4o + 2y — 22 =3

2 1 -1 2 . 2 1 -1 2
4 2 -2 3 00 0 -1
No solutions—inconsistent equations.
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Example 3.2 (Cramer’s Rule) Problems 3.53.16 of Boas (2006).

The equation set is

A -B =-1
ikA —KB =ik.

Cramer’s rule gives

-1 -1
P e B S
Sy 1| K4k
ik —-K
A2 = K+ik [ K+ik " K+ik K—ik K*4+k
- —K+ik |[-K+ik| —K+ik—-K—ik K24k

Example 3.3 Problem 3.4.3 of Boas (2006). Prove that the diagonals of a parallelogram bisect
each other.

3.4.3: Prove that the diagonals of a parallelogram bisect each other. Proof: Denote the vectors

B b 7
/ X’
a a
A D

Figure 3.3: Diagram to 3.4.3 of Boas (2006).

C

b

by the order from which the go from a vertex to another, e.g., AB goes from point A to point B,
then

AX + XB=AB=DC = DX + XC.

The central equality is by noting that those vectors are equal in magnitude and direction (although
we draw them originating from different points), the others result from vector addition rules. Now,
rearrange the equation,

AX - XC=DX — XB.

The two vectors on the left side of the equation point in one direction, while those on the right side
point in a different direction. Thus, the only way this equality can hold is if both sides are zero,
thus

AX =XC, DX=XB.
Quod erat demonstrandum.

Example 3.4 (Eigenproblems) Problem 3.11.12 of Boas (2006).
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44 3.13. HOMEWORK PROBLEMS

We could use the formulas for the 2 x 2 eigenproblem in (3.30). However, the related homework
exercise requires you to perform the evaluation algorithm on a 3 x 3 problem, so the general
algorithm will be exemplified here instead. 3.11.12:

1 3
[2 2]V)\v,

1—A 3

o o o _ _\2 _ _ _
s [ FAENE=N-6=N =3 —d=0,

which is solved by factoring or using the quadratic equation to yield two solutions.

Ar=-—1 Ao =4,

1 3 1 3
[22]V 1v, [2 2]v—4v,
Vg + Uy = —y, Vg + vy = 4y,
2vg + 2vy = —vy, 2vg + 2vy = 4vy,
Vi = (3, *2), Vo = (1, 1)

3.13 Homework Problems

3.13.1 Manipulation

Exercise 3.1 (Solving Equations) Problems 3.2.7 and 3.2.9 of Boas (2006). For these, write
the equation set as a matriz and row reduce. Determine the solutions, or if there are no solutions
or an infinite set of solutions.

Exercise 3.2 (Matrices) Problem 3.4.1 of Boas (2006).
Exercise 3.3 (Vectors) Problems 3.4.9, 3.4.12, 3.4.15 of Boas (20006).
Exercise 3.4 (Eigenproblems) Problems 3.11.15 of Boas (2006).

3.13.2 Application

Exercise 3.5 (Nontrivial Cramer’s) In Pedlosky (1987), Cramer’s rule is repeated used to de-
termine the dispersion relation for waves and instabilities that solve complex linear systems of
equations. One example is the derivation of Kelvin and Poincaré waves in a channel (x is along-
channel distance and y is the cross-channel distance, and L is the channel width). The waves (in
displacement of the ocean surface, or n) are assumed to have the form

n = Re(Acosay + Bsinay) e*r=o) (3.57)

The parameter k is the wavenumber in x, o is the frequency, and « is the wavenumber in y. A
and B are amplitudes. In the derivation, the wave equations were used to show that must o depend
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on other parameters (Cy, a typical wave speed and f, the Coriolis parameter) in the following way:
a? = UQC;QJCQ — k2. The remaining equations (the boundary conditions at the walls of the channel)

0
were boiled down to the following linear equations on A and B.

k
ad +‘%B 0, (3.58)
k k
acosal + Ik sinal|A + Ik cosal —asinal| B = 0. (3.59)
o o

Using Cramer’s rule, prove that: a) If the determinant of the coefficients of A and B doesn’t vanish,
then the only solution is A =0, B =0. b) That a nontrivial solution is possible if the determinant
vanishes, and show that a vanishing determinant is equivalent to the condition (called the dispersion
relation which is used to solve for frequency given wavenumber or vice versa):

(02 — f2)(0® — C2k?)sinaL = 0. (3.60)

Finally, c) the equations for A and B are linear, but the dispersion relation between o and k is
not. Which operation in the use of Cramer’s rule will virtually guarantee nonlinear polynomials?
(Hint: the order of the polynomials will be closely related to the number of columns or rows in the
coefficient matriz)

3.13.3 Scheming Schematics and Articulate Analysis

Exercise 3.6 (Linear Independence) Problem 3.8.8 Boas (2006). Show that sinx and cosz
are linearly independent. To do so, evaluate the Wronskian (the matrixz of functions and their
derivatives), and show that it’s determinant is not zero.

Exercise 3.7 (Special Operations) Problem 3.9.3 Boas (2006).
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3.13. HOMEWORK PROBLEMS
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Chapter 4

Dimensional Analysis

4.1 Introduction—As a Rule, You Need a Ruler

Unlike mathematics, science is grounded in observations. Observations are taken with reference to
scale, and in some cases those references can be fundamental (e.g., the speed of light in a vacuum)
or conventional (Systéme International d’Unités) or convenient (whatever stick or piece of string
comes to hand) or based on the problem (the depth of a relevant body of water). Since these scales
are totally chosen by us, no physical law can depend on the choice, since another scientist might
have measured exactly the same objects with a different choice of ruler-same phenomenon, same
physics, different numbers to measure it.

Dimensional analysis is a formal way of handling these issues, and varies in utility depending on
the experiment. Sometimes, it is only a useful way to double-check your calculations. Sometimes,
it helps avoid repeating experiments that are not fundamentally different from one another. Some-
times it can reveal underlying aspects of a problem that can be used to develop surprising scaling
laws. Always it is useful to help in designing experiments.

4.1.1 Dimensional and Dimensionless

Since measurements are taken with reference to a particular scale, they are typically dimensional
quantities. Depending on what is being measured the units will vary. Units, such as meters,
furlongs, astronomical units, etc., are conventional. Dimensions, such as length, time, temperature,
can be measured with a variety of units, but every term in an equation must have the same
dimensions. Physical constants or processes are the only way to relate among different dimensions.
Thus, it is fair to compare apples to apples, or a dozen apples to an apple, but not apples to
oranges (unless you first convert them into a common currency, e.g., price in $). It is generally a
good idea to keep all of the units the same for a particular dimension, i.e., always use meters or
feet to measure length. If you mix up feet, inches, meters, centimeters, you will have to convert
often.!

The common system of units for science is the SI (Systéme International d’Unités), whose consis-
tency and wide acceptance has led to its use being required by many scientific journals. In the SI,

'Or else: http://mars. jpl.nasa.gov/msp98/news/mco990930. html
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there are seven base units for seven dimensions:
1. Meters (m) measure distance, L.
2. Seconds (s) measure time, T
3. Kilograms (kg) measure mass, M.
4. Kelvin (K) measure temperature, 6.
5. Moles (mol) measure quantity, N.
6. Amperes (A) measure electric current, I.
7. Candelas (cd) measure luminous intensity, I,

The most commonly encountered in geophysics are the first 5. All other units accepted in SI are
either derived from these quantities (such as the Newton, 1N = 1kgms™2, which measures force
and the Pascal for pressure or stress: 1 Pa = 1Nm~2 = 1kgs~2m™1!), or are measurable meaningful
quantities (a day, a year, an astronomical unit)

You can write equations whose units do not match, but whose dimensions do, for example,
100cm = 1m. (4.1)

You cannot meaningfully write equations whose dimensions do not match, such as 1m = 4.3d.?
Once you have written an equation such as (4.1), you can rearrange it into a fancy way for writing
L,

1 1m
~ 100cm’

(4.2)

In this form, it is extremely useful, as you can multiply anything in an equation with units of
centimeters with this number and arrive at meters—it is the conversion factor. For example,

1m
15.2cm = 15.2 cr—— > — 0.152m.
o 100 cat m

Many others exist, and it is useful to think of them all as writing fancy versions of 1.

If the units can’t control the physics, then what can? Dimensionless ratios that compare the amount
of different physical effects. For example, we might wish to compare the rate at which momentum
is delivered to a location by incoming fluid to the rate at which it is dissipated by viscosity at that
point. Both effects are part of the momentum equation, and their ratio is the Reynolds number.
Some common dimensionless parameters are given in the following table.

20ne must be careful at the extremes, however. It was once thought that neither mass nor energy could be
destroyed. We now know they can be converted from one to another in nuclear and other high-energy reactions.
Furthermore, length and time are related at relativistic speeds (the speed of light is not just an ordinary speed, it
actually converts space to time). Einstein was smart enough to break the rules and still be right, but even E = mc? is
dimensionally consistent! Einstein (1956) describes what a powerful motivator the apparent dimensional coincidence
of inertial mass equalling gravitational mass was; hence general relativity.
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Name Definition Description

Reynolds (Re) UL Inertia to Friction

Rossby (Ro) f% Inertia to Coriolis

Froude (Fr) % Velocity to Wave Speed

Mach (Ma) g Velocity to Sound Speed
Strouhal (St) % Oscillation to Velocity

Prandtl (Pr) z Viscosity to Diffusivity
Richardson (Ri) % Stratification to Shear

Ekman (Ek) Iz = % Viscosity to Coriolis

Grashof (Gr) 992‘; ﬁs Convection to Viscous
Rayleigh (Ra) GrPr Conduction versus Convection (Diffusivity)

Euler (Eu) pAsz Pressure Change versus Kinetic Energy

The value of the dimensionless parameters quantifies how important each physical effect is. Ideally,
a numerical model or laboratory experiment would duplicate all of the dimensionless parameters of
the real system, this situation is called dynamical similitude. In practice, numerical accuracy and
stability, and the size of the laboratory equipment, as well as the mechanical properties of available
fluids and solids (e.g., viscosity, diffusivity, Lameé parameters), mean that only some dimensionless
parameters can be brought to the same values as the natural system.

Dimensional consistency is the proper handling of dimensions and units in an equation, where
every term has the same dimensions, functions operate only on dimensionless quantities, and all
units are clear.

4.1.2 Scaling Equations

Each term in an equation must have the same dimensions, and the units must be specified. Some
terms scale naturally with one set of units and others with another. Each term will formed from a
product of quantities, each with dimensions and units. It is typically the case that some terms are
important under certain parameter ranges and others under other parameter ranges. For example,
viscosity in a liquid is much more important on small scales than on large scales. How do we
analyze such relationships in a meaningful (and dimensionally consistent) manner?

All physical laws have some of the following fundamental dimensions: mass (M), length (L), time
(T'), temperature (6), electric current (I), and luminous intensity (I,). Units, however, can be
chosen arbitrarily, so long as they are the appropriate dimensions for the scales to be measured.
Every term in an equation must have the same dimensions: we can no more say that length =
time than apples = oranges. A different observer might choose to change the units of length
independently of the units of time, and invalidate the equation. If, on the other hand, we introduce
a particular scale, such as a velocity like the speed of sound ¢, then we can write length = ¢4 X time.
Now both sides of the equation have dimensions of L, and thus each scale for distance is associated
with a timescale (the time it takes sound to travel a distance L).
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4.1.3 A Handy Set: Scaling an O(1) Theory

Consider the £ momentum equation for a rotating, constant density fluid.

2
@%—u@jtv@%— fu :—i@%—l/aig. (4.3)
ot oz oy ~~~ po Oy 0z
~N —,— fU —_—— =
u/T U2/L P/poL  VU/L?

We do not have to understand the equation fully to begin to consider which terms may be important
by considering how large each is likely to be. This is called scaling the terms in the equations, and
it is not meant to solve an equation, merely to identify which terms are most important to measure
accurately and which are likely to be negligible. This equation describes the rate of change of the u
velocity, based on w itself, as well as velocity in the other directions (v, w), the Coriolis parameter
f, the density pg, the pressure p, and the viscosity v. We consider the units to be measured in U for
velocity, T for time, L for length, P for pressure, and we know the dimensions of Coriolis parameter
[f] = 1/T, density [po] = M/L?, and kinematic viscosity [v] = L?/T. Here we use square brackets
to denote the fundamental dimensions of any quantity. Thus, each of the terms has the units of
L/T?, so the equation is dimensionally consistent. If we can estimate some of these parameters,
based on observations or the statement of a particular problem, then we can make progress into
understanding the scales of the terms in this equation.

Let us suppose that we are given estimates of L,U,T ~ L/U. Then, we can divide through by
these common factors to yield:

L [ou 00 o' 1 op 1 0%
L T S = R 4.4
Uz | ot tu ox’ +U8y’ + Ro u@y’ + Re 922 |’ (44)
~ C N——— ——
1 1 Ro~! Eu Ro-1

where we have used the common geophysical dimensionless ratios from the table above, and all
primed variables are the dimensionless versions of the original variables, e.g., ' = x/L,u' = u/U.
Without further information, we don’t know which terms are important, but we have estimates of
U, L, and we know the fluid we are studying so we may have an idea of v as well. The Coriolis
parameter, f, is a function of the length of day and latitude (Exercise 1.5), so that is known. The
Euler number is likely to balance whatever the largest other term in the equation is, so here it is
likely to be O(1). At small scales, such as in the lab, we expect Ro > 1, Re < 1, and Eu ~ Re.?
At large scales, such as those for oceanic and atmospheric motions, we expect Ro < 1, Re > 1,
and Eu ~ Ro~!. Note that as long as Ro and Eu and Re are not equal to zero, we can multiply all
terms in the equations by these factors or their inverses as needed.

However, this approach presumes we already know a lot about the problem and its governing dy-
namics. Many problems are much less well known, and dimensional analysis is even more important
in those cases. Consider the maximum speed of a sailboat of length £. We know the boat makes
waves as it passes, so gravity is likely to be important, so we consider also the gravitational accel-
eration g. The density of the water might be important, so we consider pg. Finally, viscosity may
be important, so we consider v. We are looking for a velocity U, with dimensions of L/T, so let’s
consider the most general product of these factors we can, which we might consider as a term in

3The ~ symbol means that the two quantities are of the same size, or scale together, though they are not necessarily
proportional.
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an equation for U
U o g*pbreed, (4.5)
U] = LM = [g][po] [W]C[L]% = LT 2 MPL 30 L2~ L1, (4.6)
Now, consider the exponents of each dimension. They must be equal on both sides of the equation,
and they form a linear set of equations! So, we can use the tools we found in the last chapter to

analyze how many solutions there are, and what they imply. If we order these conditions by all of
the possible contributions to L, T', and M, respectively,

1 1 -3 2 1 Z
1]=]|-=2 0 -1 0 (4.7)
0 0 =3 0 0 ;

We can immediately see that we have fewer equations than unknowns. In fact, we have as many
equations as we have fundamental dimensions d = 3 and as many unknowns as we have potential
dimensional parameters p = 4. So, we have an underdetermined system and expect at least one
free parameter.

Proceeding toward solving, we see quickly that b = 0, so density cannot play a role in the velocity.
This result is easy to understand, since no other variable has dimensions of mass, so no equation
can be written including pg which would be independent of a choice of units of mass. If we neglect
viscosity, setting ¢ = 0, then there we find a solution, U  ¢'/2¢*/2, or Fr ~ 1, where we recognize
a Froude number formed from the surface wave speed ¢g'/2¢1/2/(2x). If, on the other hand, we
neglect g, setting a = 0, then we find the solution U o v/¢, or Re ~ 1. If we keep them both, then
we arrive at a solution of the form,

U x g"21"?Re™¢, or (4.8)
U o 0™ Fr=/2, (4.9)

That is, we can use one dimensionless ratio to provide the basic scaling, but then we cannot say
how much the other may play a role, since the linear system for the coefficients is underdetermined.
The convenient named dimensionless ratios were singled out here, but any combination or power
of Fr and Re is also dimensionless, so could be used instead (of course the true physical laws would
counter any arbitrary choices in definitions).

Measurements in a wave tank or of boat speeds over a range of realistic Froude and Reynolds
numbers reveal that the speed of a large boat in water is very nearly U = 0.4¢g"/2¢1/2 because the
production of waves by pushing water out of the way of the bow is the key process requiring power
to move the boat. Note that the dimensionless number 0.4 cannot be determined by dimensional
analysis techniques, only by measurements. Note also that the fact that Reynolds number correction
is negligible for large boats in water (rather than smaller boats in a more viscous fluid) cannot be
revealed by dimensional analysis.

4.2 Buckingham Pi

In the preceding problem, we found two dimensionless parameters in a problem with 4 dimensional
parameters p plus r = 1 dimensional results and three fundamental dimensions d. Let’s consider
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a generic formula for a product of parameters, in a generic dimensional equation, then determine
how many dimensionless parameters are possible. We write the generic equation as

Fh=FR+F+... (4.10)

We suppose that solving this equation will deliver r dimensional results (maybe more than one
for generality), involving p dimensional parameters, and d fundamental dimensions. Every term
in the equation will have the same dimensions, which can generically be represented by the d < 7
dimensions that appear [Fy] = T% L% M®*30% N [ [,,%7 (square brackets denote dimensions of a
quantity, not value). It will also have a scale, composed of a combination of the p dimensional
parameters Dy: {Fo} = [[}_; Dp® (curly brackets denote scale of a quantity, not value). We
will suppose that we can always arrange the combination of scales to be a product: if a more
complicated function than a product of scales is needed, then a Taylor series expansion can be used
and the result will still be in the form of (4.10). Likewise, any term in the equation is dimensionally
equivalent with F{, so it can be written as:

N
(Fy={R} ] P (4.11)

i=1

The pi factors P; are dimensionless, so any combination of them retains the dimensional covariance
of the Fj. Dividing through by the scale of Fp, we can make a dimensionless equation

F I £y F
)~ (R} TR {Fg}’ -
- 40 I {Fs}
Fo=F {Fo} + F2 {Fo} FJ {Fo} (413)
N N N
FOZFIHPibﬂ —i—FQHPibi?‘i‘"'_‘_FJHPib”‘ (414)

The tildes denote dimensionless variables. Without a loss of generality one term can always be
made a dimensionless constant, and the rest are dimensionless variables—which each have a scale
given by a product of P; factors (4.11). Each term in this equation is scaled by a potentially
different combination of exponents (different b;; matrix) of the P; factors.

How many different P; factors can there be? Consider the generalized form of (4.7). There will
be d equations involving r results and p parameters. But, which is the solution and which is the
unknown?

It is easier to consider each product in (4.14) or (4.11) as a function of each dimension. Each P,
is composed of the p dimensional parameters and r dimensional results introduced in the problem,
such as pg, g, U, ¢, v above. The d independent dimensions I could be as many as seven, but typical
problems involve fewer. To boil this down to a linear matrix equation, consider the logarithm
of

ptr

ptr d
—O—Zcm In[D;] = > Y " eijdj In[I;]. (4.15)

=1 k=1

which holds for every k from 1 to d (since the units of each dimension are arbitrary) and every
¢ from 1 to N. The matrix ¢;; has as many rows as there are F;, and p + r columns since every
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dimensional parameter and result might appear, so at most there could be p+r linearly independent
rows or p + r independent F; factors. The matrix d;; has p 4 r rows and d columns.

The indicial equation (4.15) is homogeneous (equal to zero), so either the Ij is zero, which is not
meaningful, so the matrix multiplication in Z?i{ cijd i, must equal zero for every P;. Thus, the
n + p possible dimensions must be orthogonal to d constraints, so there are p + r — d independent
combinations of P; factors possible. It is possible that fewer P; will result, if the rows of ¢;; are not
linearly independent. Note that a set is not unique—one can recombine products and powers of P;
factors to make another set of p + r — d for convenience or to produce some of the P; factors as
familiar ones.

What does knowing the number of P; factors tell us about our generic dimensional (4.10) and
dimensionless (4.12) equations? Suppose there is only one dimensionless grouping. Then, (4.14)
can only be:

- {F} -
tant = F1—— = [ P 4.16
constan R} 11, (4.16)
{constant} ~ P;. (4.17)

Thus, the one dimensionless grouping is equal to a dimensionless constant % If one thinks of all
of the possible values of the one grouping as being a line, then the physical result is a point on that
line. Indeed, for the sailboat speed, we found that the Froude number was effectively a constant. If
there are two dimensionless groupings, then one may seek a relationship between them consisting
of some universal function. For three groupings, the function becomes more complex, possibly a
plane of physical values within a 3-dimensional space of all possible values, etc.

Theorem 4.1 (Buckingham Pi) In any physical problem with p dimensional parameters and r
dimensional results and d fundamental dimensions, there will be at most p + r — d independent
dimensionless Pt factors possible

4.3 Homework Problems

4.3.1 Jargon to Argot

Exercise 4.1 What is the difference between a parameter, a unit, and a dimension?

4.3.2 Manipulation

Exercise 4.2 Show that Ro, Re, and Ra are dimensionless by expanding their parameters into
their dimensions.

4.3.3 Application

Exercise 4.3 (From 2.8 of Wilcoz, 1997)
The shape of a hanging drop of liquid satisfies the following empirical equation
_ d3
(pgl)g —0 (4.18)
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Where p, p, are the densities of the drop and air, g is gravitational acceleration, d is drop diameter,
o 1is surface tension (units of Newtons per meter) and C is an empirical constant. What are the
units of C'?

Exercise 4.4 (From 2.36 of Wilcoz, 1997)

Because of a phenomenon called vortex shedding, a flagpole will oscillate at a frequency w when the
wind blows at velocity U. The diameter of the flagpole is D and the kinematic viscosity of air is v.
Using dimensional analysis, develop an equation for w as the product of a quantity independent of
v with the dimensions of w and a function of all relevant dimensionless groupings.

4.3.4 Evaluate & Create

Exercise 4.5 Use dimensional analysis on a problem of interest to your life or research, and
provide at least one relevant dimensionless grouping.
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Chapter 5

Partial Derivatives

5.1 Derivatives Are Linear Operators

Reading: Boas (2006, 4.1, 4.3, 4.5)

We have been learning about linear equations and linear operators, and now we are preparing to
move into differential equations, which involve derivatives as functions within the equations.

Definition 5.1 (ODE) An ordinary differential equation is an equation involving derivatives with
respect to one variable.

Definition 5.2 (PDE) A partial differential equation is an equation involving derivatives with
respect to a number of variables.

Very often, geophysical quantities depend on more that one variable. The most common example is
a field, which is a scalar or a vector that takes on a different value at every point in space and time.
Examples are temperature in the mantle (a scalar field) or velocity in the ocean (a vector field).
We certainly want to know how these variables change from point to point in space and time, so
we’d like to consider their derivatives with respect to directions and time. As they may vary in all
directions, knowing how they vary in one direction only gives us part of the answer. Thus, these
derivatives with respect to one independent variable at a time are called partial derivatives. To
know the total change in a field, we’d need to know how all of the different partial derivatives add

up.

I am assuming that you all recall your basic calculus rules for differentiation. However, we can
prove the linearity of the derivative even without memorized rules.

af(x+h) —af(x) flz+h) - f(x)

d . .
@ @) = Jlim h = a firg h

= a/f/(x)’

and

fl@+h)+9(x+h) - flx) —g(x)

4 [f(:z:) +g(1:)] = lim

dx h—0 h
i [FE R~ 1@ gt h) — o)
h—0 h h
= f'(z) + ¢ (2).
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Some of you may have done many such expansions using the definition of the derivative in your cal-
culus classes. Alternatively, we might have recalled the chain rule for functions of functions,

(f(g(2))" = f'(9(x))g (). (5.1)
The linearity of derivatives is easily shown to be a consequence of the chain rule.

Boas (2006) goes on to point out that we can consider strings of nested functions in this way.

Oy 0Oy Ou dv e
32 = Du 5o D1 if y = u(v(x)).

It is not a great leap to consider a function of two variables, 6(z,y). Suppose, for example, 6
represents the temperature of a volcanic ash ejecta as it flies through the air. Tracking all of the
trajectories, we might make a map of temperature at every point in space (z,y). Alternatively, we
could follow one particular piece of ash as it flies, and seek its temperature as a function of time
6(t). Of course, if we knew the locations as a function of time x(¢),y(¢), then we could use the
O(x,y) function to infer the function #(¢). Now, the idea of partial differentiation allows one to
respect these relationships, so that

do 900 dxz 00 dy

At~ Oz dt ' 9y dt’

do = gz dx + gz dy,
Notice how the partial derivative, such as 9/0x, differs from the total derivative, d/dt, and the
differential df. The total derivative calls into play all of the arguments of the function 6, since 6
depends on these variables, along with partial derivatives with respect to them and then their total
derivative following the chain rule. The differential form is equivalent, but without calling upon
the extra independent variable ¢, which may not be explicitly needed. For example, in the volcanic
ash problem, one might be interested in how temperature changes with x and y without needing
to know the time dependence.

5.2 Multivariate Taylor Series

Reading: Boas (2006, 4.2)

Just as the Taylor series is among the most important kinds of series for applications, the multivari-
ate Taylor series is among the most important uses for partial differentiation. Indeed, it exposes
the fundamental reason why one would want to use partial derivatives, to expose the underlying
dependences of a function on other variables.

5.2.1 Multivariate Taylor Series

The Taylor series for a function depending on a number of variables (x1, g, ..., k) near (a1, ag, ..., a,)
is
00 n
1 0 0 0
f(x1, 22, .. x) :nz:;)n! ([901 — ai] 87:1 + [z2 — as] 87:2 + o (e — ak] 81‘k> flar, a2, ... ag).
(5.2)
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The notation in the preceding is a bit messy. Note that the derivatives inside the parentheses
only act on the function outside, not on the (x; — a;) factors inside the parentheses. Furthermore,
the function outside is written as being evaluated at a1, as,..., but as in the Taylor series, it is
the nth derivative that is evaluated at this location so take the derivative before plugging in the
values.

It is a little bit cleaner if written using the binomial theorem and considering only two variables.
In this case, the expansion can be written as

. A n n!
Since (z + y) :Z <k>x FyF . where <k:> = W(n — k)"

k=0

fa =Y 2 (le=d g+ = 5 ) fa)

R e VA o AP ICRY)
B Z kl(n —k)! dzn—kyk

r=a,y=>b

5.3 Approximations Using Differentials

Reading: Boas (2006, 4.8)

The Taylor series lends itself naturally to truncated series, which are often quite accurate so long
as the series is convergent.

5.3.1 Linear and Near-Linear Taylor Series—Asymptotics

As we now have powerful tools to solve linear systems of equations, it is very tempting to truncate
the Taylor series at the linear order n = 1. However, there are some things to keep in mind in the
multivariate form that did not arise in the univariate form of the series.

1. We discussed how being close to « = a affected the accuracy of the truncated series. In the
multivariate case, the distance involves all of the variables. Thus, care is needed to be sure
that the error in truncating at (z; — a1)’ is not very different from the error in truncating
(x5 — a3)!. If it is, then it may be necessary to go to higher order in some directions so that
the overall error is correctly balanced. That is the accuracy of the truncated multivariate
Taylor series will depend on how far from the estimation point the series is applied, measured
in terms of how wiggly the function is along each independent variable.

2. Instead of finding a tangent line near a point, the truncated multivariate Taylor series will be
a plane or a hyperplane tangent to the function near a point.

3. Perturbation and asymptotic methods to handle multiple variables and multiple parameters
controlling how rapidly the series is likely to converge usually involve assumptions about the
ordering of magnitudes of these variables and parameters. This ordering is an important part
of the resulting approximate series, and different series may result from different orderings.

Similarly, it is easy to understand when a function that depends on only one function reaches
a maximum or a minimum. In multiple variables, it may be a maximum in one variable and a
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mimimum in another (called a saddle point because of the saddle-shaped function nearby). Folds,
multi-valued functions, cusps, and all kinds of other issues arise in understanding the shape of
multivariate nonlinear functions. Interestingly, many of these features arise not only in principle,
but in practice with real systems. We will discuss some of these issues when we discuss chaos and
dynamical systems.

5.3.2 Error Propagation in Products

Logarithms are still extremely useful for error propagation. For example, just as in (3.54) sup-
pose we measure a physical quantity that is the product of three factors, each with a different
power:

f(A,B) = A*B". (5.3)
We take the logarithm of this equation first, and then the find the differential relationship,

df dA dB

This form is extremely useful for error propagation, as the differentials can be interpreted as the
errors in each factor of the product. If the different factors are random, and their differentials
can take on positive or negative values, we might be more interested in the squared value of df,
or

(@) ,(d4)?  ,(dB)* _ dAdB

f2 = Qa A2 + b B2 =+ 2abw (55)
If dA and dB are random and uncorrelated, then the last term will vanish on average, so then we
can write the relationship for the root mean square value of df (here I use angle brackets to denote

averaging),

There is normally a modest numerical difference between (5.4) and (5.6), with the latter being more
accurate. The critical issue, correct in both forms, is that the higher the power of the factor the
greater its contribution to the error.

5.4 Change of Variables

Reading: Boas (2006, 4.11)

The chain rule provides a mechanism for evaluating functions of functions, and one common ap-
plication where functions get stacked in this way is when a change of variables is chosen. Often
the change of variables is for mathematical convenience, which usually reduces the number of steps
in the chain rule. Sometimes, however, the change of variables is to bring the variables closer to
easy measurement or to allow a physical principle to be clear—in this cases the mathematics may
be more difficult.

The D’Alembert solution to the wave equation (Example 1 of section 4.11 of Boas) is an important
concept and mathematical result. We will reuse this and related forms often when we study partial
differential equations.
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5.5 Differentiation of Integrals

Reading: Boas (2006, 4.12) With one variable, the fundamental theorem of calculus states

|5 7] at = s0) = st (5.7

It doesn’t make much sense to consider taking the derivative outside of the integral,

;/:f(t) dt =0, (5.8)

because in evaluating at the bounds v and v the dependence on t is lost. Indefinite integrals can be
differentiated sort of this way, but the effect usually is just to drop the integral and the derivative
(as they invert one another).

However, in multiple variables, it is quite common that the integrand or the bounds of an integral
might depend on another variable. Then, one might consider differentiating with respect to that
variable, which is where the Leibniz formula is useful:

d [v@ B dv du Y Of(x,t)
P f(x,t)dt—f(x,v)dx—f(ac,u)dx—l—/u Tdt. (5.9)

This formula is the first of many generalizations of the fundamental theorem of calculus in multiple
variables that we will find useful.

5.6 Example Problems

5.6.1 Jargon to Argot

Example 5.1 FEzxplain why you think the terms “partial” derivative and “total” derivative apply
as they do.

Partial derivatives describe only part of the change in a dependent variable with respect to a set
of independent variables—in fact just the change associated with one independent variable at a
time. Total derivatives describe the change associated with all of the independent variables in turn.

0? 0?
Example 5.2 Problem 4.1.6 of Boas (2006). If u = e® cosy, prove that 8—3 + 8—3 =0.
€x Y
u = e* cosy,
u = e* cosy, u = —¢e”siny,
i y
(a) 0u . 0u .
a = —e”sin = —e”sin
0x 0y ¥ OyOx Y
0%u 0%u Pu  0%u
(b)@:excosy, a—y?:—excosy%@—&-a?ﬂ:o-
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Example 5.3 Problems 4.2.4 of Boas (2006). Use the multivariate Taylor series to evaluate the
expansion of e*Y.

4.2.4:
flz,y) = e
0e™Y - on ety
= ye™ =0 =y"e™ =0
8(1:' y Y axn y 9
r=y=0 z=y=0 z=y=0 z=y=0
He™y ety
5 = xe™ =0, 3671 =z"e™ =0.
Y r=y=0 rz=y=0 y z=y=0 r=y=0
Therefore, we only need to worry about mixed derivatives.
82 Ty o Ty
€ _ (ye ) = %Y +xyexy _ 1’
oz dy oy
rz=y=0 x=y=0 r=y=0
63 Ty o 269321
¢ = 7@ ) = 2ye™ + xye™? =0,
0x20y Ay
r=y=0 z=y=0 z=y=0
84 Ty 82 Zexy
g = 7@ ) = 2e™ + 2xye™ + 2zye™ 4 2%yPe™ =2.
Ox20y>? Oy?
r=y=0 x=y=0 z=y=0

In fact, we only need to worry about mixed derivatives where the number of z-derivatives equals the
2n

number of y derivatives, or only the even differential orders. The value of the %(%’g) derivative

will be n!l. We can use the factorial form of the binomial coefficient to expand, noting that only

the matched derivatives survive,

flay)=ev=>"

Which is the same form as the expansion for e* with z = xy.

’w 0w
oz oy?
r=u+v, y=u—v, and show that w satisfies % = 1. From this point, the equation is easily
solved by integrating in u and v.

Example 5.4 Problem 4.11.8 of Boas (2006). Suppose that w = f(z,y) satisfies =1 Put
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w = f(z,y),
Pw 0w _q
ox?  Oy? ’
1 1 1
T=Uu+v,Yy=u—vV—U= =T+ =Y, V== — =,

2 2 2 2
8w_8w@ 810@ 1(")711) 1 ow

0r  Oudr 90 dr 20u 200
Oow OJwodu OJwdv 10w 10w

By oudy ooy 200 2007
d*w 8[1811} 18w] ou 8[1311) 18w] ov 10%w 1 d*w 1 9%w

%_18u2+§8u8v+10v2’
0%w 0 [10w 10w]ou 0 [10w 10w]ov 10%°w 1 *w 1 0%w
ayfau[ ]agﬁa[ ]&;:48u2_28uav+48v2’

Pw 0w 0w

922~ 9y dudv

922 oul20u T200|9x Tav 200 T200 | 9x

20u 2 0v

2 0u 2 Ov

1

The last line is easily integrated with respect to u, v to solve the equation.

5.6.2 Scheming Schematics and Articulate Analysis

Example 5.5 Problem 4.8.2 of Boas (2006). Using the two-variable Taylor series [say (2.7)]
prove the following “second derivative tests” for mazximum or minimum points of functions of two
variables. If fr = f, = 0 at (a,b), then (In this problem, all subscripts imply partial derivatives),
(a,b) is a minimum point if at (a,b),fzz > 0, fyy > 0, and fozfyy > fﬁy; (a,b) is a maximum
point if at (a,b),fze <0, fyy <0, and frzfyy > fg%y; (a,b) is neither a mazimum nor a minimum
point if fozfyy < fIZy (Note that this includes fy,fyy < 0, that is, fux and fy, of opposite sign.)
Hint: Let fro = A, foy = B, fyy = C; then the second derivative terms in the Taylor series are
Ah?+2Bhk+ Ck?; this can be written A(h+ Bk/A)?+(C?B%/A)k?. Find out when this expression
is positive for all small h,k [that is, all (x,y) near (a,b)]; also find out when it is negative for all
small h, k, and when it has both positive and negative values for small h, k.

We begin with the Taylor series, and we are at a point with vanishing first derivatives,

82
Y r=a,y=>b y r=a,y=>b

(lo-a? (3], +3l - l- 0 [o5E] _  +3l-al- R[]+

Very near the point, all terms of higher order will typically be negligible in comparison to the
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second-order terms, so

1 62 82 62
fla,y) ~f(a,b) + 5 [z —a]® [%’;] +2[x —a] [y — b] l&rafy] + [y — b [8;;]
r=a,y=>b r=a,y=>b r=a,y=>b

82
If for = larj;] > 0 and fyy > 0, then the first and third terms in the parentheses are
‘ r=a,y=>b

positive definite. Only the middle term might cause the function to decrease. So, we consider the
following:

ey T e . (o Y A S N
[37 a} fx.r+2[$ a} [y b] fxy+[y b} fyy*fmc [«L a]+[y b]f +(fxwfyy fxy) I;

The first term on the right has the same sign as f,,, and the second term has the same sign as f,.
if fozfyy > ffy The three rules for extrema follow directly from this result.

5.7 Homework Problems

5.7.1 Manipulation

Exercise 5.1 Problem 4.1.1 of Boas (2006). If u =
respect to x and y.

find the partial derivatives of u with

I2
22 4y27
Exercise 5.2 Problems 4.2.6 of Boas (2006). Use the multivariate Taylor series to evaluate the
expansion of e 1Y,

Exercise 5.3 Problem 4.4.8 of Boas (20006).
Exercise 5.4 Problem 4.5.1 of Boas (2006).
Exercise 5.5 Problem 4.12.11 of Boas (2006).

5.7.2 Application

Exercise 5.6 (Streamfunction and Velocity Potential) As we come to understand how fluids
move, we will be interested in breaking up the velocity field into a part that results from a convergence
or divergence of flow and a part that results from a swirling or rotating flow. This can be done with
the Helmholtz Decomposition, which we will address in a later chapter on vector analysis. For now,
we’ll just test some examples.

The relationship between velocity (u,v) and streamfunction (1) and velocity potential (¢), in 2D,
18 just

oy 09
_ 0y 09
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Both velocity components, as well as ¢ and ¢ should be interpreted as spatial fields—that is, they
are all functions of x and y and have a value at every point in space.

The Jacobian is a useful function for evaluating the advection by flow due to a streamfunction alone,
which in 2D s just

9A 9A
9 90 | 0A0OB 09A 0B
J(AB)=| 9% 94 |=72°7 _T2C°7 (5.12)

dx  dy

a) If ¢ = 0, show that J (¢, f(z,y)) = u aféf;, v, af((;; y)

b) If A is a function of B, rather than independently varying in x andy, show that J(B, A(B)) = 0.

5.7.3 Evaluate & Create

Exercise 5.7 (The D’Alembert Wave) Problem 4.7.23 of Boas (2006).
0? 0?
If u= f(z —ct) + g(x + ct), show that 87:;; =3 8—;;
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5.7. HOMEWORK PROBLEMS
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Chapter 6

Multivariate Integrals and Change of
Variables

6.1 Integrals Are Linear Operators

Reading: Boas (2006, 5.1)

As with differentiation, it is useful to know that integrals are linear operators (What does this
mean? Can you prove it?). Thus, equations containing integrals can still be handled as we have
been learning to handle linear equations. Concepts such as eigenvalues and eigenvectors continue
to be useful.

6.1.1 Integrals are Antiderivatives

You might have expected that if differentiation was linear, then integration would be linear, too,
since they are each others inverse. The key nugget of calculus that tells us this fact is the funda-
mental theorem of calculus.

Theorem 6.1 Fundamental Theorem of Calculus. If f is a continuous function that is defined
over an interval including a and x, then

Pla) = / "y ae, (6.1)

Then F' is also continuous and differentiable on the same interval, and

Lre =1 | [ 0] = (6.2

Theorem 6.2 Fundamental Theorem of Calculus—Definite Integral Corollary. If %F s a contin-
wous function that is defined over an interval including a and x, then

b d
/a S F(t)dt = F(a) - F(O) (6.3)

This corollary works even if %F(t) is not continuous, but nearly so (e.g., has a finite number of
discontinuities).
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This chapter will be devoted to integrals over multiple variables, e.g., over areas and volumes. It will
take some time before we can build up to the equivalents of the fundamental theorem of calculus in
multiple variables, because we need to know a bit more about vector analysis, but we will get there!
When we do, we will sometimes be able to use integrals to solve equations involving derivatives,
just as we sometimes used the inverse of a matrix to solve linear systems of equations.

0Odd & Even

As we saw from the Taylor series and from sines and cosines, the derivatives of even functions are
odd and derivatives of odd functions are even. As the (indefinite) integral is the antiderivative,
the (indefinite) integral of an even function is odd, and vice versa. Thus, a very useful trick for
thinking about functions that may cancel themselves out when integrated is:

Theorem 6.3 The definite integral of an odd function is zero if the bounds of the integral are
symmetric about zero.

6.2 Multiple Integrals

Reading: Boas (2006, 5.2)

It is likely that you were taught to think of the integral of a function as the area under the curve,
probably by construction as the sum of lots of little rectangles under the curve and then considering
the limit as they get very thin. Therefore, let’s begin to think about integrals over areas in the
same way.

6.2.1 Integrals over Areas

Consider the function z(z,y). It might be the elevation of a mountain, for example. What if we
wanted to know the volume of the mountain? Well, volume under the surface area of the mountain
is a lot like the area under a curve, and this is precisely what the multiple variable integral does.
If we approximate the function z(z,y) with a grid of boxes of width Az and length Ay and height
that approximates z over the interval x to x + Az and y to y + Ay, then this is an approximation
to the integral. The integral is the limit as Az and Ay go toward zero. For an area integral over a
simple rectangular area, this limit is just

L L Ly/Ay L, /Ax
Yy T
/0 /0 z(z,y)dedy = Allljg0 Al:}:go ; ; [z(zAx,jAy)] AxAy. (6.4)

This is indeed how one might approximate the integral in a numerical model with a discrete grid.
As the grid boxes get smaller, there are more and more of them. Thus, the limit converges. It
doesn’t matter if we sum first along the = direction and then sum along the y direction, the integral
is the same in this case.

We might have been more sophisticated in our selection of the area of integration. For example, we
might have considered the volume under a semi-sphere, defined by the function r? = z? 4 y? + 22,
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or z = +/r? — 22 — y2 with limits at the circle circumscribed by z? + y? = r2. We would write this
as

[ ] vreian= [ " Va6
—rd— r2—y2 —-r - r2—y2

where I've used square brackets to emphasize the order of integration. Instead, if we integrate in y
first,

roopVrr—a? r [ pVirZ=a?
/ V2 —x2—y? dydm—/ V2 — 22 —y2dy| da. (6.6)
Y N R

Notice how the limits on the inner integral involve the variable that’s being integrated over in
the outer integral. In the rectangular case (6.4), we didn’t have to worry about the shape of the
rectangle because it was just as wide in x at every y value. But, the circle and the sphere have
different dimensions at the edges, and the limits of the integrals in (6.5-6.6) keep track of these
edges.

Instead of thinking of the volume under a surface, another common way to use an integral is to
find the average value of a function. First, consider the integral

Ly [Lq
/ / ldxdy = L, L,,. (6.7)
o Jo

This is the volume under a function of height 1, so it is just the area of the top (or bottom) of the
rectangular solid. Similarly, the area integral over a cylinder top is

r27y
// ldzdy = nr?. (6.8)
—r Tz,y

Thus, the double integral can be used to find areas. But, what if we consider a more interesting
integrand than 1, for example, z(x,y). We've already seen that would give us the volume under
the surface z(z,y). Now the ratio of the two gives

Ly Lo
/ / z(x,y)dzdy
L, rLa
/ / dz dy

which is just the volume divided by the area, or the average height. More generally, the area-
weighted average of any function can be written as

9y (6.9)

{] £y dedy
(f) ==

(6.10)
f dx dy
A

Where the subscript A implies that the limits of the integral should be chosen to span the whole
area. We might also consider the an average, where being high up counted more. For example,
potential energy is one such quantity, where mass at higher elevations has more energy than mass at
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lower elevations. To take such as weighted average, we just multiply the integrand by the weighting
factor, and also multiply the denominator’s integrand (to keep the correct units),

H f(z,y)z(z,y) de dy
A
(2) jf z(z,y) dedy
A

(6.11)

Many physical concepts rely on averages and moments, especially area averages and volume aver-
ages. Moments are averages weighted with a variable or coordinate, e.g., the first moment of f with
x is (zf), the second moment is (x2f), etc. Mass, the center of mass, and rotational inertia are
moments of density. Mean, variance, skewness, and kurtosis of a random variable are the moments
of its probability distribution.

6.2.2 Integrals over Volumes

Like area averages, we can conceptualize volume integration by thinking about slicing up the volume
we want to integrate. This works well when we want to conceptualize, for example, the relationship
between density and mass. Density is the mass per unit volume, so if we mark boxes of size Ax,
Ay, Az with a density, then the sum over all the boxes of their density times their volume will be
the total mass.

However, unlike the area under the function interpretation of the one-dimensional integral and
the volume under the area interpretation of the two-dimensional integration, there is no (familiar)
equivalent in the three dimensional integration. The hypervolume between a three dimensional
surface and another doesn’t cut it.

So, we think about three-dimensional (and higher) integrals using the other intuitions built in the
last section. The average over a volume is

jjf f(z,y,z)dxdydz
()=
ff drdydz
Vv

Like with areas, when the volumes take complex shapes, care is needed to set up the bounds on
the integrals. We can also think about moments and weighted averages over the volume.

(6.12)

One example that is particularly apt is the calculation of volume and the calculation of mass from
density. The calculation of mass from density p is just

M = J‘Ij p(z,y,z)dedydz. (6.13)

The calculation of a volume is just the same as the density calculation, except with a density equal
to 1.

V= gf dz dy dz. (6.14)
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So, the average density is just

jff plz,y,z)dedydz
v
#) = jf drdydz . (6.19)
\%

You should go over the methods and examples described in Boas (2006, 5.2, 5.3)

6.2.3 How Much Stuff?

The other major application of the volume integral (and also area integrals and line integrals
sometimes) is to figure out how much of something is inside a region. This integration is needed
when we have a density of something, that is, amount of stuff per unit volume (e.g., density, melt
fraction, concentration) or per unit area (e.g., wind stress) or per unit length (e.g., force applied is
the work done per unit length displaced). Integrating the density results in the amount of stuff in
the volume of integration, e.g., mass, mass of a constituent, force applied, or work done.

6.2.4 Order of Integration

Near (6.5), it was noted that care is needed with the integral bounds when reversing the order of
integration. Similarly, care is needed when the integrands depend on some of the variables, but
not others. As a general rule, you can reverse the order of integrations as convenient, but only if
you don’t take any variables outside of the integrals corresponding to their differential. That is,
when you integrate in x, with the corresponding differential dr and bounds on the values of =,
there should be no x dependence left over. So, no later integral bounds should reintroduce x, for
example. Keep checking this rule and you’ll be OK.!

6.3 Change of Variables

Reading: Boas (2006, 5.4)

One final crucial aspect of multiple integrals is what to do when we want to change coordinate
systems. You may have noticed that dx, dy, and dz all have the units of length. What about
integration in polar coordinates, or in latitudes and longitudes? How do we keep track?

A homework problem from last week touched on the idea of the Jacobian, and it comes back
here. The Jacobian is the determinant of the matrix of all of the partial derivatives of one set of
coordinates with respect to the other. For example, the earth coordinates (geopotential height,
latitude, longitude, or (3,¢,9)) are similar to spherical coordinates (radius, colatitude, longitude
or (r,0,)), but with latitude instead of colatitude? and with height referenced to the mean sea
level (or preferably the mean geoid elevation) ro(¢,d) to include the effects of variation in gravity
and Centrifugal force from the earth’s rotation. The order of the variables is altered to keep the

!There is a more subtle reversal of integrals that worries mathematicians more than physicists—if the integrals
all exist (i.e., if the sequence with shrinking Az converges). This issue is rarely our problem, but you might have
discussed it in great detail in a multivariable calculus class.

2Physics books like Boas (2006) just love to mess with us by using colatitude.
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coordinates right-handed, which is a symmetry we will want for vector analysis.? If, for simplicity,
we approximate a spherical earth with ry as a constant, then

x = (34 r0) cos ¢ cos ¥, (6.16)
y=(3+10)sin¢cos?,
z=(3+1r0)sind.

The Jacobian is,

ox Jx Oz
A(z,y, 2) g?/ gﬁ gg C?S‘ZﬁCOSﬁ —(3 +ro)singcosty  —(3+10) Cf)S(;ﬁS.inﬁ
9G,0,0) | 95 06 09 | SmﬁbCOSﬁ (3 +70)cospcosty  —(3+ro)singsindg | (6.17)
0z 0z 0z sinv 0 (3 +70) cos
9 9o

= (3+70)? cos ¥

To convert between integrals expressed in z,y, z to those in 3, ¢, 9, we use the functions (6.16) to
substitute for all of the occurrences of the variables in the integrands and integral bounds, and then
we switch the differentials at the end from dx dy dz to the Jacobian times the new differentials, or
(3 +70)% cos¥dzdp dd. Or,

] f@y2dedydz= [[[ F(a(s.6,9),9G,8.9).2G:6,9))( +10)* cos VA dg . (6.18)
) )

V(z,y,z V(3,09

This transformation makes the units and dimensions correct, and consistently handles the volume
transformations that go along with the coordinate transformation. Boas (2006) gives the Jacobians
and transformation rules for polar, cylindrical, and spherical coordinates, but earth coordinates are
the most common coordinates used in geophysics aside from Cartesian.

6.4 Example Problems

6.4.1 Manipulation

Example 6.1 (Areas) Set up and evaluate integrals to calculate the area of an Ly x L, rectangle

and a radius R circle.
'Ly LZL‘
A= / / dordy = L, Ly,
0 0

"R 27
A/ / rdrd¢ = TR?.
JO JO

3For now, think of a right-handed system as one where the coordinate directions at a point in space can be formed
with the thumb, first, and middle fingers of a right hand. If we switch from a right-handed to a left-handed coordinate
system, the Jacobian of the transformation will be negative.
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Example 6.2 (Masses) Set up and evaluate the mass and the center of mass (density-weighted
average of x,y,z) of the rectangular solid and cylinder objects in exercise 6.1, and for a sphere of
radius R, when the density is a) constant p(x,y,z) = po and b) a linear function of z, p(x,y,z) =
po + a(z — z9) where zy is the location of the midpoint along the z-axis of the cylinder. You do
not have to evaluate the integral for the sphere (unless you want to). (Hint: Arrange the objects so
they are centered on x = 0,y = 0,z = 0, and then use observations about odd and even functions

to integrate without integrating).

Rectangular Solid:

L./2 pLy/2 [Lo)2
/ / / podzrdydz = pOLchyLz,

L./2J—Ly/2 LT/Q
L./2 (Ly/2
g fLi/zf ii/zf La /gxpodxdydz
= p 7
L:/2 Ly/2
%.3= f L//2f zy/Qf—L /QyPOdSUdydz
J= M 7
L./2 Ly/2
k= JZ L//zf ii/gf /2Zpodxdydz
= = 7
x = (0,0,0).

The last step is clear because each integral involves are of an odd function (z,y, z) over symmetric
bounds (we choose to do the easy—vanishing—integral first). Noticing this makes it fast to evaluate

the difference in the variable density case:

L./2 Ly/2 [Ls/2
/ / / (po+ az)dxdydz = poLyLyL.,

T LL£22 L}iﬁg fLL/ig (po+az)dzdydz

-1 = M :
L./2 Ly/2 /2

s fLi/Q I%/Qf Li/gy po + az)dx dy dz

J= i 7
L./2 (Ly/2 [La/2

k= fL//szu/gf L//2P02+az2dxdydz

M )
L2
%= (0,0, 13) = a
X = ( 12M 5 = (0012p0LL)
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Cylinder (keeping center of mass in z,y, z coordinates):

h/2 27 rR
M = / / / por drd¢dz = porR?h,
—n2Jo Jo

SR [ por? cos ¢ dr dgp dz

— sJ—=h/2
x. ] 7 ,

. ff}/l% 027r fOR por?sin ¢ dr de dz
X-j= i ,
b Z/l% fo% fOR pozrdrdodz

Vi )

x = (0,0,0).

Now for variable density, choosing coordinates so that zp = 0:

h/2 2r R
M = / / / (po + az)rdrdodz = por R?h,
o Jo

—h/2
3 ffé% 27 [ (po + az)r? cos pdr dp dz
= . |
%.3 ff;{% fo27r foR(Po +az)r?sin ¢ dr dedz
X J = M ’
k= fff/jz 027r foR(Po + az)zrdrdédz
amh?®R? M ah2 ’
x= (0.0, =557) = 0.0.75)

Sphere (keeping center of mass in z,y, z coordinates):

2r prm R 4
M = / / / prisinfdrdfde = p-mR?,
0 0 0 3

27 (7[R 513 cos gsin O dr df do

=

M
£ 2L L pr? sin ¢ sin 6 dr d deb

M )
_— 027r Iy fORpr?’cOSGSinﬁdrdegb
X-k=

M )

p=(p+arcosh).

We note that all of these center of mass integrals would vanish if p were a constant pg, but if it
varies, then the vertical (z) direction has a center of mass not located at the origin.
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6.5 Homework Problems

6.5.1 Manipulation

Exercise 6.1 (Volumes) Set up and evaluate integrals to calculate the volume of an Ly x Ly x L,
rectangular solid, a cylinder of radius R and height h, and a sphere of radius R.

6.5.2 Application

Exercise 6.2 (Earth) Redo the cylinder and sphere volume calculations from exercise 6.1, but
with all integrals and integrands expressed in earth coordinates. Hint: It is easiest to consider the
cylinder as sitting with its base on the origin (rather than centered on the origin). Then break up
the integral into two parts. First, there is the conic section that extends from ¥ = tan~'(h/R) to
¥ = 7m/2 and is bounded at the surface of the top of the cylinder. This surface can be described by
3 = h/sinv. The other surface to consider is the outer shell of the cylinder. This surface can be
described by the function 3 = R/ cos?, and it is relevant for 9 =0 to ¥ = tan~!(h/R).

6.5.3 Scheming Schematics and Articulate Analysis

Exercise 6.3 Problem 5.4.25 Boas (2006). The volume inside a sphere of radius r is V = %mﬁ.
Then dV = 4rr?dr = Adr, where A is the area of the sphere. What is the geometrical meaning of
the fact that the derivative of the volume is the area? Could you use this fact to find the volume
formula given the area formula?
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Chapter 7

Fourier Analysis

In Chapter 1, the Taylor series was used to expand functions into a series of polynomials. The
formula is:

sy =3 B o) (r.1)

n=0

Thinking of functions in this way is useful, as each term in the polynomial has different behavior.
When z is near to a, the terms of lower n are usually more important, while the larger n terms
become more important as z moves farther away from a. Also, when a function is odd or even,
only odd or even polynomial powers appear in the series. Examining the behavior of each term,
or collections of terms, in the series leads to a deeper understanding of the function. Experiments
may be designed specifically to determine only a few of the terms in the series for a function that
is unknown but describes a measurable quantity of interest.

For a finite length series, we can think of the list of coefficients as a vector, the list of polynomial
powers as another vector p, and we can add and subtract functions using vector arithmetic:

f@)~c-(1,(z—a),(x—a)?...,(z—a)N)=c-p, (7.2)
g(r) ~d-p, .
af(z)+ Bg(x) = (ac+ pd) - p (7.4)

Each polynomial power acts like a coordinate axis in this vector system, and the different polynomial
powers do not mix under linear operations on the functions, so they form an orthogonal coordinate
basis. We can therefore think of a function as asuperposition of the different polynomial powers,
with the coefficient vector determining how much of each power goes into the mix. We can add
together different superpositions describing different functions using linear algebra rules, and the
superposition of superpositions will be the sum of the functions.

The Fourier series expansion is similar in many ways, except instead of expanding into polynomial
powers, the expansion is into sines, cosines, or complex exponentials that oscillate more and more
rapidly as more and more terms are retained in the series. The list of coefficients can be treated as
a vector, and there are even close relationships between the length of these coefficient vectors and
the variability of the approximated function.
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7.1 Introduction—Scales

Reading: Boas (2006)[7.1-7.3].

When observations or experiments are conducted, often the results are lists of measurements sep-
arated in time or space. The collection of these results is intended to sample a phenomenon
sufficiently often and spanning over a total interval of time or space as to categorize its variability.
Fourier analysis is particularly well-suited to analyze such data.

The underlying idea of Fourier analysis is that oscillations or repeated patterns exist within the
data. These oscillations or repeated patterns are common in nature, vibrations and waves are
typical in many circumstances. Even when the dataset does not obviously contain such patterns,
it may be thought to be composed of a superposition of repeating oscillations over a variety of
different frequencies. Just as the Taylor series approximates a function by a superpositions of
powers of (x —a), which works better and better the more powers are considered, the Fourier series
approximations a function by a superposition of oscillations, and it works better and better the
more frequencies of oscillations are considered. The band or range of frequencies that go into the
Fourier analysis determines the scales of oscillations that are being measured accurately.

Consider first a collection of data at a fixed location but over a span of time. A sediment core
or an oceanographic mooring are geophysical examples. Suppose that the samples are taken at
regular intervals, T, so that we can consider a sampling frequency of f; = 1/Ts. The fastest
variability we could hope to measure with this strategy would be a signal that went from a value
greater than average on one measurement to a value below average on the next. Thus, the period
of the oscillation, that is, the time from a greater than average value to the next greater than
average value would be 2T, and thus the highest frequency of oscillation that can be measured is
0.5fs = 1/(2T5). In Fourier analysis, this frequency is called the Nyquist frequency. On the other
hand, all observations must come to an end, so there is a total duration over which the observations
occur. If IV observations are taken, then this period is T,, = NTj, and thus the minimum frequency
that can be measured is f, = 1/T, = 1/(NTj).

Fourier series can be used to examine variability on all frequencies from f, to f,, usually broken
down into intermediate frequencies at intervals of f.. Variability over longer or shorter periods
than those in the measured band may affect the Fourier analysis, and this contamination is called
aliasing.

7.2 Expansions

Reading: Boas (2006)[7.4-7.5, 7.7-7.8].

The Taylor series was constructed by differentiation of the function to be approximated and the
generic polynomial that was to become the Taylor series. After differentiation, evaluating the
result at x = a made every term in the series vanish except one. By this construction method, each
coefficient in the series can be found one at a time.

The Fourier series in constructed in a similar fashion, by using “Fourier’s Trick.” The trick is built
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on the following averages over a period:
1 s
(1) = / ldz =1, (7.5)
2 J_,
1 s
(cosnz) = / cosnx dx = 0, (7.6)
™ —T
. [
(sinmax) = 2ﬂ_/ sinmax dxr =0, (7.7)
,Wl )
(cos® nz + sin® nz) = (1) = 2/ ldx =1, (7.8)
TJ_
1 (7 ’ 1
(cos? nx) = / cos’nzdz = =, unless n = 0 when it is = 1, (7.9)
A J_, 2
2 L 1
(sin®“nx) = e sin“nax dr = 5 unless n = 0 when it is = 0. (7.10)
T

—T

Note that the last two results can be derived from the second one by noting that since sine and
cosine differ only in phase over this interval, each must contribute equally to the sum in (cos? nx +
sin? nz), unless n = 0 when sine vanishes everywhere. These averages, along with some less familiar
extensions, can be summarized

™

1
(sinmx cosnzx) = / sin ma cosnz dz = 0. (7.11)
2 J_,
1 (7 0, ifm=n=0,
(sinma sinnz) = / sinmasinnzdr = ¢ 0, if m#n, (7.12)
TS L ifm=n+#0
2 :
1 m 17 if m=n= 07
(cosmzx cosnx) = / cosmzxcosnrdr =< 0, if m#n, (7.13)
o - 1 e
5, ifm=n#0.

Each of these averages is easily found by manipulation of the sines and cosines angle addition rules,
integration of sines and cosines, and (7.5-7.10). The angle addition rules are

sin(a + b) = sinacosb + sinbcos a, 7.14)
cos(a + b) = cosacosb — sinbsina. (7.15)
The complex exponential equivalent averages also come in handy.
' 4 1 4 1, ifm=n=0,
(e"™MTeT) = 2/ eMETINT qp = {0, if m #n, (7.16)
TS 1, ifm=-n#0.

These are easily derived using Euler’s formula and (11.40-11.42) and (11.45), or (11.45) can be used
to show (11.40-11.42).

Fourier’s Trick is to convert any function that is periodic on —x to 7 to a Fourier series by examining
the average value of that function times a sine or cosine. This trick will isolate one coefficient in
the Fourier expansion series. For example, if we assume a Fourier series of the form (the % is for
convenience later):

1

f(x) ==ap + aj cosx + ag cos 2z + ag cos3x + - - - + by sinx + by sin 2z + bgsin 3z + . ..

5 (7.17)
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We know that our function f(z) might be odd or even or a combination of an odd and an even
part (f(x) = fo(x) + fe(x), where f(—z) = —fo(x) + fe(x)). Thus, we need both the sine series
for the odd part (which is f,(z) = [f(z) — f(—)]/2) and the cosine series for the even part (which
is fe(z) = [f(z) + f(—x)]/2). Then we find the following averages to hold by using the rules
above.

() = 50, (718)

(f () cos) = g, (7.19)
(@) sina) = 5, (7.20)
(F (@) cosna) = 5on, (r.21)
(F@)sinnz) = Sb. (1.22)

We can construct any sine and cosine expansion over —7 to w by this method.

The complex exponential Fourier series is even simpler because the factors of % are not needed.

f(z) = o+ c1e™ + coe®™ + c3e® 4 ..., (7.23)
(f(z)e™™*) = cp. (7.24)

Note, however, that the exponent of the multiplier is —inz while the exponent of the selected term
in the series is +inzx.

7.2.1 Other Intervals

It is not necessary for f(z) to be periodic on —m < z < 7, it could be periodic on any other interval
—% <z< % and we would just need to rescale using a coefficient of x. For example, if y = kz, and

k= %, then f(y) will be periodic on —7 < z < 7 if f(x) is periodic on —é <z< é The Fourier
expansion will then have arguments of y, 2y, 3y, ..., which is equivalent to kx, 2kx, 3kx, . ..

7.2.2 Fourier in Time

When a time series is expanded into its Fourier components, the coefficients of time in the argument
of the sines and cosines are called frequencies. They are angular frequencies, and generally denoted
w or o, if the sine and cosine arguments are periodic every wt = 27. For example, sinwt = 0 and
is increasing with ¢ whenever wt = 0,27, 4m,... We can think of w = 2% as playing the same role

as the k factor in Section 7.2.1, where T is the period of the oscillation with frequency w.

Sometimes, we prefer to drop the 27 in the definition of the frequency. These frequencies are called
reqular frequencies and are usually denoted f. The sines and cosines will be periodic at times when
ft=1,2,3,... For example, sinwt = sin(27 ft) = 0 and is increasing every time ft is an integer.
We can convert between angular and regular frequencies using 27 f = w.

High frequencies correspond to rapid oscillations and short periods. Low frequencies correspond to
slow oscillations and long periods.
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An Example: Milankovitch Forcing

Milankovitch (1930) performed detailed calculations projecting the variability of the orbit of the
Earth. He rationalized that these variations might have an impact on climate. The three primary
signals he identified—precession, ellipticity, and obliquity—differ in magnitude and period.

More modern analyses, e.g., (Hays et al., 1976) and (Imbrie and Imbrie, 1980), attack the problem
using Fourier analysis. By this method, the total forcing and paleorecord of ice ages—as recorded
in isotopic signatures—are decomposed by period and then analyzed. Fig. 7.1 is an example of one
such analysis.

Q+ 65°N JUNE
583
S A EA—"
4151 T T T 1
0 100 200 300 400
PRECESSION BAND ECCENTRICITY BAND
(~23kyr—19kyr) ("‘4*7’) (~100Kyr)

L O

’ -i_b\/\/\/\/\/\f\/\/\/ )
o~y

¢ LAY geo0

00 200 300 400
ACE (ka)

%00

Fig. 1. The 100-kyr cycle problem as seen by partitioning radiation and climate time series into their dominant
periodic components (in the precession, obliquity, and 100-kyr eccentricity bands). Radiation time series are from
Berger [1978a]; 8!%0 data are from Imbrie et al. [1984]. Partitioning is done using Hamming band-pass filters with
a bandwidth of 0.019 kyr~ ! for the 41- and 100-kyr bands and 0.036 kyr~! for the 23-kyr band [Jenkins and Watts,
1968]. The 8'%0 cycles at periods near 23, 41, and 100 kyr are so strongly correlated with astronomically driven
radiation cycles as to suggest a causal linkage in all three bands. But these correlations for the 23-, 41-, and 100-kyr
bands (coherencies of 0.95, 0.90, and 0.91, respectively, in Table 2) hide an intriguning physical problem. Why is
the system’s response so strong in the 100-kyr band? There the amplitude of the radiation signal (2 W m?) is 1
order of magnitude smaller than in the other two bands.

Figure 7.1: An example of Fourier decomposition of a signal-in this case the radiation variability
of orbital motions and the isotope variability of glaciation from Imbrie et al. (1993).

By decomposing the paleorecord in different locations by period, the effects of obliquity, precession
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and ellipticity can be individually assessed.

7.2.3 Fourier in Space

When a set of spatial observations are expanded into Fourier components, the coefficients of the
spatial coordinate in the argument of the sines and cosines are called wavenumbers. Wavenumbers
play the same role as angular frequencies, and are usually defined as k = 27” where A is called the
wavelength. The sines and cosines are periodic each time kz is a multiple of 27.

High wave numbers correspond to rapid oscillations and short wavelengths. Low wave numbers
correspond to slow oscillations and long wavelengths.

An Example: The Spectrum of Turbulence

Taylor (1938) made a study of the power spectrum of turbulence. That is, he examined the amount
of variability in the Fourier transform of velocities in a turbulent flow, as a function of spatial scale
and temporal frequency. He hypothesized (Taylor’s Hypothesis) that if the turbulence were carried
along by a flow that was much faster than the rate at which turbulence evolved, then the power
spectrum of the frequency in time could be related to the power spectrum of the frequency in
space. That is, you could either sit still and wait for the turbulent eddies to be advected by you,
or you could examine multiple locations along the flow where eddies existed at the same time. If
the turbulence were “frozen in” to the flow, then the two would be interchangeable. He examined
experimental evidence to support his hypothesis.

This conception inspired Kolmogorov (1941) to examine the spatial power spectrum of turbulence,
and to predict that the kinetic energy power spectrum decays with spatial scale (wavenumber k,
which is 27 over wavelength) according to E(k) o k—5/3. This paper is likely the most important
paper on turbulence so far.

7.2.4 Discrete and Continuous

Reading: Boas (2006)[7.11-7.12].

7.3 Derivatives of Expansions

Reading: Boas (2006)[7.9].

7.3.1 Application in Differential Equations

One very powerful aspect of the Fourier transform is that it can be used to convert differential
equations to algebraic equations, where every derivative is replaced by the frequency or wavenumber
being considered. Thus, the differential equation can be solved one frequency at a time, and then
the results can be recombined into the total solution by superposition. We will return to this
method when as we learn to solve differential equations.
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7.4 Homework Problems

7.4.1 Scheming Schematics and Articulate Analysis

Exercise 7.1 (Square Wave) Problem 7.5.1 of Boas (2006).

Exercise 7.2 (Sines, Cosines, Exponentials) Problem 7.5.12 of Boas (2006). Show that in
(5.2) the average values of sin(max)sin(nz) and of cos(mz)cos(nx), m # n, are zero (over a
period), by using the complex exponential forms for the sines and cosines as in (5.3).

7.4.2 Evaluate & Create

Exercise 7.3 (Derivatives) a) Show that the following function f(x) and Fourier series g(x) are
equivalent on the interval from —m to m up to order of sin(2x). To do so, multiply the f(x) and
g(x) functions by each of the following in turn: sin(x),sin(2z) and cos(0x), cos(x), cos(2x). Show
that the average value of the product from —m to 7 is the same, for example that (f(z)sin(2x)) =
(g(x)sin(2x)). (see Boas, 2006, pg. 351).

Vi—n<z<m,

f(@) = z(r — z)(r + 2),
X _1\yn-—1
g(z) = Z (13312 sin(nx).

n=1

b) Take the first derivative of f(x) and g(x) (by taking the derivative of the generic term in the
series). Show that the resulting derivatives are equivalent, using the same method as in a).
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Chapter 8

Vector & Tensor Analysis

Reading: Boas (2006, 6.1)

Vector analysis is at the heart of all geophysical analyses, models, and theories. It is through the
rules of vector analysis that we can quickly assess whether a theory is correctly framed to apply
regardless of coordinates, and it is the language we use to express the principles of conservation
of energy, momentum, mass, and other fundamental concepts of continuum mechanics. It avoids
many of the detailed trigonometry calculations of three-dimensional geometry while retaining the
capability to describe and analyze data in that geometry.

8.1 Introduction—Products, Derivatives, and Vector Fields

We have already learned how to multiply a vector by a scalar and how to sum vectors. We have
even learned to solve systems of equations involving these operations, as well as the more powerful
(and obscure) matrix multiplication operation.

Vector analysis adds new operations to the list, which are particularly useful in continuum mechanics—
especially in three dimensions. The new operations are a vector product of two vectors, or cross
product, and derivatives of vectors. The derivatives of vectors that most interest us are those that
provide insight beyond a particular choice of coordinates, and they are the gradient, the diver-
gence, and the curl. These operations are full of symmetries, which make them powerful, but also
complicate our job of learning to use them. Thus, we will have to learn intuition for what they
represent, but also how they interact with one another (these rules are called triple product and
calculus identities).

8.2 Fields—Scalars and Vectors

Reading: Boas (2006, 6.2, 6.5)

Whatever we plan to take the spatial derivative of needs to be defined at many points in space. A
field is such a variable. A field can be a scalar field (a scalar at every point, such as temperature,
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pressure, or chemical concentration), a vector field (a vector at every point, such as velocity, ac-
celeration, momentum, gravitational force), or even a tensor field (a tensor at every point, such as
stress tensor, anisotropic viscosity, etc.) which we will discuss in later chapters.

Many physical phenomena are expressed using fields, resulting in field theories to encapsulate the
phenomena. Continuum mechanics, which describes the motions of solids and fluids, is a field
theory. On very small scales, these materials are made up of atoms and molecules, with space in
between, and then the description of their properties using fields breaks down. However, continuum
mechanics prohibits consideration of these small scales, because (as the name suggests) the materials
considered are assumed to be continual in space and time on the scales of interest.

We have discussed how all vectors have only a magnitude and a direction, so how do we describe
a field? There are two parts to the field, the position which is a vector pointing from the origin
to a given location, and the value which may be a scalar or a vector. Thus, the field is a function
of position, and often also time. When a field is vector valued, the value continues to only have a
magnitude and direction. Generally, there must be a good reason to mix up the position with the
value, so generally we compare neighboring values with each other, not values and positions.

8.3 If It Quacks Like a Duck...

We are going to begin considering how vectors change under change of coordinates (rotation,
reflection in a mirror, more general changes), as well as how vectors are differentiated. We have
been considering vectors as objects in linear algebra, or linear systems of equations, that have
a direction and magnitude and combine according to the rules of linear operations. However,
an alternative, and nearly equivalent way to define vectors is by their behavior under coordinate
transformations.

What do I mean by “behavior under coordinate transformations”? Well, lets consider a scalar,
say temperature. When we redefine a new coordinate system, the temperature at a point does not
change, but the position vector describing where this temperature is located may change. When
we consider a vector field, both the position and value will change under a change of coordinates.
Keeping track of such changes is a big part of what we will do, and finding operations, such as
differentiation operators, that respect the way that vectors transform will be key to expressing our
physical laws in a way that is not arbitrarily dependent on a choice of coordinates.

Taking this idea to the extreme, it is possible to define a vector by what it does under rotation or
other change of coordinates, and then use this definition to prove that such an object obeys the
linear relations that we have taken to define vectors. This exercise is a diversion in pure math from
our perspective, but the take-away message is that understanding how vectors relate to coordinates
is fundamental to understanding vector fields.

We learned in the linear algebra chapter of Boas (2006) that any rotation of a coordinate system or
vector can be expressed by multiplication by a matrix, R, which can be composed of cosines and
sines, such as a rotation around the z axis:

1 0 0

R=|0 cosf —sinf |. (8.1)
0 sinf cos6
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More generally, any orthonormal matrix (rows and columns are orthogonal and of magnitude 1) can
be considered to be a combination of rotation (although it is sometimes hard to figure out what the
rotation axis is) and possibly also a mirror reflection. These matrices have their transpose equal
to their inverse, RT = R™!. A combination of a rotation and a reflection has a determinant of —1,
whereas a pure rotation has a determinant of +1.

Two important examples of orthonormal matrices are the generic rotation matrix by angle 6 about
a unit vector n, and the reflection matrix along the unit vector n direction:

R;j(n,0) = cos 05;; + sin Oe;jpn; + (1 — cos O)nyn;, (8.2)
ﬂij (n) = (52']' — 2n,-nj. (83)
Note that the trace of the rotation matrix gives an easy way to calculate the angle: Tr(R;;) =

1+ 2cos@.

The rotated, reflected version of a vector v is Rv. We can consider the length of a vector before
rotation as a matrix product of a row vector (its transpose) and a column vector, or vv = |v]2.
Recalling that transposing a matrix product reverses the order of the factors, we see that

(Rv)TRv = vIRTRv (8.4)
=vIR 'Rv (8.5)
=vlv (8.6)
2. (8.7)

Thus, rotation and reflection do not change the length of a vector. Or, more generally, any scalar
product ATB will be unaffected by a rotation or reflection of the coordinate system.

Matrices can also be rotated, based on reproducing the correct result as in the unrotated case.
Note

RMR'Rv = R(Mv). (8.8)

That is, it takes two rotation matrices to rotate a matrix, and the rotated form is RMR ™. ! It
takes one matrix to rotate a vector and none to rotate a scalar.

8.3.1 Vector Covariance

I might prefer a different coordinate system than you do, but physics doesn’t choose a favorite
between you and me. Thus, we cannot write equations that are subject to a choice of coordi-
nates. Scalar fields are independent of coordinate system, thus it is acceptable to write: scalar
function=other scalar function. Likewise once we have chosen a coordinate system, we know how
to express vectors and their components. So, we can write: vector function=other vector function.
These two examples are vector covariant, that is, when one side changes due to a change of coor-
dinates so does the other. We cannot meaningfully write scalar function=vector function, because
when we change the choice of coordinates, one side will change while the other will not.

Obviously, we cannot cheat by moving terms from side to side, so the two addends must also be
vector covariant. Factors in products need not be the same vector type, which leads to a multiplicity
of vector products that will be discussed next.

1The resemblance of this rotation formula to the diagonalization by eigenvectors formula (3.22) is not a coincidence!
Diagonalization involves rotation of the coordinates and perhaps also stretching or squeezing in some directions and
maybe complex numbers in eigenvalues or eigenvectors.
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8.4 Multiplying Vectors

Reading: Boas (2006, 6.3)

We also learned that one can multiply a vector times a scalar, which just changes the magnitude of
the vector but not the direction. This is one vector covariant form of vector multiplication,

We have also struck on the idea of the inner product, a.k.a. the dot product: A-B = |A||B|cosf =
Ay By + AyBy + A.B, = ATB. This product compares two vectors and the result is a scalar. The
special case of a vector dotted with itself give the magnitude of the vector squared (in fact, this
result is often taken to define magnitude).

Another ways to multiply vectors is to take the vector product, a.k.a. the cross product. For
example, in three dimensions, it takes two vectors and results in a third vector, perpendicular
to the first two and with magnitude |A x B| = |A||B|sin6, which makes it seem like a natural
complement to the dot product. However, the vector that results from a cross product also has a
direction, which is taken to be perpendicular to both of its arguments (i.e., it lies in perpendicular
to the plane spanned by the input vectors),

The cross product is actually a bit of an oddity, as we’ll see when we express it as a tensor
operation. Its result is actually not a vector, but a pseudo vector, which means that it does not
behave like a vector when its image in a mirror is considered (vectors reverse under mirror reflection,
pseudovectors do not). Furthermore, in two dimensions, the cross product results in a vector that is
not contained in the two dimensions of the space! Generally, in two dimensions, the cross product
is therefore considered not as a vector times a vector equals a vector. In four dimensions, the cross
product is even messier.

Oddity though it may be, the cross product is very useful in three dimensions. It is fundamental to
the understanding of the rotation of the Earth, the rotation of a fluid element (vorticity), angular
momentum, torque, and non-conservative forces. It even has its own fundamental theorem of
calculus, called Stokes’” Theorem.

8.4.1 Application: Casting a Shadow

One very useful application of the dot product is in calculating the amount of energy delivered to
a surface by incoming and outgoing radiation, such as the Sun shining on the Earth. When we
hold up a disc perpendicular to the Sun’s rays, all of the photons streaming toward it are absorbed
(heating the disc) or reflected. However, as we tilt the disc, it only blocks an elliptical shape of the
Sun’s light. Thus, the orientation of the object matters (hinting at a vector), even though energy
is a scalar. We can use this method to determine the intensity of the Sun.

The “solar constant” is the measure of this incoming radiation, and it is about 1361 W m~2. That
is, the amount of energy leaving the Sun is best measured in energy per unit time per square
meter. The reason for the “per square meter” is because the Sun’s energy fills out into larger and
larger space with distance from the Sun. The easy way to imagine this is as imaginary concentric
spherical shells centered on the Sun. If the Sun’s energy production is constant in time, then the
same amount of energy passes through each shell per unit time. But, as the shells farther out have
more area than the shells closer in (by a factor of radius ratio squared), the power is constant
per unit area, rather than being constant at all points in space. This result is the “inverse square
law.”
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But even when we consider the inverse square law, the average radiation arriving at the Earth’s
surface is not the solar constant per square meter of Earth’s surface. Consider the shadow cast
by the sphere (Area: 477?) of the Earth-it is a circle of Area 77?2, since only the front side of the
Earth is exposed and most of that surface is at an angle to the Sun, just as the tilted disc just
described. Thus, we integrate I instead of |I|, where I is the energy of the sun propagating along
a sunbeam, and f is a unit vector normal to Earth’s surface.> The sine of the angle between the
sunbeams and the surface is just what is needed to reduce by a factor of 2, and the fact that only
one side of the Earth is illuminated gives the other factor of two.

This problem is an example of a larger set of examples of projection problems. The projection of
a vector A onto B is (A - B)B, so it involves the dot product.

8.4.2 Application: Finding an Axis

The velocity of the Earth as it rotates can be written down as v,, = 27;';’;‘5), where 7 is the
distance from the rotation axis to the point in question.
A much simpler formula for the rotation is

Veot = £ X T (8.9)

Q is a vector aligned with the rotation axis, with a magnitude of the angular frequency of the
rotation (~ 27/(24h) = 7.272 x 107°s71).3 Thus, the velocity is clearly perpendicular to both the
axis of rotation and the position from the origin (taken to lie somewhere on the axis). Note how
the timing of the circumference (27 per day) comes in, and note how the fact that the poles do
not have a velocity of rotation occurs.

8.4.3 Triple Products

Sometimes, after multiplying two vectors, you may then multiply by a third one. These “triple
products” are a bit complicated to do step by step, so the result is sometimes tabulated or memo-
rized. Here they are for reference:

A, A, A,

A-BxC)=|B, B, B. |, (8.10)
c, C, C.

Ax(BxC)=B(A-C)-C(A-B). (8.11)

The former gives us a vector expression for a determinant, and the latter is often called the “back
cab” rule because of the pattern of letters in this standard way of writing it.

2T usually use the * symbol to indicate unit vector length, but Boas (2006) does not.

3You may wonder why this frequency is only approximate. It is because once per day is actually not the rotation
period of the Earth, it is the time that it takes for the Sun to return to noon. As the Earth is moving around the
Sun, it takes just a little more than one rotation of the Earth to get the Sun back to noon. The real rotation rate of
the Earth is 27/(siderealday) = 23.9344696h = 7.29212 x 10~ °s~ 1.
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8.5 Differentiating Fields

Reading: Boas (2006, 6.5-6.7)

A field has a value at every point in space. It is natural to consider the change in a field from
one point to another, just as we use calculus to consider the change in functions from one point
to another. It is also natural to expect partial derivatives to play a key role in this analysis. The
symmetries of vectors, discussed above, will help choose the particular combinations of partial
derivatives that dominate this analysis of vectors.

8.5.1 Differentiating Scalars with the Gradient: Ch-ch-ch-ch-ch-ch-Changes

Reading: Boas (2006, 6.6)

The gradient of a scalar field results in a new vector. The gradient can be thought of as the “del”
operation V on the scalar. “Del” can be thought of as,

0 - 0

o 90 09
e
S (8.14)

Y
oz

The gradient is the first use of V. The gradient of a scalar field f(z,y,2,t) is a vector where the
components are the partial derivatives of f(z,y, z,t) in each direction:

_¢8f(x,y,2,t) ¢8f(x,y,z,t) i af(m,y,z,t)
V=i e +J 3y +k 9, (8.15)
. 8f(x7 y? Z? t) 8f(x7 y? Z? t) 8f(x7 y? z? t)
N < ox ’ oy ’ 0z ’ (8.16)
[ 0f(z,y,2,1) ]
Df (a2t
= f(xéy’ %1) (8.17)
Yy
of(z,y,2,t)
L 0z _

The gradient of a scalar is a vector, because it rotates and reflects like a vector (how can you
tell?), because it has a magnitude like a vector (which is?), and because it undergoes general
linear operations like a vector (how can you tell?). I keep the dependence of f on time ¢, as an
example of a representation of other parameters which are not the coordinate directions. In normal,
non-relativistic, physics, the gradient only consists of the partial derivatives with respect to spatial
coordinates, holding time and other parameters upon which the scalar field depends constant.

The gradient of a scalar field points at every location toward the direction where the scalar field
increases most rapidly, with a magnitude that corresponds to how rapidly the scalar field changes
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per unit distance. The pressure gradient force per unit mass —Vp is an excellent example of the
gradient operator. It always point from high pressure toward low pressure (note the minus sign),
and is greater in magnitude when the pressure change is more rapid in space.

One must be careful in evaluating the gradient in other coordinate systems, such as cylindrical,
spherical, or earth coordinates. Note that the coordinates in these systems don’t even have the
same units, so it is clear that you have to be careful when forming the components of a vector with
objects of different units. The gradient in each of these coordinates is

Cylindrical: (8.18)
Vi, 2, t) = 3f(7”78<ﬁ7 st % ﬁf(réz, P Gf(rgz, zt).
Spherical: (8.19)
_ L 0f(r0.6t) 00f(r0.6,0) $ 0f(r0.61)
Vir6an =t or - r 00 + rsiné 0¢ ’
Earth: (8.20)
V£ 0.1) :gaf(s,dw,t) N ¢ f(3,0,9,1) L0 0,0 9.1)

03 (3 + ro) cos )0 (3+10) o

When excursions in the vertical are small in comparison to the radius of the earth, then the factor
in the denominator in earth coordinates simplifies: (3 + ro) ~ ro.

In 2-dimensional (or 4D or 10D, etc.) problems, the gradient is interpreted in much the same
way, with differentiation in each Cartesian coordinate direction representing a component of the
Cartesian vector. In special and general relativity, where time is treated as a fourth dimension, one
may include the partial derivative with respect to time as part of the gradient, and then the speed
of light is needed to match the units (and meaning) of the spacetime vector that results. Rarely,
this approach is used for non-relativistic wave problems where the wave speed is constant.

8.5.2 Differentiating Vectors

Reading: Boas (2006, 6.7)

So far, we have considered only taking the derivative of a scalar field. What about the derivatives
of a vector field? There are two main flavors: the divergence and the curl. The divergence takes
a derivative of a vector field and results in a scalar. The curl takes the derivative of a vector and
results in a (pseudo-)vector. The V notation proves particularly powerful here, since it makes the
divergence appear as a dot product and the curl appear as a cross product.
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Divergence

The divergence takes a derivative of a vector field and results in a scalar. The V notation proves
particularly powerful here, since it makes the divergence appear as a dot product.

div(v(z,9,21) = V- v(z, 5, 51), (8.21)
0 0 0
= (83: 3y 8z> . (vm(m,y,z,t),vy(x,y, z,t),vz(x,y,z,t)) , (8.22)
_ Ovg(m,y,2,t)  Ovy(w,y,z,t)  Ov.(x,y,2,1)
= o + 5 + 5 . (8.23)

Like the gradient, the divergence needs care in other non-Cartesian coordinate systems. The diver-
gence in each of our standard systems is (with subscripts indicating vector coordinate values)

Cylindrical: (8.24)
1 0(rup(r, ¢,2,t)) 1 Qug(r, ¢, 2,t)  Ov.(r,¢,z2,t)
Vv é,zt) = r or + r 0 * 0z ’
Spherical: (8.25)
10 (TQUT(T,G,qﬁ,t)) 1 0 (sin&vg(r,e,qﬁ,t)) 1 Qug(r,0,9,1)
Vov(r.8,6,1) = r2 or + rsin 6 00 + rsin 6 1)) ’
Earth: (8.26)
1 9[G+r0)v,0,9,1)] 1 dvg (3, 9,0, 1)
Vv(6,0,1) =
VB = e 0 TGrroesd 96
N 1 0 [cos Yy (3, 9,9,1)]
(3 +70) cos 00 '

When excursions in the vertical are small in comparison to the radius of the earth, then the factor
in the denominator in earth coordinates simplifies: (3+179) & r9. The factor in the numerator inside
the derivative, however, should be differentiated before this approximation is made, that is

1 9 [(3 +T0)2v3(37¢7197t)] 2U3(37¢a 19, t) 8U5(37¢>197t) 2 803(37¢7197t)
- + ~—u(3,0,9,t) + —————.
(3+70)? D3 (3+70) D3 ro ! (3:0,0.1) D3
Curl

The curl takes the derivative of a vector and results in a (pseudo-)vector. The V notation proves
particularly powerful here, since it makes the curl appear as a cross product.

curl(v(z,y,2,t)) =V x v(z,y, 2, 1), (8.27)
= (8 , 2 , 8) X (vx(:c,y,z,t),vy(x,y,z,t),vz(az,y,z,t)) , (8.28)
Oxr Oy’ 0z
i j k
= 2 o 2 (8.29)
vp(2,y,2,t) vy(x,y,2,t) vi(z,y,2,1)
—i [%ZZ - %Zy] +3 [%1: - %ZZ] +k [%Z}’ - %ﬂ . (8.30)
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Note that here the position of the vector components has been dropped, but it is important to
remember that the vector is still a field, otherwise differentiation with respect to space would be
meaningless.

Like the gradient and divergence, the curl needs care in other non-Cartesian coordinate systems.
The curl in each of our standard systems is

Cylindrical: (8.31)
o [10v; % ~[0v, Ov, Z d(rvg)  Ovy
va(r’qﬁ’z’”_r[r 90 8z]+ [82 8r]+r[ o 96|
Spherical: (8.32)
_# [O(sinfluy)  Jup QA 1 Ov. 9(rvg) é d(rvg)  Ovy
Vxv(r9,4.1)  rsind [ a0 8¢)} r [sin@ 1ol0) or | Tr | Tar a0 |
Earth: (8.33)
B 3 vy O(costvg) ) dv; 0 [+ ro)vs]
VX v é9.0) (3 +70) cos? [ 0¢ oY * (3+mr0) | 00 03

0 [(3 + TQ)U¢] 1 8?)5

+ 03 "~ cosV D¢

9
(3+70)

Special care is needed in interpreting the curl in fewer or more dimensions than 3. In two dimensions,
the curl results in a (pseudo)scalar instead of a vector. The magnitude of this scalar is just the
component of the three dimensional curl in the direction perpendicular to the plane of motion. In
four dimensions, the curl is better considered by another method which will be discussed later.

8.5.3 Application: Angular Velocity and Solid Body Rotation

More generally than in section 8.4.2, any solid body rotation can be expressed as v,o = € X (r —
Taxis), where T,y is just the constant distance from the origin to any point on the axis and € is
the angular frequency aligned with the axis. This formula is quite useful for figuring out if the flow
is just rotating or has shear.

The wvorticity is the curl of a velocity, which is a crucial quantity in fluid dynamics w = V X v.
Notice that the vorticity of solid body rotation is (using a triple product rule from pp. 339 of Boas,
2006)

w=V X QX (r—ris) (8.34)
= ([r — Taxis] - V) @ = (2 V) (r — Faxis) — (T — Taxis) (V- Q) + Q (V- [r — raxis])
= (Q-V)r+Q(V 1) (8.35)
= - (QxaiJrQy;erQzaaZ) (xi+yj+zf<) +Q<g§+g‘;’+gz>
= -0+ 30
=20, (8.36)

So, the vorticity of solid body rotation is twice the angular frequency vector.
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8.5.4 (Oddballs and Second Derivatives

Reading: Boas (2006, 6.7)

The gradient of a vector is also a meaningful quantity, but the result is neither a vector nor a
scalar, it is a dyad (or a matrix, or a second-rank tensor), with elements columns consisting of the
gradient of each component of the vector. We will be in a better position to understand this object
later, when we discuss tensor analysis.

You can invent other forms of differentiation of scalars and vectors, but they are unlikely to result
in true scalars or vectors or pseudovectors. Thus, it will be very difficult for them to participate in
vector covariant relationships.

The Laplacian, V2, is the most important second derivative in vector analysis. It is the divergence
of the gradient. There are other second derivatives as well, some of which always vanish. You can
also perform the Laplacian of a vector, which results in a vector (i.e., the Laplacian acts on each
component of the vector field).

0?f(x,y,z,t) O*f(x,y,2,t) 0*°f(x,y,2,1)
2 _ X — A Nd) s Yy < 5 Yy <y
Vef(z,y,2,t) =V -Vf(z,y,z2,1t) ( 522 , 94 : 5.2 (8.37)

The Laplacian has a simple interpretation: the value of the Laplacian at a point measures the
deviation of that point from the average value of its surroundings. This interpretation is why the

diffusion of temperature (or other scalar tracer) is modeled as —— = xkV2T, a relationship called

Fick’s Law. Many forms of viscosity are also modeled using the Laplacian.

Like the gradient, divergence, and curl, the Laplacian takes a complicated form in other coordinate
systems. Here they are:

Cylindrical: (8.38)
1 af\ 1 8% 0%
Vot =1 o (1) gt g
Spherical: (8.39)
: BN AN B R T S
VI 60 =5y, < or ) T Zeme 06 \"% 99 ) T 2sme 062
Earth: (8.40)
9 _ 9 2 Of 1 0% f 1 Kl of
ViF3:9,0,8) = (3+710)% 03 <(3 +70) 03 > + (34 r0)? cos? ¥ D¢? + (3+10)%cos OV cos ¥ o

Other uses of V are important to know, see Table 8.1. Perhaps the most important identities using
second derivatives of V are the following, which are true for any scalar f and any vector v:

V- (Vxv)=0, (8.41)
V x (Vf) =0. (8.42)

The following few sections will exploit these identities.
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8.5.5 Application: Vorticity and Divergence

Typical motions of a fluid are continually churning at all locations. The equations to govern this
motion are complex, as we will see when we discuss them in the partial differential equations
chapter. Thus, it would be nice to simplify the motion by breaking it apart into different classes of
meaningful motion.

The divergent velocity is one type of meaningful motion. The equation for the conservation of mass
in a compressible fluid of density p and velocity u is

ap B
5 TV (o) =0, (8.43)

This equation states that if the density is to be constant at every point in space (%), then the
divergence of the flux of density pu must vanish.

One interesting example is that of a constant density fluid. In this case, the conservation of mass
becomes

V-u=0. (8.44)

The divergence of the velocity is zero. Thus, if there is to be no increase or decrease in density, the
velocity is constrained to not “pile up” anywhere. Divergent (or convergent) velocity fields tend to
change the density.

Another kind of meaningful flow is vortical flow. The vorticity, w of a fluid with velocity u is
w=VXxu. (8.45)

The vorticity describes how much the fluid is “swirling” about a given location (hence the fact that
solid body rotation has vorticity, as noted above). Does vortical flow lead to convergences? Does
convergent flow lead to vorticity? That is the topic of the next subsection.

8.5.6 Streamfunction and Potential: Helmholtz Decomposition

Any smooth vector in an infinite domain can be written as the sum of two parts, u = Uyet + Ugiy-
The rotational part u,,; may be generated by a vector streamfunction ¥: u,oy = V x ¥). The
divergent part ug;y can be generated using a scalar potential ¢: ug;y = —Vo.

Note that the V identities guarantee that

V-u=V- U+ V- ugy=V- ug =V, (8.46)
qu:Vxurot—i-Vxudiv:qurot:V(V-\P)—V2\I'.

Later, we will see that these two equations can be solved for ¢ and ¥ up to a meaningless constant.
Notice how the total flow field u is split up into a part that controls the curl and a part that controls
the divergence. If either vanishes, then we can take the remaining of uyo or ug;, as the whole of
the vector field. For example, above we showed that a constant density fluid obeys V - u = 0.
In general, a vector field whose divergence vanishes is called solenoidal or rotational. Thus, the
whole velocity field in this case is given by u,ot, which can in turn be generated by the curl of a
streamfunction W. The way to find this streamfunction is to examine the curl of the velocity—which
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we have already defined as the vorticity. Thus, the vorticity is the key indicator of flow in a constant
density fluid.

You have reached the cutting edge of research! This topic is fresh and important enough that
current publications feature extensions of the decomposition, like in my first paper (Fox-Kemper
et al., 2003).

8.5.7 Comnservative and Nonconservative Forces

Another use for the Helmholtz decomposition is categorizing forces into conservative and noncon-
servative forces. Boas (2006) discusses the relationship between work and potential energy. The
relationship between work done W and force applied F is

finish
W= F-dr=W. (8.48)

start
If the force and the work done result only from adding to or releasing energy from reversible process,
e.g., releasing potential energy, then can consider the total energy budget as W + ¢ = 0, where ¢
is the potential energy. In this case, the integral above is independent of path, and

W = —¢, .49)

F=-Vo¢. (8.50)

The (conservative) force resulting from a reversible process can be written as resulting from the
gradient of the potential.

If both conservative and nonconservative (such as friction) forces act, then we can use our V

identities to identify how much of the force results from conservative forces (F. = —V¢) and how
much results from nonconservative ones (F,, #).

F=F.+F,, (8.51)

VxF=VYxF'+VxF,, (8.52)

V-F=V.F.+V-F;" (8.53)

So, the categorization of conservative and nonconservative forces is a Helmholtz decomposition on
the forces.

8.5.8 S Waves and P Waves

Seismic waves are often categorized by whether they are waves of shearing (transverse) motion or
compressional motion, because the properties of solids mean that solids deform to shearing motions
differently than to compressional motions. Indeed, if you neglect viscosity, incompressible fluids
(i.e., liquids) behave as though they do not compress at all and as though they do not resist shearing
motions at all!

We define the displacement vector u(x,t), which is a vector field that maps the initial position x
of every piece of the solid to its time evolving location y,

y =x+u(x,t), (8.54)
u(x,t) =y — x. (8.55)
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For S waves, the displacements are purely solenoidal, and so could be related to a streamfunc-
tion,

V-u=0, (8.56)
u=V x. (8.57)
For P waves, the displacements are purely compressional, and so can be related to a potential,
Vxu=0, (8.58)
u=Vo. (8.59)
Thus, the separation of seismic waves into S waves and P waves is a Helmholtz decomposition.

Interestingly, near boundaries there are also waves that are neither divergent nor rotational-
Rayleigh waves. Their displacement field is trapped near the boundary, and has the properties
that

V-u=0,andV x u = 0. (8.60)

The surface water waves that we watch at the beach also are irrotational and nondivergent, and
(Fox-Kemper et al., 2003) examines irrotational and nondivergent transport by turbulence.

The displacement gradient is a second-rank tensor (!) which relates the change of displacements
from location to location, that is, how much the solid is deformed.

ﬁui
6.’Ej

= Vu(x, ). (8.61)

8.5.9 Toroidal/Poloidal Decomposition

After the Helmholtz decomposition is the toroidal /poloidal decomposition, where a solenoidal vector
field (uyot) can be further decomposed.

Urot = Ugor + Upol, (862)
Uior = V X (Y1), (8.63)
Upol = V X [V X (PpF)] = V(V - §pf) — V21t (8.64)

This decomposition helps to distinguish the symmetries of the vector fields around the origin, and
is often used in seismology to decompose the patterns of deformation of earthquakes.

We will return to the Helmholtz and toroidal/poloidal decompositions when we have the tools to
determine the streamfunctions and potentials.

8.6 The Fundamental Theorems: Integrating Vector Fields and
Vector Derivatives

Reading: Boas (2006, 6.8-6.11)

In one variable, the fundamental theorem of calculus relates the integral along the independent
variable of a differential to the value at the endpoints.
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Theorem 8.1 The Fundamental Theorem of Univariate Calculus:

/uv L(lit f(t)} dt = f(v) — f(u). (8.65)

The definite integral of a (total) derivative with respect to the independent variable is the difference
in values of the differentiated function at the endpoints.

This theorem comes up in rate and acceleration problems often. For example, the average velocity
over a trip is the difference in distance between the starting location and the ending location over
the total duration of the trip, which is an application of this theorem. Note that this result is
independent of the detailed accelerations during the voyage.

8.7 Integrating Vectors

Since integration is a linear operation, we can indefinitely integrate vectors component by com-
ponent and the result will still be a vector. Definite integrals of vectors require a bit more care.
However, just as there were particular combinations of partial derivatives (div, grad, curl) that are
important in differentiating vectors, there are particularly useful kinds of definite integrals that are
useful.

8.8 The Fundamental Theorems

8.8.1 Gradient Theorem

Reading: Boas (2006, 6.8, 6.9)

There are vector field analogs of this relationship that are crucial in vector analysis. The first is the
gradient theorem, which is closely related to the ordinary fundamental theorem, except the path of
the line integral through space is arbitrary.

Theorem 8.2 The Gradient Theorem:

b
/ V1) -dl = f(b) - f(a). (5.66)

The path integral of the gradient of a function is the difference in values of the differentiated scalar
function at the endpoints. Note that dl is a vector of length dl oriented tangent to the path of
integration, and 1 represents each location to evaluate the gradient along the path. Also note that
the result is the same over any path connecting the endpoints.

Application: Average Slope

An application of the gradient theorem is to consider the average slope of topography (the gradient
of elevation h) between two points. It is

1 b 1
Vh) = 5 /a VAQ) -l = o [B(B) ~ (@) (8.67)
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So, the average slope does not depend on the path taken. Some choices may have steeper bits
sloping downward, but they are always compensated by upslopes elsewhere. Some paths may be
longer, but with gentler slopes.

By contrast, the average velocity for a trip beginning at a at time t, and ending at b at time ¢,
is not an application of the gradient theorem, but instead an application of a vector version of the
fundamental theorem of calculus (8.65).

(u(r, 1)) = /tab %dt _ ’W (8.68)

8.8.2 Divergence Theorem

Reading: Boas (2006, 6.9, 6.10)

The divergence theorem (a.k.a. Gauss’s theorem or Ostrogradsky’s theorem) relates the volume
integral of a divergence to the surface area integral bounding the volume.

Theorem 8.3 The Divergence Theorem:
[[[v-v)av ={fv nds. (8.69)
\%4 A

The volume integral over V of a divergence of a vector is equal to the surface integral of the outward
normal component of the vector over a bounding surface S that encloses the volume V. Note that
the outward normal unit vector i varies in direction.

Application: Budgets

The most common application of Gauss’s theorem in geophysics is the conversion between a differ-
ential conservation equation and a budget equation over a volume. For example, the conservation

of mass in a fluid, based on the density field p(z,y, z,t) and fluid velocity u(zx,y, z,t) is
0
a—’to LV (pu) = 0. (8.70)

The volume integral of this equation over any volume that is fixed in time (e.g., an estuary, a model
gridcell, a melt inclusion) gives the rate of change of the mass inside the volume

%TT:%fﬂpdvzﬂf%pd‘/zfﬂfv-(pu)dv:—ﬁpu-ﬁds (8.71)
Vv Vv v

A

Thus, when the flow penetrates the surface bounding the volume, advecting dense or light fluid
into or out of the volume, the mass inside the volume may change. The change is determined by
the convergence (-1 times the divergence) of the density flux pu.

8.8.3 Curl Theorem

Reading: Boas (2006, 6.9, 6.11)

The curl theorem (a.k.a. Stokes’ theorem) relates the area integral of a curl to the line integral
integral bounding the area.
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Theorem 8.4 The Curl Theorem:

[[(Vxv)-hda=¢ v(1)-dL (8.72)
N 0A

The surface integral over A of the normal component of a curl of a vector is equal to the line integral
along the edge of that surface OA. Use the right hand rule, with thumb pointing in the direction of
n and fingers indicating the direction of the line integral element dl. Note that the integral will be
the same for all surfaces that meet at the same edge boundary.

Application: Vorticity and Circulation

A common application of Stokes’ theorem in geophysics is the conversion between vorticity w
(sometimes thought of as lines of vortex tubes penetrating a surface) and the circulation I'" around
the edge of that surface, which is just the line integral of the velocity along the edge.

w=V xu, (8.73)
Hw-ﬁdA:Hqu-ﬁdAzyf u(l) -dl =T. (8.74)

A A 0A
A differential equation governing the evolution of vorticity (%—f = ...) at every point in the fluid

can be derived from the momentum equations, and integrating it over the volume gives the rate of
change of circulation. This circulation constraint when applied to surfaces moving with the fluid is
called Kelvin’s Circulation Theorem.

8.9 Multivariate Taylor and Newton

Using the gradient, the linearized Taylor series for a function depending on a number of variables

(x1,x2,...,2k) near (aj,as,...,a,) can be written a little more simply.
oo n
f(z1,m9,. .., 21) = nz_;)i' ([ml — a1 88951 + [x2 — ag] 8(352 +oee [ — ag) 52,@) flai,az,...ak),
75)
~ f(a)+ [x—a]-Vf(a) (8.76)
Where we consider the independent variables of the function as a vector: x = (x1,z2,...,2%),a =
(a1,a2,...,ax). The gradient of the function V is taken with respect to each of these variables.

8.9.1 Multidimensional Newton-Raphson

Newton’s method (or the Newton-Raphson method) is a method for improving guesses to the
solution of a differentiable equation, which can be iterated (repeated) until a desired accuracy is
reached (or no solution is found at all). Typically, the method results in a convergent sequence
toward a solution of the equation. This is true in multidimensional cases as well as one-dimensional
cases, but sometimes the multidimensional version is less likely to converge (see Section 10.7.2).
The steps are as follows:
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1. Arrange the equation so that it reads: f(x*) = 0. The * indicates a solution to the equation.
There may be more than one. ..

2. Make a guess x; of x*.

3. Find an improved version by evaluating the Taylor series of the function at x;, and choosing
the next x;41 where the Taylor series estimate is equal to zero,

fxiy1) = f(xi) + Vf(zi) - (xi41 — %) =0, (8.77)
f(xi)V f(x:)

Vi (xi) V) (8.78)

Xit+l = Xj —

Step 3 can be repeated indefinitely. When you are near a solution, the steps will become increasingly
small and you will converge. If the solution converged upon is not the desired one, or the iteration
method diverges (which is rare), repeat the whole process from step 2 with a different initial guess.
In a computer program, you can estimate the derivatives required by finite differences. We note that
unlike the one-dimensional case, each Newton step may go in a different direction. It is therefore
possible to have complicated, indirect paths to finding the solution, and it is much more likely that
a solution will not converge.

8.10 Example Problems

8.10.1 Jargon to Argot

Example 8.1 The symbol V is described as a vector “operator.” What is meant by operator?

An operator is a mapping from one vector space to another or to a related scalar field. It is often
used generically to describe the execution of an operation that takes a vector field and makes a
scalar (called a functional in this case), or a vector field to a vector field (a vector function), or a
scalar field to a vector field (a vector-valued function of a scalar).

Example 8.2 Problem 6.4.17 Boas (2006).

Here is the answer to 6.4.17, which wasn’t assigned!
A force F = 2i — 3j + k acts at the point (1,5,2). Find the torque due to F. (a) about the
origin:

i j k
T=rxF=|1 5 2|=i(5-(=6))+j(4—1)+k(-3-10) = 11i+ 3j — 13k.
2 -3 1

(b) about the y-axis. We’ll use (3.10) of Boas (2006), first we note that fi = j, and thus
i (11i+3j - 1312) — 3.
(c) about the line z/2 = y/1 = z/(—2). We note that a point on this line is z = 2,y = 1,2 = —2.
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A unit vector in that direction is then,

21+1j—2k 2. 1, 2.

fo 2itlj-2k 2. 1. 20
B 22 +12 4+ 22 3133
- A N 2, 1, 24 2 2 N 22 26 51
i (117 ’—1k)= i ~(11' '—1k>:— AL )
n ( i+3j—13 <31—i-3 3> i+3j—13 3+ +3 3 7

Example 8.3 (Centripetal 2) Problem 6.4.8 Boas (2006 ).

In polar coordinates, the position vector of a particle is r = rf. Using (4.13), find the velocity and
acceleration of the particle.
v = dr fg%—r@ —f'g—&—m;%
oAt T dt dt = dt dt ’
dv dtdr _d*> dr .d¢ d¢ do ~d%¢
S T T TR e T TR T TR T
~de dr d?r  dr ~d¢ . do do ~d%¢

Cxa e ta’y Twaw

(% d¢1?\ [ d%¢ _d¢dr

Example 8.4 (Contrast to Exercise 8.5) Problem 6.8.17 Boas (2006). Which, if either, of the
two force fields F1 =Tyi + xj + zk, Fo = yi + xj + zk from Chapter 6 is conservative? Calculate
for each field the work done in moving a particle around the circle x = cost,y = sint in the (x,y)
plane. While similar to exercise 8.5, a shuffling of the values and directions leads to very different

forces.

i)k
g 090 0 s s - -
Fi=-k| — — — |=i j k(l-(-1)) =2k
VF= k| oo =100 450+ k(- (1) = 2K,
-y x z
Pk
g 090 0 s 3 -
Fo=-k| — — — |=i j k(l-1)=
VxEy = k| oo o o | =0 £5(0) 1k - )
Y x z

Thus, F is not conservative while Fy is. Therefore, no work is done by Fs in moving around a
complete circle. F; will take a little more work. We can calculate it in cylindrical coordinates, by

first converting with some geometry from i,j to #, ¢

i

f'cos¢—¢zsinqﬁ, j:f'sinqb+q3cos¢,
7 COS O, Yy = rsin o,

F, = —yf+:ﬁj+zf< = —rsing (fcosgb— ésingb) + rcos ¢ (f‘sin¢+g5cosgz5> +2R,

%Fl .d1:§£F1-ng5rd¢: 3]5 (rsin2¢+r0082¢>rd¢: o2mr? = 2.

X
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8.10.2 Scheming Schematics and Articulate Analysis

Example 8.5 (Gradient of r) Problem 6.6.17 Boas (2006). Find Vr, where r = /22 + y?,
using (6.7) and also using (6.3). Show that your results are the same by using (4.11) and (4.12).

5 8\/ O/ x2 + 9?2 i Uj
Y Vaz+y? o a2ty
T cos ¢ — qbsmqﬁ, j:l?'silrlgb—i—<znﬁcos¢7 X = 1 COS ¢, Yy = rsin o,

xn + y‘] = cos ¢ (rcos¢ <Z>b1n <Z>> +sin ¢ <rs1n¢ + qﬁcos (b) T,
Vai+y? a4y
6.7:Vr = r% =T

Quod erat demonstrandum.

Example 8.6 (Gravitational Potential of Thin Shell & Deep Domain) Problem 6.8.20 Boas
(2006). For motion near the surface of the earth, we usually assume that the gravitational force on

a mass m is F = —mgk, but for motion involving an appreciable variation in distance r from the
center of the earth, we must use F = —T%er = —%ﬁ = —%r where C is a constant. Show that

both these F's are conservative, and find the potential for each.

Thin, Cartesian system:

F = —mgk, VxF= =0,

/OZF.dlz/Odez:/OZ—mgdZ:—mgz:/OZ—Vg{)dZ:gf)(o)_(b(Z)'

Thus, F = —V(mgz).
Thick, spherical system:

o%"%»—w
o%‘%ho
g ¥lem

_ Ct_ Cr 0[1 9 cC) ef0CT
F_iriz_ r3’ VX E = |:€1D98¢7"2:|+ [097“2]_0’

/ dl = /Fdr_ /dr_:—/mwdr:—cb(rH@ﬁ(ro)

Note that we can’t take » = 0 as the reference point (as the forces are not well-defined there),
so instead we take an arbitrary constant radius ry as our reference. We choose ry < r, so that
F-dl = Fdr. The value of the potential there is not important, and our potential is (-C/r) so that
F=v<.

T

8.11 Homework Problems

8.11.1 Manipulation
Exercise 8.1 (Centripetal) Problem 6.3.17 Boas (20006).
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Exercise 8.2 (Direction of Decrease) Problem 6.6.2 Boas (2006).
Exercise 8.3 (Calculate Div, Grad, Curl) Problem 6.7.1 Boas (20006).
Exercise 8.4 (A Triple Product) Problem 6.7.18 Boas (2006).

Exercise 8.5 (Check for Conservative—Attraction to the origin) Problem 6.8.10 Boas (2006).

This problem was selected because it is very similar to Hooke’s law, which is a fundamental of solid
mechanics and gravitational attraction.

8.11.2 Application

Exercise 8.6 (Gradient of r) The combination of gravitation and the centrifugal force from the
earth’s rotation is a conservative force that can be expressed using the geopotential ¢ = mgz, where
z is distance from the surface and m and g are the constant mass and acceleration due to gravity. A
motion that results in a change in geopotential indicates the possibility that energy can be extracted
from the motion. Formulate a closed line integral (using Stokes theorem) for a route to school that
proves that “in my day, we had to go to school uphill both ways!” cannot require a net expenditure
of energy. Show that if there is a nonconservative force (e.g., viscosity of air, rusty bike wheels,
etc.) there may be a nonzero expenditure of energy in the round trip.

Exercise 8.7 (Stokes Theorem) a) Calculate the curl of the vector v.= (—y,x,0). b) Take the
area integral of (V x v) -0 over the surface of a disc bounded by 1 = 2% + y2. ¢) Take the area
integral of (V x v) -1 over the surface of the half-sphere bounded by 1 = x? + y? + 2> where z > 0.
d) Use Stokes’ theorem to find a line integral equal to both b) and c).

Exercise 8.8 (Divergence Theorem) a) Calculate the divergence of the vector v = (—y,z,1).
b) What is the area integral of v -0 dS, over any given closed area? c¢) Can you say anything
about its integral over an area that is not closed?
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Table of Vector Identities Involving V

Note carefully that ¢ and ¢ are scalar functions; U and V are vector functions.

Formulas are given in rectangular coordinates; for other coordinate systems, see
Chapter 10, Section 9.

8*¢ %0 8¢

Il T ) 2 (— 1 — -
(a) V V¢ =divgrad¢ = V¢ = Laplacian ¢ 822 T 32 T 922

(b) VX V¢ =curlgrad¢ =0
(¢) V(V V) =graddivV
L(8*V. 8%V, 8%V, L8V 8V, 8%V,
=W o T aae B “Naeae T B T
dx dxdy Ox0z dxdy Oy dydz
(BQVx a°V, 32Vz)
+k

820z T Bydz T 922
(d) V+(V x V) = diveurl V = 0
(6) V x (V X V) = curleurl V = V(V + V) — V2V = graddiv V — Laplacian V
(f) V. (¢V) =6(V V)] +V.(Vg)
(g) VX (¢V) =9¢(V X V) -V x (V)
() V- (UXV)=V.(VXxU)-U-(VxV)
() VX (UxV)=(V-V)U—-(U-V)V—V(V-U)+U(V-V)
() V(U-V)=U x (VX V)+(U-V)V+V x(V xU)+ (VW)U
(k) V- (Vo x Vi) =0

Table 8.1: Reproduction of page 339 of Boas (2006). Note that all of these identities are true
regardless of choice of coordinate system.
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Chapter 9

Ordinary Differential Equations

9.1 Introduction—Let’s Get Physical

We now have in place enough tools to talk about solving real problems—at least streamlined versions
of real problems. So, we will start motivating our study of ordinary differential equations with real
applications.

Even so, we will need to keep track of what kinds of equations are produced, because identifying
the kind of equation is key to choosing a solution method. Are they:

e Algebraic Equations or Differential Equations?
e Ordinary or Partial Differential Equations?

e First-order, Second-order, Other? (order refers to the highest derivative in the differential
equation)

e Linear or Nonlinear in the Unknowns?
e Constant Coefficient or Variable Coefficient?

e Inhomogeneous (Sources & Sinks) or Homogeneous (Just Free Modes and Responses to
Boundary or Initial Conditions)

9.2 First-Order Equations

Reading: Boas (2006)[8.1-8.3].

First, we will begin with the classic linear, first order, ordinary differential equation. Boas discusses
how to arrive at the general solution to such an equation on pg. 401. The equation takes the
form
dy
Vs Pla)y = Q(a) (9.1)
x
This equation is first order, because the only derivative in it is a first derivative. It is a linear
equation, since every operation on y is a linear one—including the derivative. Note that y is the
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106 9.2. FIRST-ORDER EQUATIONS

unknown, not x, which might be called the independent variable or the coordinate variable. This
equation could be nonlinear in z, e.g., P(z) = x2, and it would still be called a linear differential
equation because it would still be linear in y. If Q(x) = 0, the equation is homogeneous, or
unforced.

There are many methods for solving differential equations, but here we will often take advantage of
general solutions, or what I call “guess and check” where you have solved enough similar equations
to know what the solution will be like. The general solution to this equation is

y = effP(z) dx/ <Q(x)€fP(x)dx dac) + CeffP(z) dz (9.2)
You can verify that this is a solution to the equation by differentiation.

_ [ P(z)dz g _
dy B de [ P(z)dx | @) de [ P(e)de d f (Q(z)e LU) dCe [ P(z)dz
R T A CCC O R T Tt

= P(x)efp(x)da:/ (Q(x)efp(x)dx d:l?) + effp(x)dx (Q(x)efP(x) dz) + P(‘%_)Ceffp(gc)dx7

_ P(l’)y + 6fP(x)dz—fP(m)de($)’
= P(2)y + Q(z).

It is often the case that it is easier to check that you have a solution to a differential equation than
it is to find the solution, here it certainly is! This solution can be used for all linear, first-order
equations, although it might be hard to evaluate the integrals required. Even if you can’t do the
integration analytically, this form can still be useful in conjunction with computer approximations
to the integrals.

9.2.1 Application: Hydrostatic Balance

In motionless fluids, the balance of vertical forces is one between gravity and the vertical pressure
gradient force. Physically, we can think of this balance as “the pressure within the fluid is the
weight per unit area above.” For constant density fluids, this balance is pretty easy to think about,
but for variable density fluids, a differential equation is the natural way to express the balance, it
is

op
5, = 9 (9.3)

The pressure is p, the distance in the vertical is z, p is density (which can be a function of z), and
g is the gravitational acceleration (which also can be a function of z). Does this equation suit the
form of (9.1)7 Which is the variable, and which is the coordinate? Is it linear and first-order?

Let’s consider first what happens if density is constant p = pg. We can use our general solution
(9.2), but since P(z) = 0, it’s not hard to see that the general solution is just

p= —/pgdz+C. (9.4)

C is a constant of integration. Alternatively, we could have performed a definite integral over a
fixed range of z, for example,

p(=) — p(0) = — /0 " pgde. (9.5)
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Where does the value for p(0) come from? It is from additional information, called boundary
conditions or initial conditions, which must always be given along with a differential equation in
order to find a solution that doesn’t have integration constants lingering. Usually, there will be as
many boundary conditions as the order of the differential equation.

So, let’s examine a few specific examples: atmospheric pressure, ocean pressure, and Airy isostasy.
Atmospheric pressure is the easiest one to begin with, as up in space, both the density of the
atmosphere and the pressure are zero.

The pressure of a gas can be approximated with the ideal gas law, which can be written as
p = pR,T. (9.6)

Where the variables are pressure, density, specific ideal gas constant, and temperature of the gas.
To a sufficient approximation for the purposes here, we can assume that the atmosphere is all the
same temperature (isothermal at Tp) and constant composition, then R, ~ 287.058 Jkg=! K~! and
p «x p. Plugging into the hydrostatic relation,

__ g
6,2 RSTO '

(9.7)

If we neglect variations in g (which is acceptable if, like on Earth, the atmosphere is thin when com-
pared to the radius of the planet), then the hydrostatic relation is linear with constant coefficients.
The solution is therefore given by (9.2) with @ = 0, P = R;Tpg, and the solution is

p = Ce 9%/ (BsTh) (9.8)

The value of C is set to be the pressure at z = 0, or pg, which we can consider to be sea level pressure
near 1 bar or 1 x 10° Pa. If there were no winds, then the pressure everywhere at sea level could
take this value, but pressure varies as the atmosphere is moving and thus not actually hydrostatic.
At very large altitudes, the pressure goes to zero. The rate at which it decays is g/(RsTp), which is
sometimes called the density lapse rate and is 0.11km™!, or the pressure and density of air decrease
by a factor of e with every 9km of elevation. Returning to the notion that the hydrostatic pressure
is the weight per unit area above, 1 x 10°Pa =1 x 10°Nm~2 = (9.81ms~2)1 x 10*kgm~—2.

The ocean is a nearly incompressible liquid, so instead of a density that is proportional to pressure,
it is very nearly constant at pg = 1 x 103 kgm™3. So, for the ocean, the hydrostatic relation is

op
92 —pPog- (9.9)

The solution to this equation is easily gotten from (9.2) with Q = —pog, P = 0, or

p= / (—=pogdz) +po = —pogz + po. (9.10)

The pressure increases linearly instead of exponentially. However, both linear and exponential
functions can be solutions to linear differential equations! If we continue to take z to be zero
at sea level, then pg is still 1 x 10° Pa. As z becomes more negative, the oceanic pressure in-
creases. However, since seawater is much heavier than air, the pressure increases at a rate of
pog =1 x 103kgm=2(9.81 ms~2) = 1bar/10m. That is, every 10 meters of ocean water weighs the
same as the whole atmosphere above it.
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Note how the boundary condition in the oceanic case was the pressure matching at the air-sea
interface. The idea of matching pressures, one at a time, is the basis of Airy isostasy, which is
a simple theory to explain the thickness of continental crust versus seafloor versus crust under
mountain ranges (11.54). In this model, consider beginning at the top of the domain and inte-
grating downward. The pressure at isostatic compensation surface 2 is pg + p.gc under the plains,
poe—9ht/(BsTo) 4 pcg(hy + ¢) under the mountains and pg + pwgha + peg(c — ha — b2) + pmgbs. If
the pressure is to be equal horizontally at the mountaintops (i.e., hydrostatic atmosphere) and the
pressure is to be equal horizontally somewhere in the mantle (isostatic compensation surface 1), and
pw~1x103kgm™ < p. ~ 2.8 x 103kgm ™3 < p,, ~ 3.3 x 103 kgm ™3, then it is a straightforward
exercise to integrate again to isostatic compensation surface 1 and see that the crustal thickness
must be greater under mountains and less under the sea. If not, the crust would rise or sink to
compensate (as it indeed does during ice ages, when water, or snow and ice, covers the mountains
and plains, t00).

Topographic surface
Sea Level

e

CONTINENTAL CRUST Isostatic
c compensation
surface 2
P, b

| Moho

. e
2 b, Isostatic
MANTLE compensatlon

surface 1
L=
.................. ol

h,=elevation of mountain belt (above sea level)
h,=depth of marine basin (below sea level)
b, =thickness of crustal roots (below depth of Moho in a cratonic area)

b,=thickness of lithosphere mantle bulge (above depth of Moho in a cratonic area)

¢ =thickness of continental crust in an undeformed (cratonic) area (ca. 35 km)

p,, = density of sea water (ca. 1,000 Kg/m?)
p, = density of continental crust (ca. 2,800 Kg/m?)
p,, = density of mantle (ca. 3,300 Kg/m?)

Figure 9.1: A schematic of some typical versions of Airy isostasy, (Wikimedia Commons)

9.2.2 Application: Estuarine Flow
The most essential use of the equations of motion of a fluid is to calculate budgets over a known
volume or mass of fluid.

Perhaps the nicest example of this in oceanography is the flow into and out of estuaries. This
estuarine circulation is a useful example of the use of volume and salt conservation attributed to
Knudsen (1900).

Here, we will:
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PRECIPITATION
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Figure 9.2: This figure schematizes the situation (Pickard and Emery, 1990). Generally, there is a
two-layer flow over the sill, runoff, evaporation and precipitation.

—_

. derive the budgets for volume and salt conservation,
then do examples from the Black and Mediterranean Sea (from Pickard and Emery, 1990),

consider pollutants along with salt,

L

and finally solve a time-dependent differential equation problem to demonstrate the role of
’the flushing timescale’.

We begin with the conservation of mass

ap B
a—i—V'(pu) =0 (9.11)

Which is replaced by conservation of volume (for an incompressible fluid, where p can be approxi-
mated as a constant in space and time):

V-u=0. (9.12)

Conservation of salt is (neglecting molecular diffusion):

a5
o TV (Su)=0 (9.13)

We note that salinity can change (e.g., by evap./precip.), but it is the quantity of water that changes
not the mass of salt.

We proceed by volume integrating the differential equations over the estuary.
V-u=0 (9.14)

applies everywhere, so

0= [[[ v uav = v -ada. (9.15)

September 9, 2019 Version



110 9.2. FIRST-ORDER EQUATIONS

Where [[[ dV is by Gauss’s divergence theorem equivalent to ¢ dA over the enclosed surrounding
surface. We break up the surface integral, to find out how the total volume of fluid in the estuary
is conserved:

0= ffu-ad, (9.16)

= [[waa+ [[wda+ [[Eda— [[ Paa+ [[u.da.
A Az Agp Ap AR
Renaming using volume fluxes [V] = L3/T:

0:/ uldA—i—/ uydA + EdA—/ PdA+/ u, dA.
A As Ag Ap Ag

0=Vi+Vo+ AgE — ApP — R, (9.17)
=i+ V.- F. (918)
Where F is the freshwater supplied to the estuary by the combination of precipitation and runoff

minus evaporation.

Recall: conservation of salt gives the equation for salinity. We can use it together with V - u =
0.

03
0="2/+V-(us). (9.19)

oS
Integrate to find a steady state (a ~ 0) balance:

0= [[[ v us av = {f su-nda. (9.20)
Little salt in rivers, and evaporation & precipitation carry no salt, so

O:ﬁsu-ﬁdA:ﬂsu.ﬁdA+HSu-ﬁdA.
Aq Ao

We want to relate the inflowing or outflowing salinities to the average salinities in the basin they
come from, which we will do in a moment. For now, formally, we can define velocity-weighted
average salinities S7 and SS9, so

0= Su-ndA + Su-ndA,
A1 A2
— S1V1 + SaVa.
Where we define
Su-ndA
Sl = —fAl A dA .
fA1 u-n

But, more loosely, we often assume that each basin is well-mixed in the interior, so there is a typical
incoming salinity and a typical outgoing salinity, which makes approximate values for S; and Sy
clear.
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(a) for MEDITERRANEAN (b) for BLACK SEA
V; — 3 Vv
o i «—YVo .
= S; * 36.3%e — PR RO & SolT%s _ _30m &
P eccca- L g s i < V: N
<zt So Liyet: i,/ g S! = 35 %
o 9 e s oo 70m“f z‘,
:I- = 7/ /// - ¢
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Figure 9.3: Classic exchange flows from (Pickard and Emery, 1990). The Mediterranean and the
Black Sea exchange flows.

So, we have two equations so far
S].‘/].:_SQX/Qa ‘/]_"_‘/QZF

We can eliminate either Vi or Vs using

N —SQVQ o —Sl‘/l
To give
Fop—%2 Fon25 (9.21)
Sl 52

We will now do two classic examples from Pickard and Emery (1990): the Mediterranean and the
Black Sea. The Mediterranean has a sill depth (at the Strait of Gibraltar) of 330m. It is observed
that

S1 = 36.3%,

Sy = 37.8%,

Vi=-1.75x10°m?s™! = —1.75Sv.
Where the Sverdrup, 1 x 10m?s~! = 1Sv, is a useful oceanographic unit.

So, we can infer from

S1 = 36.3%, Sa = 37.8%,

Vi = —1.75Sv,
-51Vi Sy — 5
Vo = F =V
2 52 b 1 SQ )
that
Vo = 1.68Sv, F = —0.07Sv.
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So, for a tiny amount of net freshwater loss (through evaporation exceeding precipitation and
runoff), a huge exchange flow is required, with an outflow of salty water exiting at depth and
fresher Atlantic water entering at the surface.

The Black Sea has a sill depth (at the Bosphorus) of 70m. It is observed that

S1 = 17%o,
Sy = 35%o,
Vi =13 x 103 m3s™ 1.

So, we can infer that

Vo =—6x10°m3s7!, F=7x10m?s7 !

Compare the two basins:

Mediterranean:
S1 = 36.3%0, So = 37.8%0
Vi=—-1.75x10°m3s™ !, Vo = 1.68 x 10°m?3s~!,
F=-7x10"m?s 1.

Black:

S1 = 17%0, So = 35%0
Vi =13x10°m?s 1, Vo = =6 x 103 m3s™*,

F=7x103m3s L.

Mediterranean has outflow at depth, which is 25 times the volume of freshwater. Black has inflow
at depth, which is nearly the same as the volume of freshwater.

Key differences: the amount of mixing in basin (Med. has S; &~ S, while Black has S; < S2), and
inflow /outflow at surface governed by freshwater deficit/supply (assuming S1 < S2).

We could also treat pollutants P, not just salt. We do not expect (fear?) that there will be enough
pollutants to appreciably change the density of the fluid or the flow rate, so we can incorporate
the pollutants into the same steady state solutions we just investigated. Let’s begin, for simplicity,
with a steady source of polluted river input of a given concentration Pg.

%7; +V . (Pu) ~ V- (Pu) ~ 0. (9.22)

The pollutants will have river sources, and potentially an exchange at sill, so the steady equation
is

ViP1 + VoP2 = RPg. (9.23)

Suppose we have constant pollutant concentration in river discharge in Black Sea, then

FrAR=7Tx103m3s71, Vi ~ 2R,
732%0.
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So, the steady state result will be

ViP1 + Vo'P2 = RPr,

1
P~ i,PR
Thus, the incoming pollution is diluted to only half the original riverine concentration in the Black
Sea.
If we follow the pollutant through the Bosphorus (Pg) out into the Mediterranean (treat it as a
river source there), then we have Black Sea sources:
1
Pp = 5 Pr Vg =13 x10°m3s™?
And the Med. steady-state budget will be
1
ViP1 + VoPy = VpPp = VB§PR.

Using our Med. numbers and a clean Atlantic,

Vi=—-1.75x10m3s™, V5 = 1.68 x 10°m3s~ 1,
P1=0.

We find the Med outflow is very dilute

1

732 ~ %PR

Reinforcing our notion that the Med. is better mixed than the Black Sea.

We have, however assumed a steady state pollution problem and consequence. While volume and
salinity conservation didn’t require strong time dependence (at least, when neglecting seasonality,
etc.), pollutants do, because they often result from temporary spills or begin when a factory is
built, etc.

Suppose we start polluting the rivers all of a sudden, when there is no pollution of that type in the
Black Sea or the Mediterranean, then

%ﬂ PdV =~ () Pu-ads

We know the steady-state solution if this new pollution source stays constant Pgs (we just did it!),
so let’s see how long it takes to get there.

How long does it take to reach steady state? We can subtract the volume integral of the steady
state solution from that of the time-dependent one, to find

%jﬂ(? —Py) AV = = (f(P - Py)u-hds,
d

VOI@(P - Pss> = VR(PR - PR;ss) - V;)ut (Pout - Pout;ss)a
d ‘/out

*<P - 7755> = _ﬁ(

dt Pout - Pout;ss) .
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Angle brackets are volume averages, and Vol. is the volume. The last step followed from the steady
state solution (9.23). If we assume a well-mixed basin, the outflow concentration, P,,;, will be near
the average (P), so

Vout
Vol.

d
%<’P_/P55> + <P_PSS> ~ 0

This is our desired linear, homogeneous, constant coefficient differential equation. The (constant)
coefficient that is outflow over volume is one over the flushing time, 74 = Vol./Vyy. In the
Mediterranean (Vol.=3.8 x 10> m?) 7; is about 70 yrs, for the Black (Vol.=6 x 101 m3?s™1), it’s
about 1500 yrs.

How to solve it? We can guess that the solution looks like it might be an exponential, since the
derivative of (P — Pss)

d Vout
— (P — Pss) = —
dt< ) Vol.

—t Vout

(P — Pgs) — (P — Pss) ~ Ae™"Vol.

The only question remaining is how we find the constant A. It comes from the initial condition,
which was to have no pollution in the estuary, which we can arrange for by a choice of A =

_<PSS>7

(P) ~ (Pu) + A8 = (P) (1 et ) (9.24)

This formula works for both the Black Sea (where (Py) ~ 3(Pg) and 74 &~ 1500 years) and the
Mediterranean (where (Pys) & 55(Pg) and 77 &~ 70 years). Alternatively, we could have used the

VOU .
formula on Boas (2006) pg. 401, which in this case is just Ae '+’ so it amounts to the same
thing.

OK, the differential equation part of that went quickly, so let’s review what happened. We boiled
our partial differential equations for mass, salt, and pollution to ordinary differential equations for
the same. We then set the time derivatives equal to zero and found steady-state solutions for the
(algebraic) relations that resulted, which is what Knudsen (1900) proposed. Then, we decided to
keep the time derivative on the pollution concentration equation. This resulted in a first-order,
constant-coefficient, homogeneous differential equation. We solved it by guessing an exponential
and checking the solution, which required setting one constant to fit the initial condition (it was
only one constant because the equation was first order).

9.2.3 Application: Earth Energy Balance Model

Let’s try a slightly more complicated problem, which still results in a first-order differential equation—
albeit a nonlinear one (Sellers, 1969; Ghil and Childress, 1987; Zaliapin and Ghil, 2010). Like the
salinity and pollution problem, it is an integration of a budget. In this case, it is an energy budget
of the whole earth. At the top of the atmosphere, energy can only be transported into and out
of the earth system by radiation. Thus, the two transport terms in this theory are the incoming
and outgoing radiation from the earth. So, the following system of equations is used to predict the
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Figure 9.4: Figures from Zaliapin and Ghil (2010) showing the changes in albedo and absorbed
radiation.

behavior of the mean temperature 7.

ar

¢y = BilT) = Ro(T), (9.25)
C

Ri=puQo(l —a(T)) = uQo |1 — <01 + 52 [1 — tanh(k[T" — TA])) , (9.26)

ice albedo

T6

R,=o0g(T)T*~ ¢T* |1— mtanh 75 )| (9.27)

radiation

water vapor

The heat capacity of a square meter of earth is ¢ (about 1 x 10" JK~'m~2 for the average at-
mosphere, about 1 x 10'° JK=! m~2 for the average ocean). R; is radiation input of energy from
the sun—minus the reflected part which is controlled by the albedo a(7T). Qo = 342.5Wm™2 is
average solar energy input per square meter which is % of the solar constant of 1370 W m™2. The
albedo «(T') depends on temperature through the ice-albedo or other feedbacks, and 7" is the tem-
perature of the earth in an appropriate mean). The parameter p can be used to describe effects
such as variations in where on earth the outgoing radiation is generated, i.e., high clouds (cold)
or low clouds (warm). The outgoing radiation is taken to be R, = og(T)T*, which is taken to be
nearly the blackbody radiation given by the Stefan-Boltzmann Law times a “grayness” parameter
(Sellers, 1969, with ¢ = 5.67 x 107 Wm™2 K_4,T0 = 284.146 K). The form for g(T") is a simple
approximation to the greenhouse effect due to the water vapor feedback, it describes how much of
a “graybody” the earth is as opposed to a blackbody where ¢g(T") = 1. The other dimensionless pa-
rameters will be replaced by typical constant values from Zaliapin and Ghil (2010) (see Table 9.1).

A blackbody is a physical idealization of an object that absorbs all incident radiation, and then
re-emits it according to the Stephan-Boltzmann law. That law states that the amount of energy
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Description ‘ Symbol ‘ Value
Solar constant 4Qq 1370 W m 2
Average insolation Qo 342.5 Wm 2
mean albedo cl 0.15
T sensitivity of albedo c2 0.7
Albedo change rate K 02K 1!

Temp. of central albedo T, 273K
Stephan-Boltzmann constant o 567 x 108Wm—2K "
Grayness I 1.0

Cloudiness sensitivity m 0.4
Temp. of central cloudiness To 284.146 K
Heat capacity per sq. meter c 1 x 10" JK~'m~=2 for full-depth ocean

1 x 107" JK~'m™2 for full column of atmosphere

Table 9.1: Constants of the Zaliapin and Ghil (2010) model.

per unit time per unit area emitted by a blackbody is a function of temperature only. Real objects
are not as efficient at emitting radiation as a blackbody, and so a greyness parameter, or emissivity,
relates what fraction of the theoretical blackbody radiation is realized. On planets with a greenhouse
gas atmosphere, the emissivity is a strong function of the concentration of these gasses, hence in
our earth case, g(7T).

This set of equations is nonlinear, so an assumed exponential form will not work, nor will the solution
from Boas (2006). What can we do? Well, we can restrict our attention to small deviations in T’
away from an equilibrium (steady state) solution. Let’s first find the steady state solutions after
plugging in most of our choices of constants.

dT
¢ =02 0=Ri(T) = Ro(T), (9.28)
0.2
Ri = 1Qo(1 — a(T)) ~ uQo 0.5 + 0.35 tanh <K[T — TC]> (9.29)
TG
R, = og(T)T* =~ oT* |1 — 0.4tanh 75 ]| (9.30)
0

0.2
0 = uQo | 0.5 + 0.35 tanh (K[T - TC]>

T6

—oT* |1 —0.4tanh <6>
T,
0

This equation is a bear to solve, but we can do it numerically with Mathematica using Newton’s
method. We can see from the graph that there will be 3 relevant solutions for gy = 1. They are
T ~ 174.438K,276.217K, and 297.805 K. The mean surface temperature of the earth from 1961

to 1990 was 287.2 K, so these numbers compare favorably (as the choice of parameters is meant to
do).

For reasons we will discuss later when we get to dynamical systems, the highest temperature solution
is supposed to represent our climate. So, let’s expand in a Taylor series around Tgs1 = 297.806 K
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Figure 9.5: Figure from Zaliapin and Ghil (2010) showing the incoming radiation (solid lines)
for some values of p and outgoing radiation (dashed line). There are three possible steady state
solutions (where R; = R,) for u = 1, and one possible for y = 0.5 or p = 2.0.

with = 1.
c% — Ri(T) — Ry(T), (9.31)
Ri(T) =~ Qo [0.5 + 0.35 tanh(x[T — T.))] , (9.32)

~ Qo [0.5 + 0.35 tanh(k[Tss1 — Tt])] + 0.35Qok cosh™2 (k(Tss1 — Tp)) [T — Tss1] + - - .,

~291.113Wm ™2 | 141.616 x 10 ° K (T — Tye1) — 3.23 x 107 K™2(T — Tig1)? + . ..

pos. feedback

6
—Ry(T) ~ —oT* |1 —0.4tanh <T6> :
TO

TS T$ 0.679 TS
~ —oTt; |1 —0.4tanh <T61> —4T3,0¢1—0.4tanh ngl - Tﬁssl cosh™2 T—Gl (T — Tys1) + ...,
0 0 0 0

~291.113Wm ™2 | =1 -94x 103K YT — Tye1) — 7.3 x 10 ° K 3(T — Tea1)* + ...
neg. feedback

dT 2.73Wm 2K !
T (T — Tss1) + ... (9.33)

C

neg. feedback

For deviations in T that are less than 5K from Tis1, the first order term is the largest in R;, so
this is roughly the range where the linear equation is accurate.

OK! Now we have our linear, homogenous, constant coefficient, first-order equation (9.33). Let’s
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solve! Suppose the earth is warmed or cooled AT away from the steady state value by a temporary
process (El Nino!), then

T — Ty ~ Ae /™ = ATe Y7,

L c ) 36X 10%s = 0.12yr atmosphere only
C2.73Wm 2Kt 3.6 x 10°s = 120yr  atmosphere and ocean

So, we see that the anomalous flux of energy divided by the heat capacity provides the timescale
for restoring back to the steady state value. Notice how the huge heat capacity of the ocean slows
down the timescale over the atmosphere only. Also, notice that it doesn’t matter whether the
perturbation is a warming or a cooling. Finally, the imbalance per Kelvin is extremely small, under
1% of the incoming radiation—this explains why it is so hard to model global warming!

9.2.4 Feedbacks

Discussions of climate are often filled with assertions about positive and negative feedbacks. A

negative feedback is one that tends to restore the system to the steady state value. In a linear,

homogeneous differential equation, the feedback can be determined by the coefficient of the linear

term. In the preceding example, we examined the solution near the Tss = 297.806 K steady state

solution. In this case, the radiation back to space had a negative feedback (the coefficient for the
dr

(T — Tss1) term in the G equation from R, was negative). The ice-albedo feedback was positive,

but it was too small to change the overall stability of Tiq1.

If we follow the same procedure, but for the T4 = 276.217 K steady state solution, we find

dr
¢S = Ri(T) = Ro(T), (9.34)

Ri(T) ~239.244Wm ™2 [ 14+6.797 x 102K Y (T — Tys2) +... |,

pos. feedback

—R,(T) ~239.244Wm2 | =1-9.152 x 10 3 K Y (T = Tyeo) +... |,
neg. f;gdback

dT _ 141Wm2?K™!

E ~ c (T - TSSQ) + P (9.35)
pos. fg;dback
- c
T — Ty~ AT, 7= W T (9.36)

Thus, near this steady state, the positive ice-albedo feedback wins over the radiation to space
negative feedback. Thus, this steady state is unstable to perturbations. When initially perturbed,
the temperature moves away from the steady state exponentially fast, rather than exponentially
decaying back to it.

For first-order, homogeneous, constant-coefficient, linear, ordinary differential equations, these are
the only two possibilities—exponential decay or exponential growth.

It is also possible to have nonlinear feedback mechanisms. These may be negative or positive for
small deviations and the opposite for large deviations. Indeed, the nonlinear ice-albedo feedback
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here is a major reason for the number and complexity of the solutions in this model. However,
in linear models (or after a nonlinear model is linearized by a Taylor series) feedbacks are simply
positive or negative.

9.3 Second-Order Equations and Coupled First Order Equations

Reading: Boas (2006)[8.5].

A second-order differential equation involves more derivatives of the unknown function. We saw
that a linear first-order equation with steady forcing and constant coefficients can either converge
to a steady-state exponentially or diverge from it exponentially quickly. Solutions to a second-order
system can also converge or diverge exponentially, or they can oscillate, or they can converge or
diverge while oscillating.

9.3.1 Application: Buoyancy or Brunt-Vaisala Frequency

The vertical momentum equation for a parcel of fluid, following the motion of the parcel, in a
density stratified fluid is

dw _ 9p _
pdt 0z Pg:

Where p is density, w is vertical velocity, p is pressure, and g is gravitational acceleration. The
hydrostatic balance provides the pressure that results in a motionless fluid, which is just the steady-
state balance of this equation,

o _ _
8. Y

What if we displace the fluid parcel a distance Az away from the location where it would be mo-
tionless? Then, we expect it to experience buoyant forces—it it is more dense than its surroundings
then it will sink, and if less dense then it will rise. This is most easily studied if the pressure before
displacement is taken to be hydrostatic and unaffected by the displacement, and if the displaced
parcel maintains its original density p(z). Then, the parcel of density p(z) finds itself located at
z + Az where the pressure is based on a different density,

Op(z +Az)
a0 p(z + Az)g,
dw  Op(z+ Az) B
Py =" g, PRg=plz+Az)g - p(z)g.

If the displacement of the parcel is Az, then the vertical velocity will be related to the variations
2
in time of this quantity, or ©42 =

2 = %U' The density difference can be related to the displacement

0
by a Taylor series: p(z + Az) — p(z) = 8—p Az + .... Thus, for small displacements,
z
d?Az _g0p

@ S os Az = —N?Az. (9.37)
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—g 0
Where N, the buoyancy or Brunt-Vaisila frequency, is defined to be -9 —p. Let us suppose

po Oz
that this quantity is constant.

Then (9.37) is a second-order, linear, homogeneous differential equation with constant coefficients.
We again assume a solution of the form,

Az = Ael™.
But, when we plug this in, we find 2 possible general solutions!
Az = Ae'Nt, Be7 NVt
Or equivalently,
Az = (A+ B)cos(Nt) + i(A — B)sin(Nt),

Az = A+ B.

t=0

If we take 2H as the initial displacement height at ¢ = 0, we see that A+ B = 2H, but what about
A — B? How do we find the value of the difference? We need to find another initial condition.

If we assume that the displacement occurs such that the velocity is 0 at ¢ = 0 when Az = 2H,
then

Az = 2H cos(Nt) +i(A — B)sin(Nt),

dAz
dt

=w| =0=i(4A-B),
=0 =0 ' 4
Az = 2H cos(Nt) = HetNt 4 He Nt

Note that you could go wrong by forgetting to look for the second general solution, and it would
only be at the end of the problem when matching initial conditions that the error would be re-
vealed.

Second order differential equations can indeed result in oscillations (describable by either sines and
cosines or a pair of complex exponentials). This may remind you of Fourier series, which as we’ll
see is not coincidental!

An Alternative—Two Coupled First-Order Equations

What if we had stuck with w instead of replacing it with dZtAzz? Then we could have included the
equation for w, as in
dw

—— ~ —N2A 9.38
T z, (9.38)

dAz
dt

= w.

We know these two first-order equations are exactly equivalent to the one second-order equation in
(9.37), but don’t we already know that first-order equations only decay or grow exponentially? This
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set of first-order equations and the second-order equation (9.37) oscillate. It is true that first-order
equations standing alone with constant coeflicients do not oscillate. However, here we have coupled
first order equations.

Coupling is the term for when the variable that appears inside the derivative (here w and Az,
respectively) appear as a coefficient or parameter in the equation for the other variable. So, the w
equation here is not an exponential decay or growth because the Az appears on the right-hand side
and it is not a constant! Likewise, w is not a constant and it appears in the z equation. In fact, in
general any higher-order equation can always be written as a set of coupled first-order equations,
with new variables being added (as w was added here).

9.3.2 Application: Chemical Reaction Kinetics

In a closed system at constant volume, the chemical reaction
zX +yY — pP + qQ,

occurs at a rate determined by the concentration of each of the reactants ([X], [Y]) and products
([P],[Q)]) based on their stoichiometric coefficients z,y, p, q. The reaction rate is
—-1d[X] -1d[Y] 1d[P] 1d[Q]
r=————== — = — = —
r dt y dt p dt q dt

(9.39)

Often a reaction rate depends on temperature 7', or other factors, as well as the concentration of
the reactants, according to

r = k(T)[X]"[Y]", (9.40)

where m,n are the order of reaction for X and Y. If the reaction is simple (single-stage), then
m = x and n = y, but often reactions involve intermediate products that limit the rate of the
overall reaction, so equality between the stoichiometry coefficients and the reaction orders needs to
be determined experimentally.

In a closed container, the amount of a reactant may be limited. Suppose reactant X is much less
abundant than Y, then we can model the concentration change in [X] by

-1dx] .
— g == kDX (9.41)

If m = 1, and the concentration [Y] is constant (because Y is so much more abundant than X),
and the temperature is also nearly constant, then we expect

LAY L i) = [XJe 7,7 = ((T)[YT™)

-1
x dt T '

(9.42)

Thus, we have another example involving first-order, constant-coefficient, linear ordinary differential
equations.

9.4 Inhomogeneous, Constant, Linear Second-Order Equations

Now we turn to a problem where the second-order differential equation is not homogeneous.

September 9, 2019 Version



122 9.4. INHOMOGENEOUS, CONSTANT, LINEAR SECOND-ORDER EQUATIONS

{4

Slider :U(t)

Figure 9.6: This figure schematizes the stick-slip situation (Campillo et al., 1996), the right side of
the spring is drawn at constant velocity V', and the mass m responds via stretching of the spring
under a static or dynamic friction proportional to the (constants) normal force S and friction
coefficient p.

9.4.1 Application: Stick-Slip

Reading: Boas (2006)[8.6].

A similar set of equations to those for buoyancy oscillations occurs if we take a solid and deformed
it according to Hooke’s law for displacements in an elastic medium (i.e., masses on springs). Let’s
consider an interesting case of Hooke’s Law, the equations of stick-slip motion used to model
earthquakes. The equation of motion for the stick-slip situation is

mcif:(k[Vt—a:—D]—,uS)?-L[k:[Vt—x—D]—,uS}

Where H is the Heaviside function (zero when it has a negative argument and 1 when it has a
positive argument). If we restrict ourselves to times when the mass is always slipping, then the
Heaviside function is just 1, and

d?z

@:k[Vt—a;—D]—,uSz—k:c%—k(Vt—D)—,uS.

m

Now we have two parts of the solution for z, one part that is the wavelike part (satisfying mdjﬁc

—kx.) which is the solution to the homogeneous equation (and Boas calls the complementary
solution) and another part describing the dragging flow x = (Vt — D) — uS/k which Boas calls the
particular solution. We can add them together to find a general solution,

x = AetVF/Mm L BeTtVEIM L (Vi — D) — uS/k.

2
Tp
t2

unlike in the first-order equation set, where we set the derivative to zero and looked for steady

state solutions to eliminate the inhomogeneous terms, in second-order equations you can’t assume

2

d°x
that setting dt2p =

solution (including

Note that in this case, it was fairly easy to find the particular solution, since = 0. However,

0 is allowed to find the particular solution. Sometimes finding the particular

2

d
dthp # 0) might be the hardest part!
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9.5 How Many Solutions? Constants? Boundary and Initial Con-
ditions?

For first-order equations, our general solution had one unknown and we used one initial condition
(for time-based problems) or one boundary condition (if the derivative had been with respect to
space). For second-order equations (or two coupled first-order equations), the general solution has
two constants and two initial conditions are needed. Let’s consider one final problem requiring four
unknowns and a bit of linear algebra to boot!

Suppose instead of one mass on a spring dragged along in the stick-slip problem, we had two of
equal mass and the second mass was dragged by a spring attached to the first (which was still
dragged by a constant velocity pulling its spring). The equations of motion are now,

d2
*dt? = (k[Vt—21— D] — k|1 — 22 — D] — pS) H [k [Vt — 21 — D] — k [z — 22 — D] — puS] ,
d2$2

m-a :(k:[:L‘1—:E2—D]—uS)H[k[xl—xQ_D]_us]

Again assuming that we are always sliding, not sticking,

2
dd:;' = (k[Vt — 21— D] = ko1 — 22 — D] — pS) (9.43)
d?x
m—g = (kw1 — 22— D] — uS)

We can write these two coupled second-order equations as a matrix equation! We can immediately
split into the complementary and particular solution, just as above.

mﬁ I ] —k —2 1 T
dt? ) - 1 -1 )
T _ Tpl Lcl
) Tp2 Teg |’

d | za -2 1 Tel -2 1 Tp1
mdtQ[ch _k[1 —1”gcc2 COERE T ] g

kVt—uS

| kD —pus

)

_l’_

T kD —pus

KVt — uS ]

We can solve for the particular solution by matrix inverse.
—1
Tpl . 2 -1
xpg - -1 1

But what about the coupled mess of an equation for the complementary solution?

iQ Lcl _E -2 1 Lcl
A2 | 22 | m | 1 -1 Tea |
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Vt—uS/kE | |1 1
12

Vit — uS/k ] _

Vt— D —2uS/k ]
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Well, we've seen that similar equations can be solved by assuming a form Ae™?, so lets try that

here. We will assume that both parts, x.1, zc2, of the solution have the same frequency.

2 Tel k -2 1 el
— — , 9.45
-2 1 Tel w?m Tel
=—— . 9.46
[1 —1][9:02] k T ( )
We'’ve seen an equation like that before—it is an eigenvalue-eigenvector equation! The comple-
mentary solution will be an eigenvector, and the eigenvalue will give us the allowable choices of

the frequency!! Or, completely equivalently, this is a homogenous equation and we are seeking
nontrivial solutions, thus the determinant of the coefficient matrix must vanish.

-2 1 Tel | Tel | _ _wzm Zel
3 V5 3 V5
T2 2= 751 (9.48)
Working through the linear algebra, the solution is
[ T | = (At 4 Beient) L+ ;/5 + (Cent 4 pemient) [ 1= ;/5 ] : (9.49)
c2 - -

I

So, in this coupled second-order set, there are four constants to determine, and four frequencies (two
pairs of opposites), consistent with solving the fourth-order characteristic equation for w.

In general, this will be the case for coupled sets of equations. The sum of the orders of the equations
will govern the number of constants (aside from linearly dependent redundancies), and there will
often be a role for an eigenvector complementary solution with eigenvalues as the frequency. Thus,
the idea that eigenvalues “characterize” the modes is borne out. Here we had a second order dif-
ferential equation, which featured the frequency (eigenvalue) squared, and setting the determinant
to zero for nontrivial solutions results in a fourth-order polynomial for w. If we had written this
equation as four first order equations (as in 9.38), we would have had 4 x 4 coefficient matrix, and
thus a fourth-order eigenvalue equation.

9.6 Example Problems

9.6.1 Jargon to Argot

Example 9.1 We are now fairly used to “linear” functions and equations. Are the solutions to
linear equations always straight lines?
No. The typical solution to a linear differential equation is an exponential or an oscillation, not a

straight line at all!
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Example 9.2 Problem 8.3.1 of Boas (2006). Using (3.9), find the general solution of the following
differential equation.

y +y=¢e" (9.50)

Hint: See comments just after (3.9), and Ezample 1.

ye’ = /e"reﬂc dx + ¢,

1
T __ ~ 2z §
ye —26 + ¢,
. —x
yfze +ce .

Note that no constant of integration is needed in I.

Example 9.3 Problem 8.5.3 of Boas (2006). Solve the following differential equation by the meth-
ods discussed in Boas. You do not need to compare to a computer solution.

y' +9y =0 (9.51)
d?y
L2 + 9y =0,

y = Ae 3" 4 Bedi®,

9.6.2 Scheming Schematics and Articulate Analysis

Example 9.4 a) Plot trajectories for T that converge toward or diverge away from the three steady
solutions of the Energy Balance Model of Section 9.2.3. b) Plot a timeseries of x1 and xa from two
different initial conditions, with each chosen to exemplify one of the two frequency pairs inherent
in (9.49). That is, use A = B;C = D =0 for one time series set, and A= B = 0;C = D for the
other.

In the EBM, the solutions all either exponentially converge or exponentially diverge. Here are
examples,

T,, + AT

Tss + AT
. t/T Tss ‘ 2 3 s st/’i'
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The solutions are

x1=Vt—D —2uS/k + [1 + \/5] (Aei‘”lt + Be_iwlt) + [1 — \/5} (C’emt + De‘iw?t) ,

7y = Vt—2D = 3uS/k — 2(Ac* + Be1t) — 2 (Cela! 4 Dt

Choosing arbitrary values for separation (D), rate of pulling (V'), and k, m, we find the two example
trajectories for the A = B,w; mode (left) and the C' = D,wy mode (right).

120 -

100 -
100 -

80+
80+

60 |- s0L

401 40[-

20+ 20F

-20F -20F

A few things to note. 1) Both positions are constantly moving, to avoid the sticking in the stick-
slip law. 2) The frequencies are different, with w; > we. 3) The oscillations in the w; mode are in
opposition, while those in the wy mode covary (up together, down together). The average velocity
of both masses is the same and is just V.

9.7 Homework Problems

9.7.1 Manipulation

Exercise 9.1 Problem 8.2.1 of Boas (2006). For the following differential equation, separate vari-
ables and find a solution containing one arbitrary constant. Then find the value of the constant to
give a particular solution satisfying the given boundary condition.

zy =y (9.52)

You do not need to compare to a computer solution.

Exercise 9.2 Problem 8.5.1 of Boas (2006). Solve the following differential equation by the meth-
ods discussed in Boas. You do not need to compare to a computer solution.

v +y —2y=0 (9.53)

9.7.2 Application

Exercise 9.3 Show that the general solution to the first-order, linear differential equation on pg.
401 of (Boas, 2006) is the same as the guess & check solution in (9.24) of these notes.
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Exercise 9.4 Find the leading order differential equation, by Taylor series expansion of the radi-
ation forcing, to the Energy Balance Model of Section 9.2.3 for the remaining steady state solution

(near Tss3 = 174.438K). Solve this differential equation, and decide if this third steady state is a
stable or unstable steady state solution.

9.7.3 Evaluate & Create

Exercise 9.5 Verify that the sum of the characteristic solution (9.49) and the particular solution
(9.44) constitute a solution to the original equations for the two sliding masses (9.43).
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Chapter 10

Dynamical Systems and Chaos

10.1 Introduction—Describing, Not Solving

A dynamical system involves three parts: 1) a set of variables describing the system state, 2) a set
of times when the states can be observed, and 3) a set of rules for evolving the state at one time
until the next. Newton’s laws are an example of a dynamical system, but more modern applications
include population mathematics, biology, and many geophysical processes.

As computers have become more powerful and software has become easier to use, the modeling
of dynamical systems has gone from a niche activity of applied mathematics and science to a
common method to study simplified models of complex natural systems. The approach of many
scientists when confronting complex dynamical systems has been to categorize the solutions as is
possible, but to rely on computers to provide the solutions to the equations. Thus, the theory of
dynamical systems often goes toward categorizing, sorting, and understanding rather than toward
solving.

Throughout this chapter, I will assign optional reading from Strogatz (1994) for those of you who
would like to learn more.

10.2 Basic Notions—Chaos, Fractals, Dynamics

Optional Reading: (Strogatz, 1994, 1)

This categorization approach is particularly important when considering systems that are poten-
tially chaotic. Strogatz (1994) defines chaos as the exhibition of aperiodic behavior of a deterministic
system that depends sensitively on the initial conditions, thereby rendering long-term prediction
impossible. The “discovery” of chaos is often attributed to Lorenz (1963), because of his clear
exposition of the issues at hand and the implications, particularly of the sensitivity to initial condi-
tions, for dynamical problems such as weather forecasts. Earlier work by Poincaré set the stage for
descriptions of behavior, rather than solution techniques. We now believe that chaos fundamen-
tally limits our ability to predict the weather beyond about two weeks, even if we had much more
powerful computers and much more accurate and complete measurements of the present weather
state.
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130 10.3. 1D FLOWS

While our agenda here is to move enough in the direction of chaotic dynamics to understand
the implications for geophysics, we will also revisit the dynamical systems interpretations of our
now-familiar solutions to linear ODEs, to help learn the tools.

10.3 1d Flows

The first kind of system we will study is a one-dimensional unbounded ODE without time-dependence
in any parameters or forcing, which Strogatz (1994) calls flows on the line. The system can be writ-
ten generally as

= f(z;r) (10.1)

The dot is a shorthand for ordinary time derivative (‘(ii—f = ), and z is the state of our one-

dimensional system. A parameter r (or more generally a list of parameters) is given to allow a
tunable family of related functions f, but it is given after the semicolon to make it clear that these
parameters are not part of the state, but rather part of the function f.

We will consider trajectories through phase space. A trajectory is a time history from a chosen initial
condition forward in time. Phase space is a plot of the state (and possibly also time derivatives of
the state), where a point represents an instant in time and a line represents a trajectory.

In 1d, we can plot both & and = on the same graph. Here are some examples. In Fig. 10.1 two one-

6

a)

Figure 10.1: The two types of linear, one-dimensional dynamical systems. Note that the steady
state solutions (or fixed points) are stable (closed circle) or unstable (open circle) depending on the
sign of the slope.

dimensional linear dynamical systems are plotted. The vertical axis reflects & while the horizontal
axis reflects . All trajectories must lie on the line of the function if they are to obey the dynamics
of the system. A negative slope leads to a stable fixed point, or negative feedback. A positive
slope leads to an unstable fixed point or positive feedback. Arrows indicate the direction of typical
trajectories, and the size of the arrows indicates rate of motion along the trajectory.

In this case, we can easily solve the set of equations as we have done many times for linear
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ODEs.
x = (zo —r/|m|)e” ™ + 1 /|m|, (10.2)
x = (zo+r/|m|)el™ —r/|m|, (10.3)
(10.4)

The initial value of = is o, and the steady-state solutions (also known as fixed points) are z* = r/|m|
for Fig. 10.1a and z* = —r/|m| for Fig. 10.1b. As we saw in the solutions to the energy balance
model in Section 9.2.3, positive and negative feedbacks (and thus unstable and stable fixed steady
solutions) result from the slope of the function near the steady-state solutions. Even if the function
is not linear, as long as it is continuous and differentiable, we can perform a Taylor series near the
steady-state solution and determine stability based on the first-order coefficients in the series.

Fig. 10.2 shows some nonlinear dynamical system trajectory examples. In Fig. 10.2a, we see that

Figure 10.2: Examples of nonlinear, one-dimensional dynamical systems.

there is another type of steady solution—a half-stable one. It attracts trajectories from the left, but
repels ones from the right. In Fig. 10.2b, we see that a nonlinear system can have more than one
steady state solution, and that they may vary in stability. This should remind you of the solutions
to the energy balance model in Section 9.2.3.

Example: Logistic Growth

In population dynamics, a simple model for the population of organisms is

N =rN. (10.5)

We know the solution to this equation is just exponential growth at the rate r. However, in more
realistic situations, there is a limit for how many organisms can coexist in the habitat, called the
carrying capacity, K. The logistic growth model captures this effect.

N =rN (1 - g) . (10.6)
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K/2 K

Figure 2,3.3

Figure 10.3: Phase space plot of logistic growth (10.6). From Strogatz (1994).

10.3.1 Bifurcations

In Fig. 10.1, the parameters carried along with the system (m,r) did not play much of a role.
However, if we studied instead & = mx 4 b, then the sign of m would determine the stability! Often
is it useful to study a range of the parameters in the system, so that their effects on the kinds of
solutions that are possible can be better understood. Here are some examples.

Saddle-point or Blue-Sky Bifurcation

A classic bifurcation occurs in the model
=7+ (10.7)

when the parameter r is varied. Fig. 10.4 shows the bifurcation that occurs as r passes through
zero. For negative r, there are two steady state solutions (one stable, one unstable), then at r =0
there is a single half-stable steady state, and finally for » > 0 there are no steady solutions. This

X x |
'
e g - - x R ——— X > - x
|
(a) r<0 (b) r=0 (c) r>0
Figure 3.1.1

Figure 10.4: Phase space plots showing a saddle node bifurcation under variation of the parameter
r in (10.7). From Strogatz (1994).
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situation can also be summarized with a bifurcation diagram, where now the steady state solutions
of z are plotted on a figure where the parameter r is varied (Fig. 10.7). This situation explains

unstable ~ . _

stable

Figure 3.1.4

Figure 10.5: Bifurcation diagram versus r in (10.7). From Strogatz (1994).

why the word “bifurcation” is used, as in this case, the solution splits into two branches.

Transcritical Bifurcation

A different kind of bifurcation occurs in the system

i =rr—a? (10.8)
Fig. 10.6 shows the bifurcation that occurs as r passes through zero. For negative r, there are two
steady state solutions (one stable, one unstable), then at r» = 0 there is a single half-stable steady
state, and finally for » > 0 there are two steady solutions—one stable and one unstable, but they
have exchanged stability. Now both steady state solutions of = persist as r varies, but the stability

X x x
V—x F 4 ﬂ X
(@) r<0 ®) r=0 (c) r>0

Figure 3.2.1

Figure 10.6: Phase space plots showing a saddle node bifurcation under variation of the parameter
r in (10.8). From Strogatz (1994).
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X stable

stable e ¢ v - - - unstable

unstable

Figure 3.2,2

Figure 10.7: Bifurcation diagram versus 7 in (10.8). From Strogatz (1994).

of the two changes as r changes sign (Fig. 10.6). Now the word “bifurcation” is somewhat of a
misnomer, as in this case no solutions split in two. However, the change in the qualitative behavior
of the solutions is still referred to as a bifurcation.

Pitchfork Bifurcation

A different kind of bifurcation occurs in the system
i =rz— a3 (10.9)

Fig. 10.6 shows the bifurcation that occurs as r passes through zero. For negative r, there is one
stable steady state solution, then at » = 0 there is a single stable steady state, and finally for » > 0
there are three steady solutions—two stable, one unstable. Now the one steady state solution of

x x x
- X X X
(a) r<0 (b) r=0 (c) r>0
Figure 3.4,1

Figure 10.8: Phase space plots showing a pitchfork bifurcation under variation of the parameter r
in (10.9). From Strogatz (1994).

x when r < 0 transforms into an unstable solution, while two new stable solutions appear at the
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stable

SLADE m— unstable

stable

Figure 3.4.2

Figure 10.9: Bifurcation diagram versus r in (10.9). From Strogatz (1994).

same time as r changes sign (Fig. 10.8). Again the word “bifurcation” is somewhat of a misnomer,
as in this case the solutions split in three instead of in two. The reason for the name pitchfork is
clear from Fig. 10.9.

Other

We note that all of these systems resulted from low-order polynomials whose roots changed char-
acter as the parameters were varied. Because we can also perform a Taylor series of any continuous
function near the steady states, and retain just enough polynomial order to keep the basic bifur-
cation structures, studying the bifurcations of polynomials serves as a cookbook for more complex
functions. Here are a few more interesting examples to consider.

A different kind of subcritical pitchfork bifurcation occurs in the system

& =rz+ a2 — . (10.10)

X

0 T e EEEEEEE
I, (1) g
\

Figure 3.4.7

Figure 10.10: Subcritical pitchfork bifurcation diagram versus r in (10.10). From Strogatz (1994).
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i =h+re—a> (10.11)

(@ h=0 (b) h#0

Figure 3.6.3

Figure 10.11: Imperfect pitchfork bifurcation diagram versus r for two values of h in (10.11). From
Strogatz (1994).

2

1 1 fixed point h.(r)
h

0 3 fixed points

i ~h(r)

2 . . r

-2 -1 0 1 2

Figure 3.6.2

Figure 10.12: Imperfect pitchfork regime diagram with solution types r, h plane for (10.11). From
Strogatz (1994).

Despite all of the complexity inherent in these one-dimensional systems, there are still relevant geo-
physical behaviors missing. For example, near the steady-state solutions, the approach or departure
from those solutions was always exponential. We know that in the real world there are many os-
cillations about a steady solution (waves on the ocean, Brunt-Véisild oscillations (Section 9.3.1),
seismic waves, stick-slip oscillations, etc.).
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10.4 2d Flows

In one-dimensional systems, there was no way to overshoot a steady-state solution, but in two-
dimensional systems, you can just “go around.”

One good geophysical linear example are the Brunt-Viisald oscillations of a stratified fluid. We
found the governing equation (9.37), which is

d2Az
dt?

Rewriting this system in our dynamical systems version, we can express it as,

~ —N2Az. (10.12)

v =—N?z, (10.13)
i=u. (10.14)

Note that we have changed the second derivatives into two first derivatives. The nature of the
oscillation can be seen by considering local deviations, or the phase portrait of the closed orbits
exhibited by this system (Fig. 10.13).

14 Vv

-l e
\\«/‘ l z K\/ 7

Figure 5.1.2 Figure 5.1.3

Figure 10.13: Local trajectories (left) and phase portrait for the Brunt-Viisald oscillation system
(10.13). Adapted from Strogatz (1994).

In Section 9.3.1, we noted that (10.12) can be solved by a guess and check solution with an
exponential

Az = Aetl™.
But, when we plugged this in, we found 2 possible general solutions!
Az = Ae'Nt, Bem NVt
Alternatively, if we plug into (10.13) with the assumed form,

z= Ze,
v="Vell.
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We find (after dividing through by e*/7),

= -N?Z,

NN <

=V

This is a set of linear, homogeneous equations. If we want there to be oscillations, then we want a
nontrivial solution, which means we can rewrite as a matrix equation and set the determinant to

Z€ero.
N2 1 Z
[1 i 07
i 1 1%
1 1
N?=—— — = =&iN.
T T

Which is the same result.

10.4.1 Linear Systems

So then, let’s consider the general linear, two-dimensional system.

t=alzx—2")+bly—vy"), (10.15)
y=clx—2z")+dly—y"), (10.16)

where z*, y* gives the one possible steady state solution and a, b, ¢, d are constants. We can write
this system as a matrix equation.

d | (z—2a% a b (x — ")

— = . 10.17

dt[(y—y*)] [c d”(y—y*) (1017)
If determine the eigenvalues and eigenvectors of this coefficient matrix (Section 3.8), then we will
be able to solve this problem generally. The eigenvalues of the matrix can be real or complex,

and their values will determine the type of oscillation or exponential variations that occur near the
steady solution at x = z*,y = y*.

Let us proceed by diagonalizing the matrix following (3.44). The eigenvectors v;—scaled to have
length 1-are the columns of the matrix C (and therefore the rows of the matrix C~! = CT), and
we take m; as the eigenvalues which are the diagonal elements of the matrix D. Then,

M = ‘Z Z] (10.18)
M =CDC™ !, (10.19)
d | (@-2%) | _ 1| (@ —a)
dt [ w-v) | =P -y ] ’ (10-20)
d | @=2%) | _qao1| @—29)
TSIl I ] =pCT T ] . (10.21)
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This last equation is actually two separate, uncoupled equations, if we take

d

TS (x —x*) =myvy - (x —x¥), (10.22)
d
FTicE (x —x¥) = mavy - (x —x¥), (10.23)

where x — x* = (z — 2*,y — y*). Since the equations are uncoupled, we can solve them each
separately (as our favorites, exponentials), and then combine them back together to find:

mit

x — x%) = c;vie™ 4+ covae™2t, 10.24
(

For the vast majority of cases, this will be the solution to the linear system near the steady state
solution (x — x*). All that is needed is to determine the constants c;,cy based on the initial
conditions (and the eigenvectors and eigenvalues if they are not given). Note that the “trivial
solution” ¢; = ¢o = 0 is actually meaningful in this case, it just means that you are already located
at the steady solution.

Let us see some examples of this method in action.
Two Real Eigenvalues
Consider the following system
dl(@—-2%) | _|1 1 (x — )
at | (y—vy") 4 =20 -y |’
All of the coefficients, variables, and derivatives are real. Let’s see about the eigenvalues! We

have a linear, constant coefficient, homogeneous set of equations, so let’s assume an exponential
form.

(w=a) | _[A] m
(v =y | B ’
dl@-oe)|_ @] _[1 1 (z — z¥)
dt | (y—y") | (y—y") 4 =2 || (y—y") |’
Al [1 1]]a
mn B| |4 -2]||B

If we are not exactly at the steady state solution, then we seek a nontrivial solution (A # 0, B # 0).
In order to find such a solution, we combine the two sides of the equation.

Al tolla] [m o Al |11 A
Il ™™ o1 || Bl Tlo0o m||B| |4 —2||B|’
0= 1 1 A o m 0 A | 1-m 1 A
|14 —2|| B 0 m||B|~ 4 —2-m || B

To avoid Cramer’s rule, we set the determinant of the matrix to zero, which gives the characteristic
or eigenequation,

(1—m)(—=2—m)—4=m>+m+6=0,—m; =—3,mg =2
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To find the corresponding eigenvectors, we solve

11 _ |1

4 —9 Vi =mivy Vi = 4 |
11 _ e | !

4 —9 Vo = M9oVy Vo = 1 .

Thus, the solution is,

i ] e, (10.25)

The constants c1, co depend on the initial conditions.

Examine the nature of this solution. Any projection of the initial conditions along the first eigen-
vector will exponentially decay with time. Any projection of the initial conditions on the second
eigenvector will grow exponentially in time. So, we can make a map of trajectories in phase space
like Fig. 10.14a. Fig. 10.14b shows a different system for comparison, with two negative eigenvalues,
one faster than the other.

y
slow eigendirection
x \\
\ X
fast eigendirection
2) Figure 5.2.2 b) Figure 5.2.3

Figure 10.14: a) Trajectory in phase space for (10.25). b) Trajectory in phase space for a different
system. From Strogatz (1994).

Two Imaginary Eigenvalues

Consider the following system
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We follow the same routine as above, and find that assuming an exponential solution leads to:
m?+1=0,—m =1i,my= —i. (10.26)
So, this time we find that even though all of the coefficients, variables, and derivatives are real,
the eigenvalues are not. This result can only occur in sets of two or more first-order ODEs. If the
system is defined by only one ODE, then the eigenvalues must be real if all of the variables are

real. We have already seen one example of complex eigenvalues in the Brunt-Viisald oscillations
studied above. Let’s examine this case.

0 1V_ Vi — V] = —
1 o | V1T MV1 1= 1 D

0 1 B |
10 V9o = M9yVy Vo = 1 .

Thus, the solution is of the form

ezt + o

(x—x")=¢ [ _11

i ] et (10.27)

=c [ _1Z ] (cost +isint) + co

i ] (cost — isint). (10.28)

We can guarantee that (x — x*) will be real by setting ¢; — co = ia and ¢; + c2 = b where a,b are
real. This makes the solution,

(x —x*) = [ (10.29)

acost+ bsint
bcost —asint |-

Despite the fact that these are real, the eigenvalues remain imaginary. This system has the same
trajectories as in Fig. 10.13, but with z — 2*, y — y* as the coordinates.

Other Combinations

The form of the linear solution (10.15) admits many flavors of solutions in phase space (Fig. 10.16).
The kinds of patterns can be assessed by examining the trace trace 7 and determinant A of the
coefficient matrix, because these quantities are so closely related to the eigenvalues.

(2 —2”) ] , (10.30)

(y—v")
T=a+d, A = ad — be, (10.31)
T =mq + ma, A = mymsg, (10.32)
A2
mys = #. (10.33)
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= N T NP

(a) node (b) degenerate node

(a) center (b) spiral

Figure 10.15: Example trajectories in phase space for linear two-dimensional systems. From Stro-
gatz (1994).

Y Bovs s 50 i o i o e R sl
" unstable nodes '~

unstable spirals

saddle points centers

non-isolated
fixed points

stars, degenerate nodes

Figure 5.2.8

Figure 10.16: Regime diagram of the kinds of steady-state solutions based on the trace (7 =
m1 + mg) and determinant (A = mimsg) of the coefficient matrix, which are closely related to the
characteristic equation and its eigenvalues (m,mz). From Strogatz (1994).
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10.4.2 Taylor Series Near a Steady Solution

Let us consider the Taylor series of a two-dimensional nonlinear system near a steady solution trun-
cated to the linear terms only. It can be written as a matrix equation with a bit of shorthand,

_9r

_OF
7= ~ oy

x=x*

_0G
;gm:%

x=x*

0g
7gy5@

x=x* x=x*

Then, the nonlinear system may be approximated as,

d [ (x —2*) ] _ [f(w,ysr) ] 7 (10.34)

at | (y—v") G(z,y;r)
Fo Fy (x —a*)
~ e E 10.35
[gx gy”(y—y)] (10.35)
The characteristic equation and the eigenvalues are
m? — mF, — mGy + FuGy — GuFy = 0, (10.37)
Fo+ Gy [ (Fo+Gy)* — 4 (FuGy — GuF,
o TG ot ) ARG~ 6uT) 03s)

One can assess the kind of steady state rapidly using (10.38) alone.

10.4.3 Nonlinear Systems

We have already seen in one dimension that a nonlinear system, unlike a linear one, can have
multiple solutions distinct from one another. The same in true in two dimensions. One example is
shown in Fig. 10.17, which is a phase portrait of the system,

d [ (x —2*)

a4 0 (2P | (et —(y-2)? )
il oy | =Y (e +e ) . (10.39)

This system is generated from a potential function, which is contoured in Fig. 10.17b. It is clear
that this potential function has two different extrema, near r = 2,y = —1 and x = —1,y = 2. Also
plotted in Fig. 10.17a are the nullclines. These lines indicate where & = 0 (blue) or y = 0 (orange).
Everywhere above the orange line, the y component of trajectories is downward and everywhere
below the orange line, the y component of trajectories is upward. Everywhere left of the blue line,
the z component of trajectories is rightward and everywhere right of the blue line, the £ component
of trajectories is leftward.

Another key concept in higher dimensions is the idea of a basin of attraction. In this system nearly
all trajectories end up at one of the two stable steady state solutions. The basin of attraction of
each solution is the region where all trajectories fall toward that solution rather than the other
one. Right along the line leading into the half-stable solution is also an (infinitely thin) basin of
attraction for that solution. Most points nearby a steady solution lie in its basin of attraction, but
sometimes very remote points can as well. In more complicated flows with stable, unstable, and
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a) -4 -2 0 2 4

Figure 10.17: a) Phase portrait and b) potential function of (10.39) which has two stable steady
state solutions and one half-stable steady state solution (at the intersection of the nullclines).

saddle-point steady states, it can be very difficult to locate the basins of attraction. If these points
of attraction and repulsion move in time (as they do in celestial mechanics), then the basins of
attraction are extremely complex. The line between basins of attraction is called a separatriz, and
if it exists this “continental divide” separates the basins of attraction. Sometimes, this line is easy
to infer, but for complicated systems it can be very hard as we will see.

10.4.4 Limit Cycles

In the linear two-dimensional system, we saw that some features, those with pure imaginary eigen-
values called centers, featured oscillations around a fixed point rather than spiraling inward or
outward. Centers are independent of amplitude—every orbit around the fixed point is oscillatory.
This is a characteristic of a linear oscillators, in fact, that the frequency and existence of oscillations
is independent of the amplitude of the oscillation. This results from the fact that the eigenvalues
are independent of amplitude in (10.33).

Nonlinear oscillations, on the other hand, typically do have frequency, stability, and other aspects of
the oscillation dependent on amplitude. A simple example to consider is constructed by examining
a system in polar coordinates from Strogatz (1994).

= 1(1 — 1) 4+ prcosé, (10.40)

0=1. (10.41)

Here r, 6 are the polar coordinates. You can convert these equations into z, y coordinates if you like,
but the results are messy and not informative. The 6 equation tells us that the rate of rotation is

constant, but the r equation is very interesting. The nullclines of 7 = 0 is fairly easy to understand
when p = 0, see Fig. 10.18a. Fig. 10.18b shows the limit cycle that results from this system.

Just as there are different types of steady solutions, there are different types of limit cycles.

September 9, 2019 Version



CHAPTER 10. DYNAMICS AND CHAOS 145

y
r L
/) )
(o > ( \ T
1 r
Fi 7.1.1 :
) igure b) Figure 7.1.2

Figure 10.18: a) and b) potential function of (10.39) which has two steady state solutions.

1
L
\K A\ s

Figure 7.3.3

Figure 10.19: A weakly nonlinear oscillator, from Strogatz (1994).

September 9, 2019 Version



146 10.4. 2D FLOWS

X
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x
¢ =X 0\ T T T !
=3
_3_.
Figure 7.1.4 Figure 7.1.5

Figure 10.20: A more obviously nonlinear oscillator, the Van Der Pol oscillator, from Strogatz
(1994).

Fig. 10.21 schematizes some of them. They can be attractive or repulsive, stable or unstable.
There are basins of attraction for limit cycles just as there are for steady state solutions.

Qc (\ unstable melc

limit cycle limit cycle limit cycle
Figure 7.0.1

Figure 10.21: Kinds of limit cycles, from Strogatz (1994).

10.4.5 More Bifurcations

All of the bifurcation types we studied in one dimension carry into two-dimensional analogs, plus
there are others! A Hopf bifurcation is where a stable steady state fixed point transforms into
an unstable fixed point surrounded by a limit cycle. A homoclinic bifurcation is when a saddle
point merges into a limit cycle. A large fraction of effort into studying nonlinear systems goes into
mapping and understanding such bifurcations.
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10.4.6 Application: Stommel Meridional Overturning Box Model

The Stommel (1961) box model is a simple representation of the buoyancy-driven meridional over-
turning circulation. It consists of two well-mixed containers of fluid (one represents the tropical
ocean and one represents the polar ocean). These containers are allowed to exchange energy and
salinity with reservoirs of fixed temperature and salinity. The two containers are allowed to ex-
change fluid through a capillary tube and an overflow. If there is no overflow, then the temperature
in each container will just converge to the reservoir temperatures (which is why I use our notation
for steady state solutions * on the reservoir temperatures and salinities).

The Stommel model is a four-dimensional nonlinear system, but two of the dimensions are not
interesting. See Vallis (2006, 15.3) for an introduction. Figure 10.22 shows a two box version of

stirrer stirrer
overflow

)
*
o~

(5

%
N
*

e
N
»

(B

capillary

}

Figure 15.5 A two-box model of relevance to the overturning circulation of the ocean.
The shaded walls are porous, and each box is well-mixed by its stirrer. Temperature
and salinity evolve by way of fluid exchange between the boxes via the capillary
tube and the overflow, and by way of relaxation with the two infinite reservoirs at

I * ~ % * < %
(—,—T1.+51)and( T2. 52).

Thursday, August 26, 2010
Figure 10.22: Figure defining variables adapted from Vallis’s Fig. 15.5.
the Stommel model. The variables to be determined are the temperature and salinity in each box.
These are most easily derived by considering the budget of a single box. Consider the amount of
salt in one box, it is given by
salt = [ pSav. (10.42)

Where S is the salinity, or grams of salt per kilogram of salty water. The rate of change of salt is
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thus

dfﬁlt = %ﬂj pSdV, (10.43)

Hf 905 L9 (pvs)av. (10.44)

The stirrers keep the fluid in each box well mixed, so

dsalt 0pS .
= oV {f psv - nda. (10.45)

Water is nearly incompressible, and thus p and volume are constant to first order, thus a change in
average salinity in a box of changing volume is composed of the change in salinity and the inflow
and outflow of salt,

1 dsalt oS gﬁﬁSv ndA
_ i 10.46
poVo dt o W (10.46)

Likewise, the energy budget is related to the transport of (potential) temperature. Interpreting
Figure 10.22, we find that the temperature in the boxes obey

ir,  FA, M

W = 7 (T1 — Tl) + 70(T2 — Tl), (1047)
dT5 F.A, . |\11|

— = Ty —T¢ — (T —T5). 104
7 V0(2 2)+V0(1 2) (10.48)

Where F;. is a flux rate over the area exposed to restoring A,. Typical ocean surface values are
30— 60Wm~2K~! (Haney, 1971), and a typical ocean value of Vj/A, is the ocean depth, 4km. One
converts temperature to heat in water using pc, ~ 4 -106JK~tm ™. We combine these coefficients
into a (constant) restoring timescale

(10.49)

T =

A

The volumetric flow rate ¥ in the oceanographically relevant regime is roughly 10—30Sv, depending
on whether North Atlantic Deep Water and or Antarctic Bottom Water or both are considered. Sv
stands for Sverdrups and 1Sv = 10%m3/s. The absolute value of ¥ appears because the flow into
each box in the last term of (10.45) always brings the water type of the upstream box regardless
of flow direction. A typical oceanic volume might be 4km(5000km)? = 10'7m3. Thus, we rewrite
in terms of the flushing timescale

%
7 (W) = ﬁ ~ 200 — 3000yr. (10.50)
The equations of motion are

dny, Ty - T V]
— = T —1T1) — 10.51
o) (10.51)
i, Ty — T, | W]

— = T —15) —. 10.52
i Tt (Th — T2) 7 (10.52)
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Salinity might obey similar equations, although we allow for a slightly different restoring time
with a constant §, which is the ratio of temperature restoring timescale to salinity restoring
timescale,

dSq ST =51 |W|

—_— ) — — _— 1 .
7t 1) - + (S2 Sl) Vo’ ( 053)
dSs S5 — S | W]

— === — —. 10.54
7 . + (51— S9) Vo (10.54)

Using restoring of salinity is specious. More physical results occur if one adds a salt flux where
evaporation is to occur, or most realistically add a freshwater flux, making the flow rate out of the
rainy box greater than the flow out of the evaporating box. The freshwater flux case will be treated
below.

At this stage only the well-mixed property of each box and the artifical salinity restoring are
patently unrealistic. Adding more boxes would relieve this problem, and the salinity flux issue is
addressed below. However, now we move on to solve a model for 7 that is unrealistic.

What sets the flushing time 7¢7 Realistically, the dynamical mechanisms underlying the strength
of the meridional overturning are very complex. At the very least, a momentum equation—and in
particular an ageostrophic momentum equation due to the direction of flow—should be solved for
Tf. Stommel makes an assumption, however, that eases the subsequent analysis: that the pressure
gradient force is proportional to the flow rate. This balance occurs in very viscous flow, such as
driven capillary tubes. Given that the overflow will tend to balance, one expects the pressure to
work out so that light water is driven over dense water and the flow and return rates will be equal.
By hydrostasy, the driving pressure gradient force should be proportional to the density difference
between the boxes. Thus,

1 ¥ _1lp-p| (10.55)
7 Vo To  po

The value of Ap can be set to a typical modern equator to pole density difference, roughly 5kg m 3.
Assuming a linear equation of state,

p=po[L—Br(T —Tres) + Bs(S — Sres)] (10.56)
L L 5(n - T + Bs(S: - 5| (1057)
Tf T0

What direction is the resulting circulation? We suppose that if box 1 is denser, then it will sink
and flow through the bottom pipe. If box 2 is denser, then the opposite will occur.

Combining this equation for 7¢ with (10.51-10.54) yields a set of four closed nonlinear first-order
evolution equations.

ot _ Tr=T + (T —T1)|Br(Th —T2)+Bs(S2—51)|

ori1— 7 0 ’
ot _ 1T3-T + (T1—T)|Br (T1—T2)+Bs(S2—51)|

8T2 - Tr T0 )
ot _ 55'1‘*51 + (S2—51)|Br (Th —T2)+Bs(S2—51)|
83 1 - Tr T0 9
ot _ 559 4 (51=82)|Br (11 =T5)+85(S2=51)|
052 Tr 0 .
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We add and subtract these equations to yield,

o IT*-XT

oxT T T ’

o 2SS

0xS T ’

ot AT*— AT 2AT|SpAT — BsAS|
OAT T To ’
ot _ 5AS* —AS  2AS|BrAT — ﬁSAsy.
IAS Tr 70

The first two equations describe the approach of the summed temperatures and salinities (X177, 3.5)
to the summed forcing temperature and salinity (X77,3X5*) beginning from their initial values
(XTp,¥Sp). The solutions are

ST = ST* + [T — 5T*] e 77,
)
£ = %S* + [8S) — 25 e
The second two equations are more interesting and nonlinear. If we factor out all of the dimensions

based on parameter settings (that is, we use the reservoir temperatures and salinities to eliminate
the units), they are

T, = 1-T—~T|T — uS|, (10.58)
S, = 61 —8)—~8|T — uS|. (10.59)

I use a breve over a variable (%) to denote that its dimensions have been factored out using the
reservoir temperature and salinity. The removal of the dimensions is performed by defining 7 = t/7,,
T = AT/AT*, S = AS/AS*, v = 2B8pAT*7,. /70, 1 = BsAS* /(BrAT*). Recall that § is the ratio
of temperature restoring timescale to salinity restoring timescale. Note that AT* > 0 is assumed.
It is natural to consider the evolution equation for the nondimensional density difference p = ,ug T
as well.

pr=[(0p = 1) = p| = 2plp| + uS(1 - 3). (10.60)

The steady state solutions of (10.58-10.60) occur when
1

T o= —— 10.61
1 +~[p| ( )
y 5
5§ = 2 (10.62)
6+ [p|
) 1

— _ . 10.63
S+l 1+7lpl ( )

¢

The steady state solutions are often studied by comparing the left of (10.63) to the right, see
Figure 10.23. It is clear from the figure that occasionally multiple steady solutions exist when the
straight line of the left-hand-side intersects the curvy line of the right-hand-side in two (10.23b) or
three (10.23a) locations.

However, we can get a clearer approximate picture of the trajectories during equilibration If we
approximate the last term in (10.60) to make one decoupled equation for p. One could use the
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Figure 10.23: The left side of (10.63) versus different right sides with varying parameters: a)
vy=5u=15b)y=1pu=15 and ¢) v =5, = 0.75. In all plots, § = 1/6. From Vallis Fig.
15.7.

steady solution (10.62), but since § < 1 usually, T usually spins up to near-equilibrium faster than

S. Thus, we approximate uS =p+ 71T ~ p+ %'vlﬁl’ SO

pTz5M—1—ﬁ(5+y|ﬁ|)+11+;ﬁm.. (10.64)

This equation allows us to draw a phase space diagram, as shown in Fig. 10.24

Hysteresis in the Stommel Model

The Stommel model has become famous as an example of a plausibly climate-like system with an
accessible ‘tipping point’. This tipping point has led to speculation that there might be a similar one
in the real ocean, which might be triggered by climate forcing. If so, the nature of the meridional
overturning circulation might change dramatically and quickly, and from that state be very difficult
to restore. We will illustrate the ‘tipping points’ in the Stommel model along with the more general
concept of hysteresis. Hysteresis is defined as a lack of reversibility in behavior under a change of
forcing or parameter.

Consider forcing the Stommel model by altering the value of AT* — AT*(1+ «), a crude represen-
tation of warming the poles under climate change. So long as « varies slowly, we expect the model
to approach the steady state solutions (10.61-10.64), and then track along with the slow changes
to a. That is,

po 1tae

L+ ~p|
o 1)
S=—,

6 +[p|
. 1o 1+«
p:

S+l 1+l
(1-0)(1+ «)

pr=op—(1+a)—p(d+p) + v
PR = (1) = 0+l +
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Figure 10.24: An approximate phase space diagram from (10.64). Assuming S is near its steady
state solution, for all p where the green line is positive, % > ( so the trajectory will proceed to the
right (increasing p). For all p where the green line is negative, % < 0. Intersections of the green
and blue lines are fixed points. Can you figure out which fixed points are stable? How does one
change the initial conditions to reach the other fixed points? A sample trajectory is shown.

Based on these equations, we can plot the slowly-changing equilibrium values as a function of a.
The solid line in figure 10.25 shows the equilibrium values for one example. For this example,
three branches are available for « roughly between 0 and 0.5. The upper branch is salt-driven
(i.e., sinking of salty equatorial water), the lower branch is temperature-driven (i.e., sinking of
cold water at the pole), and the middle branch is the unstable equilibrium. Superimposed on the
equilibrium values are the trajectories for three different simulations begun with the same initial
conditions subjected to sinusoidal variations of «. In all cases, the model initially converges to
the temperature-driven equilibrium. For the smallest amplitude variations of « (black), the model
oscillates about this value, but no obvious hysteresis is observed—a local linearization about the
initial equilibrium would explain this behavior well. For the next highest amplitude of « forcing,
the forcing triggers a transition from the temperature-driven mode to the salt-driven mode the first
time « reduces the temperature gradient forcing. After this transition, the forcing is not strong
enough to trigger a second transition back to the temperature-driven mode. Thus, the meridional
overturning circulation collapses, and even though the forcing is sufficient to restore beyond the
initial temperature gradient forcing, the model stays in the salt-driven mode. For the strongest
forcing shown (red), the model switches back and forth between the temperature-driven and salt-
driven modes. Note that the transitions to and from the temperature-driven mode do not occur
at the same value of («,p), there is obvious hysteresis in the system. Oscillators of this type
are sometimes called relazation oscillators. While « forces the temperature difference, a similar

effect occurs when the salinity difference is forced (as might occur were the Greenland ice cap to
melt).

Note that the bifurcation points (where the upper and middle branches appear near @ = 0.5
and where the lower and middle branches appear near « = 0) are not sharp transition points,
but approximate regions of transition. This effect is more or less pronounced if the frequency of
variation of « is higher or lower, respectively.
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Figure 10.25: The possible equilibrium values of g for different values of « (blue solid), and three
trajectories where « is varied sinusoidally in time: (black) —0.1 < a < 0.1, (green) —0.2 < a < 0.2,
and (red) —0.4 < a < 0.4.

10.5 Linearization Near a Fixed Point: General Treatment

We have been interested in systems of low-order ordinary differential equations. By replacing
the higher-order derivatives with extra equations introducing new intermediate variables (e.g.,
acceleration & position to acceleration, velocity, & position) these can all be written as sets of
first-order equations. Generically, we write:

2y = Nj(@i; ) (10.65)

for some nonlinear operator NV, set of variables z;, and set of parameters 3. There must be as many
equations as unknowns, so we expect j and 7 to have the same number of values.

We then found fixed points of the model, solved by
0= N; (a3 ). (10.66)

In the models discussed above, finding the fixed points =] involved inverting trigonometric functions
or solving coupled polynomial equations, but it is possible that numerical determination of these
points (e.g., by a Newton-Raphson method, Section 8.9.1) may be required.

Then, we linearized the system about each fixed point, by Taylor series expansion

ON;
zie = Nl B) + ) ( xj (@i —a?) | .
All i vlzi=a]
= Z <8xi o wi—af) | +O((z; — x7)7). (10.67)

All ¢

The second equation follows from z being fixed points of the solution in (10.66). Again, if closed
analytic form is not possible, numerical estimation of the derivative is straightforward. For exam-

September 9, 2019 Version



154 10.5. LINEARIZATION NEAR A FIXED POINT: GENERAL TREATMENT

ple,
Nj(zi; B) — Nj(x; B)

*

(10.68)

Since we must have as many equations as unknowns, the Jacobean matrix—the set of the partial
derivative of all j values of A with respect to all directions x; — x} away from the fixed point in
(10.68)—is a square matrix. All square matrices obey an eigenrelationship, for scalar eigenvalues A,
and eigenvectors with components v;y,.

> (50

T
All i ¢

* VUin = )\nvjn. (1069)

— ¥
;=]

If the eigenvalues are distinct, the eigenvectors are unique. Even if they are not distinct, then
there is always a basis set of eigenvectors for any duplicated eigenvalues. The eigenvalues may
be complex: real parts will be the exponential decay or growth rates of each eigenmode and the
imaginary parts will be the oscillation frequencies.

If the eigenvectors are written as the columns of a matrix, and the eigenvalues are written as the
diagonal elements of a matrix, then this equation is equivalent to the matrix equation (repeated
indices indicate summation via matrix multiplication):

Section 3.8 shows how to calculate the eigenvectors and eigenvalues of a matrix. The eigenvector
matrix [v;,] can be inverted to yield:

ON; _
[ 833: *] = [Ujm] [Amn] [Vin] ' (10.71)
;=]

When this result is plugged into the linearized equations, the resulting decoupling of modes is

acheived.
ON,
Tjp ~ <8 ! Nz —2}) |, (10.72)
i N O lwi=ay
~ [jm] o] [vin] ™ (i — ) (10.73)

Using the inverse eigenvector matrix one more time yields the desired decoupling for the ‘linear

eigenmodes’ near the fixed point are ¢, = [vjm] ! [xj — :L‘ﬂ

[vjm} - [xj - "E;L ~ [ Amn] [Uin]il (xz - 93?) 5

dmt = Ambm. (10.74)
It is clear that the solution for each linear eigenmode is just
Om = Gl ™ (10.75)
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Clearly, the eigenmodes may grow (Re(\;,) > 0), decay (Re(\,;,) < 0), and may oscillate, too, if
Tm(\p) # 0.

The evolution of the original variables x; near the fixed point will also grow, decay, and/or oscillate
along the phase space direction aligned with each eigenvector. That is, if Ay > 0, then the fixed point
will be unstable to perturbations in the direction of the column vector [vﬂ]. Likewise, if Ay < 0,
then the fixed point will be stable to perturbations in the direction of the column vector [ng]. If
the real part of all eigenvalues are negative/positive, then the fixed point is stable/unstable. If the
imaginary part of any eigenvalue is nonzero, then there can be oscillations near or around the fixed
point.

10.6 Chaos

When a system becomes sufficiently complex, the basins of attraction can be very complicated.
This is our first window into deterministic chaos, where a simple deterministic question, “If I start
at this point in phase space, where do I end up?” has a very complicated answer.

Consider the motion of a particle in a potential with friction,

o V@ (10.76)

ox
= (10.77)

This second-order system requires two initial conditions, one on velocity and one on position.
Even for simple potentials, the basin of attraction can be complicated (Fig. 10.26a). For a more
complicated system, such as

o = —0.10 + sinf = 2.1 cost, (10.78)
6=, (10.79)
the basin of attraction is a fractal. Using this system here is cheating a bit, because adding the

time-dependent forcing raises the dimensionality of the system above two dimensions, but it is a
fun example!

10.6.1 Lorenz Equations

The study of chaos in some sense originated with Lorenz (1963). He was interested in numerical
forecasts of the weather (and indeed was one of the best atmospheric scientists of the 20th century,
in addition to being the father of chaos). He boiled down a basic model for convection to the

equations,
t=o0(y—x), (10.80)
y=rr—y—xz, (10.81)
Z=uxy— bz. (10.82)

At first glance, these equations are no more crazy than any we have studied. Lorenz coded them
up and found that they were integrable and smooth (Fig. 10.28). However, it is very difficult
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Figure 10.26: a) The double well potential and its basin of attraction (10.76), and b) the basin of
attraction for a forced, damped pendulum (10.78). From Ott (2006).

to anticipate when a trajectory will jump from oscillating about one of the fixed points to the
other. Before Lorenz, it was well-known that nonlinear systems exhibit nonperiodic or quasiperiodic
behavior. However, in Lorenz’s model, even neighboring initial conditions, which one would expect
to remain neighbors, soon become separated onto different sides of the attractor. Lorenz describes
the implications,

When our results concerning the instability of nonperiodic flow are applied to the
atmosphere, which is ostensibly nonperiodic, they indicate that predication of the suf-
ficiently distant future is impossible by any method, unless the present conditions are
known exactly. In view of the inevitable inaccuracy and incompleteness of weather
observations, precise very-long-range forecasting would seem to be non-existent.

The Liapunov exponent describes how quickly neighboring trajectories diverge. If the distance
between the points is initially, dg, then once the trajectories begin to diverge, they do so according
to

16(t)| ~ |d0|eM. (10.83)

The largest such separation rate A over different ways of measuring the separation distance is called
the Liapunov exponent. The time beyond which forecasts become pointless scales as

1 a
T ~ —In—|. 10.84
chaos O<)\ n50|> ( 0.8 )

Chaotic and nonperiodic solutions often arise from a series of bifurcations that occur as a parameter
varies. This is called the “period doubling” route to chaos. First, a trajectory stays near a fixed
point or limit cycle. As the parameter is varied, a bifurcation occurs leading to two fixed points
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Figure 10.27: a) Time series of y from (10.80) and b) a three-dimensional visualization of trajectories
in (10.80).
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or limit cycles, then four, then eight. Often, not only do the number of attractors change as the
parameter varies, but the rate of bifurcation with change of parameter also increases. Before, long,
the system fills into a strange attractor instead of a large number of fixed points.

Some movies help with visualization: http://www.youtube.com/watch?v=FYE4JKAXSfY.

10.6.2 Strange Attractors

The Lorenz trajectories hug an object similar to a limit cycle, but which is much more complex. It
is called a “strange attractor” because it attracts trajectories and because it is strange. It is strange
because it is fractal in space. The Lorenz attractor is a fractal, because although it appears to be
two dimensional, it has in fact a fractal dimension of 2.06 (the meaning of this will be revealed
below). Thus, the closer one examines it, the more structure it has.

10.7 Fractals and Self-Similarity

Mandelbrot (1967) is a nice example of fractals being applied to a geophysical problem. Here is
the abstract,

Geographical curves are so involved in their detail that their lengths are often infinite
or, rather, undefinable. However, many are statistically “self-similar,” meaning that
each portion can be considered a reduced-scale image of the whole. In that case, the
degree of complication can be described by a quantity D that has many properties of a
“dimension,” though it is fractional; that is, it exceeds the value unity associated with
the ordinary, rectifiable, curves.

This insight was inspired partly by Lewis Richardson, a mathematician and physicist deeply inter-
ested in geophysical problems. He performed the first (unsuccessful) numerical weather forecast.
Richardson also authored the following poem about turbulence,

Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls and so on to viscosity.

The fractal dimension D chosen by Mandelbrot (there are many flavors, with the Hausdorff one
typically being preferred) is now called the box-counting dimension, and is defined as

D — 1im 2N

e—0 In %

(10.85)

Where N (¢) is the number of boxes of side length € required to cover the shape being observed. Man-
delbrot and Richardson also considered a version of this formula using lines instead of boxes.

This Nova special is a nice description: http://www.youtube.com/watch?v=s65DSz78jW4.

10.7.1 Poincaré Maps

One reason why the appreciation of chaos in dynamical systems was slow to come is because before
computers, we could not easily produce trajectories like in Fig. 10.28. In the real world, we might
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be severely limited to what we can observe. Poincaré invented a mathematical analog of our limited
capability to observe that is useful in understanding chaos.

Suppose we are studying a limit cycle or an attractor, but we can only observe it at a few locations
in phase space. For example, if we have a pendulum swinging, and monitor only its maximum
height, not its velocity. Or, in our estuary example, we monitor only the inflow and outflow, not
the flows within the estuary, etc. We can think about such a limited observation as being tracking
subsequent punctures through a plane in phase space that transects the attractor. Fig. 10.28 shows
a Poincaré map for the Lorenz model. Limit cycles and periodic trajectories will have simple

£

a) | b)

Figure 10.28: a) Trajectory from (10.80) and a matching b) Poincaré map from a plane near the
center of the attractor. From Batterson (2008).

Poincaré maps, where the punctures through the plane will repeat. Strange attractors tend to have
dense Poincaré maps, sometimes they are called space-filling, because eventually every point in a
region of the plane will have a trajectory pass closely by it. No matter how close you consider close
(pick a distance, any distance), there will eventually be a trajectory or point on the map within
that distance eventually.

Recall our definition of a dynamical system: 1) a set of variables describing the system state, 2)
a set of times when the states can be observed, and 3) a set of rules for evolving the state at
one time until the next. Now, notice that we don’t even meed the trajectories to form a dynamical
system, the Poincaré map itself is a dynamical system! We only need the trajectories to generate
the map, but if somebody told us a short cut to the map, we could use that as a dynamical system.
This broadening of our conception of what constitutes a dynamical system leads to many fun and
(maybe) useful fractal patterns, as well as the concept of sets.

10.7.2 Fractal Sets and Basins of Convergence

A set is a pattern that maps onto itself when operated on by a map. Many sets are chaotic or
fractal, and the classic examples of such are the Julia and Mandelbrot sets. These sets of points
are taken as beautiful examples of approximately self-similar fractals. The Julia sets are all of the
sets that are invariant under repeated application of a complex function (often a simple polynomial
like zp41 = z;f: + C), while the colors around the Julia set denote the rate of escape from a bounded
region. The Mandelbrot is a similar complex parameter plot, except the shading is determined by
the behavior of a Julia set (is it made from connected or unconnected points). Explore!
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Another fun example is the map of basins of attraction in Newton’s method. Newton’s method is a
way to locate roots of a nonlinear equation or extrema of a nonlinear function, for example finding
the maximum or minimum of a nonlinear differentiable function. Newton’s method is iterative: you
guess an initial location and the repeat over and over again. Interestingly, the possible subsequent
iterations form a dynamical system, as Newton’s method is a map (a deterministic method) going
from point to point in a space of possible solutions. When there is more that one root for Newton’s
method to find, which one do you end up at and how quickly? Fig. 10.29

Figure 10.29: Basins of attraction in a Newton’s method with colors indicating the convergence to
the three complex solutions of 2 — 1 = 0. From Lahr and Reiter (2014).

10.7.3 Scaling Laws

Because of the self-similar nature of fractals, they often obey simple scaling laws on different length
scales of consideration. The fractal dimension is one such example. However, other relationships
are also self-similar, and geophysics is rife with such rules. The Kolmogorov (1941) turbulence
scaling gives a relationship between the energy in turbulence and the lengthscale. The Richter
(1935) and Gutenberg and Richter (1942) earthquake magnitude scaling laws are also consistent
with self-similarlity (Rundle, 1989).

10.8 Example Problems

10.8.1 Jargon to Argot

Example 10.1 Look these up online if need be. a) What is the difference between a “fized point”
and a “limit cycle” and an “strange attractor”? b) What is a “trajectory”? c) What is a “map”?

a) A fixed point is a steady state solution at a single location in phase space. A limit cycle is a
simple, repeating trajectory through phase space that attracts or repels neighboring trajectories.
A strange attractor is a complex, chaotic, structure often of fractal dimension that behaves like a
limit cycle, but is not a simple trajectory itself. b) A trajectory is a time history through phase
space of an integration of the field equations beginning with a defined initial condition and over a
finite duration. ¢) A map is a function that relates every point in phase space to another point in
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another phase space. Many maps point from and to the same phase space. Maps may be one-to-one
(every point maps to a unique point and every point is mapped to by only one point) or multivalued
(more that one location maps to the same point).

Example 10.2 Complex Eigenvalues (Strogatz, 1994, problem 5.2.2).
This example leads you through the solution of a linear system where the eigenvalues are complex.

The system is &t =x —y,y =2 + y.

a) Write the equations in matriz form and determine the trace, determinant, and eigenvalues of
the coefficient matriz. Show that the eigenvalues and eigenvectors are: mi =1+ and vi = (3, 1),
mo = 1—i and vo = (—i,1). b) The general solution is x(t) = c1e™ v +coe™vy. So in one sense
we’re done! But, this way of writing x(t) purely involves complex coefficients and looks unfamiliar.
FEzpress x(t) purely in terms of real-valued functions. (Hint: Use Euler’s relation to rewrite in
terms of sines and cosines, and the separate the terms that have a prefactor of © from those that
don’t). ¢) Given the determinant and trace of the coefficient matriz, as well as the eigenvalues,
what kind of trajectories are the result of this system? Where are the fixed points?

1 -1 (x —x*)
_[1 ) ”(y_y*)]. (10.86)

dt | (y—vy")
T = (10.87)
A=2 (10.88)
myg— 2= V4—8 V24*8 14 (10.89)
[1 f”i]— Z;} = (1+1) i] (10.90)
R Es T a0

b)

[ ‘Z; ] — Cl€(1+i)t i —I—Cg(i(l_i)t [ El ] 7 (10'92)

(10.93)
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b)
z (+i)t | ¢ (1-ijt | —1
= ¢ye\1t) + eoe1—?) , (12.92)
Y 1 1
T tr . o l ts . o \ *Z’
y | = cie’(cost + isint) p | Feee (cost — isint) E (12.93)
€1 = c1r + €15, €2 = Cor + 1Cy; (12.94)
Tz | ¢t —c1;c08t — €1 8int + dcy-cost — icy;sint 4+ | c2icost — cypsint — icyr cost — icy;sint
Y ) C1yr COst — ¢y;8int 4+ icy; cost + icy-sint Cor COST 4+ ¢9; SInt + icy; cost — icyrsint
(12.95)
z | _ (e2; — e1:)cost — (eir + eor)sint . ¢ | (exir — ear)cost — (€13 + c2:) sint
Yy " | (e1r + c2r) cost 4+ (c2; — €15) sint (e1; + e2i) cost + (e1, — eop)sint |-
(12.96)
This final equation can be made pure real (or imaginary) by choosing the sums and differences of
the coefficients correctly. If real parts are equal (¢1r = ¢2-) and the imaginary parts are opposite
(c1: = —e2:), a.k.a., ¢; and ¢; are complex conjugates, then the solution is pure real.

c¢) These are clockwise and counterclockwise outward spirals from a single (unstable) fixed point at
z=0,y=0.

10.9 Homework Problems

10.9.1 Manipulation

Exercise 10.1 Locate the fixed points of the following one-dimensional functions and use linear
stability analysis and phase planes (i vs. x) to categorize them. Consider only real values of a and
T.a)i=a—e ", b)i=axr—1z° (note that a can be of positive, zero, or negative—consider all 3).

Exercise 10.2 Draw the bifurcation diagrams (z* vs. a) for the following functions as a varies:

T 5

a)i=a—e",b)i=ax—a’

10.9.2 Application

Exercise 10.3 The Stommel (1961) model exhibits hysteresis (Section 10.4.6) when the forcing is
varied. The Zaliapin and Ghil (2010) model (Section 9.2.3) also exhibits hysteresis when the in-
coming solar radiation is varied. Which of the the following systems has hysteresis as the parameter
a 1s varied between —1 and 19 Why or why not?

a) & =ar—a° (10.94)
b) i =a+2z—2> (10.95)
¢) di=a—2a° (10.96)
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10.9.3 Evaluate & Create

Exercise 10.4 Go to http: //www. easyfractalgenerator. com and make some pretty Julia and
Mandelbrot sets! Print out your favorites. Advanced: Try out the design a custom fractal!
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Chapter 11

Partial Differential Equations

11.1 Introduction—The Bedrock of Geophysics

Reading: (Boas, 2006, 13.1-13.4)

We now have the tools in place to begin examining partial differential equations. These equations
may include both temporal and spatial derivatives at the same time. We know now how to think
about the different flavors of derivatives that are important in three dimensions—div, grad, and curl-
as well as their multi-dimensional antiderivatives—the fundamental theorems: Gauss’s divergence
theorem, the line integral, and the Stokes theorem. Using such equations to describe the motions
and dynamics of fields in space and time was the transformation that allowed physics to evolve
over the twentieth century. Longair (2015) notes that the origin of these developments goes back
to the (Maxwell, 1865) paper on electricity and magnetism. Einstein (1931) sums it up:

We may say that, before Maxwell, Physical Reality, in so far as it was to represent
the process of nature, was thought of as consisting in material particles, whose variations
consist only in movements governed by partial differential equations. Since Maxwell’s
time, Physical Reality has been thought of as represented by continuous fields, governed
by partial differential equations, and not capable of any mechanical interpretation. This
change in the conception of Reality is the most profound and the most fruitful that
physics has experienced since the time of Newton.

We will study many of the most common partial differential equations in a variety of geometries.
To keep things simple, we will often use rectangular geometry, even though realistic problems are
more often not rectangular (e.g., the earth). These partial differential equations are the fundamen-
tals of describing the relationships between environmental variables, and they come up again and
again.

11.2 Laplace’s Equation

Laplace’s equation is the simplest one involving a Laplacian operator. It is

V24 = 0. (11.1)
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166 11.2. LAPLACE’S EQUATION

This equation occurs frequently in time-independent problems (e.g., what is the steady state tem-
perature distribution, what is the shape of an elastic surface under tension, etc.). The Laplacian
itself is non-zero when the variable it operates on is anomalous. Thus, setting the Laplacian to zero
implies that there are no anomalies within the field away from the boundaries.

The standard solution method for Laplace’s equation is separation of variables. Here is the fast
outline of the process, in a two dimensional example. We begin with a very general assumed form
for ¢, then proceed to solve the equation for every term in the sum, then recombine to satisfy the
boundary conditions.

¢ = Xi(@)Yi(y), (11.2)

k
V2 Xi(2)Yi(y) = 0 V2 X (2)Vi(y) = 0, (11.3)
k
VX iy) = N OXAON0) ) T 0y I o, 11,
1 0? Xy () O*Vi(y) | 0
GV | e T T = X e =
?Xp(z) 9y
Oz ot
() T V) (116)
Xy (x) Yk (y)
022 0y o
AT S A L (.1

The last line ends in the statement that since the left quantity depends only on = and the middle
depends only on y, they can only be equal for all x and y if they are both constant. The separation
constant & is chosen, and it is written as k? for convenience in the next step. The next step is to
solve both of the ordinary differential equations in (11.7).

Xy (x) = Apy e + Ay _e e, (11.8)
Yi(y) = Beye™ + Br_e ™™, (11.9)
6=% [Ak+e"’“ + Ak,e*ikﬂ [Bk+eky + Bj_e M. (11.10)

k

Summing over all of the possible k solutions yields the general solution, so long as the functions that
occur in the sum are complete. Complete means that any meaningful function can be approximated
as an infinite sum of them. Sines and cosines are complete, which is why Fourier series and
transforms work. Exponentials are complete as well which is why Laplace transforms work.

In the example problems, we solved a boundary value problem for Laplace’s equation with the
boundary conditions: ¢(L/2,y) =0, ¢(—L/2,y) =0, ¢(z,L) =0, ¢(x,0) = Acos(rx/L). We can
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evaluate all of the boundaries like this:

3 [Aﬂei“/ 24 Ay e kLI 2] [Bk+eky + B, e M) =0, (11.11)
) _
3 [Ak+e_ikL/ 2 4 Ay_eihl/ 2} [Bk+eky + B_e M| =0, (11.12)
) _
3 [Ak+eikx + Ak,e—“ﬂ [B,He“ 4B, e ] =0, (11.13)
) _
3 [Ak+eikf + Ak,e—“ﬂ [Bis + By_] = Acos(nz/L). (11.14)
k

Considering (11.14) first, our understanding of Fourier series leads us to conclude that the only
nonzero value of k will be 7/L, and since all other boundary conditions (11.11-11.12) are even in
x, then Apy = Ap_ = A/2. Including these facts and (11.13-11.14) become

eikac + e—ik:z
Af [Bk_,_ekL + Bk_eka =0« B;H_ekL + Bk_eka =0
eik:c + e—ik’x
Af [Bi+ + Bi—| = Acos(mx/L) <> Bgy + B =1

Some algebra solves these two equations for the remaining coefficients as

*(1-y/L) _ gn(y/L-1)
¢ = Acos <m> c c . (11.15)

L eT —e T

We can also use a guess and check method to solve Laplace’s equation. The guess and check
solution derives from simply noting that since Laplace’s equation is linear and homogeneous with
constant coefficients, we expect to arrive after separating variables in an equation something like
(11.7). That whole class of equations can be solved by assuming solutions of the form

¢=> Amne™e", (11.16)

This approach is sometimes called a normal mode solution or a plane wave solution. What happens
when we plug such a guess into Laplace’s equation?

82 eMe ony 82 eMmeT eny
— 724 —
0=V2% =3 A |~5—+ e ] : (11.17)
m,n
= Z Amn [mzemxe”y + n2emxe”y} , (11.18)
m,n
= m? Z Apne™e™ | +n? Z Apne™e™ | | (11.19)
m,n m,n
= m?¢ + n?¢. (11.20)
.0 =m?+n? (11.21)

Which has precisely the same implications as the single separation constant in (11.7).
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168 11.3. HELMHOLTZ EQUATION

11.3 Helmholtz Equation

The Helmholtz equation is closely related to Laplace’s equation, but it adds a new constant k2. It
is

V3 + k¢ =0. (11.22)

It is also a homogeneous, linear, constant coefficient equation, so assuming again the same solution
form as in (11.16), we find

¢= Amne™e", (11.23)
0 =m?p+np+ k2o, (11.24)
S 0=m?+n?+ K2 (11.25)

So, we can easily arrive at a general solution here, but instead of the coefficients in the exponen-
tials/sines of x being the same as those for y, they are offset by the value of k? given.

11.4 Diffusion or Heat Flow

The diffusion or heat flow equation is

1 90T
2= = —. 11.2
v a? ot (11.26)
One way to attack this problem is by separation of variables.
T =" éila,y)Ti(t), (11.27)
k
xz,y) OTk(t
1)V gu (o) = 250 OO (11.28)
o ot
, OTy(t)
\Y% Qbk (.fL', y) 2 ot
— k%2 — , 11.29
o (,y) a?T}(t) (H1:29)
2 2 _ OTj(1) 2 2 _
Veéorp(z,y) + k“¢r(x,y) =0  and 5 + k“a”Ti(t) = 0. (11.30)

So, we have two equations left. One is just the Helmholtz equation for ¢, which we already know how
to solve. The other is a first-order, homogeneous, constant-coefficient, linear differential equation
for the time variation (which we also know how to solve).

Again, in both cases, we can assume a solution of the form

T=> Tono= Y Amnoe™e™We", (11.31)
m,n,o m,n,o
2 2 o
M Tne + 1 Tmne = ?Tmnaa (1132)
sa?(m? +n?) =o. (11.33)

We use the boundary conditions to determine which m,n values are possible, and each pair will
have a matching o. The initial conditions will set the final choices of coefficients Ao
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11.4.1 Initial Conditions and Boundary Conditions

Determining the relationship between coefficients and m, n in the general solution to the Helmholtz
equation (11.23) that is the spatial part of the heat equation in (11.37) will require boundary
conditions. Determining the remaining coefficients that come from (11.31) describing the time
variations will come from initial conditions.

11.5 Wave Equations

11.5.1 Nondispersive Waves

There are 3 nondispersive wave equations that interest us. We will use the generic variable
o(x,y, z,t) to represent a wavelike part of the solution. In different kinds of waves, ¢ might be veloc-
ity, height above equilibrium, temperature anomaly, vorticity, or pressure. The main nondispersive
wave equation is

0%¢
22
cVop=—.
¢ ot2

In simple applications of this equation, ¢ is taken to be a constant and is called the wave speed. In
more complicated problems, there may be more than one kind of wave speed and it may depend
on location (as the medium through which the wave propagates changes, e.g., depth or density of
a fluid, from location to location).

The auxiliary wave equations describe waves that only propagate in one direction, written here
with only one spatial dimensional in terms of z, ¢, they are

9¢ _ 99
“or o’
_ 90 99
“or ot

The one-dimensional D’Alembert solutions for the wave equation, already studied in previous chap-
ters, are f(z —ct) and g(z+ct), where f and g are any continuous, differentiable functions. A more
general form of the solutions, valid for more than one dimension, is f(k-r—ot), f(k-r+ot), where
now k is the wavenumber vector (a vector pointing in the direction of propagation of the wave), r is
the position vector relative to the origin, and ¢ is the angular frequency. The one dimensional form
is recovered if the wave is propagating purely in z, in which case k = |k:|17 and ¢ = o/|k|.

In a real problem, how do we determine the functions f and g? From matching the initial and
boundary conditions. Generally, waves that result only from the initial conditions are called “free
modes” of the system. Other wave modes are created by variability in the boundary conditions (or
even in body forces such as gravity, e.g., tides), these are called “forced” modes. The D’Alembert
solutions can easily be matched to initial conditions at all spatial locations, on ¢ and %.

We can also solve the wave equation by separation of variables. In wave terminology, this is often
called “normal mode” analysis, because the separation of variable modes over which we sum to get
the general solution are the “normal” ones in the system.
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The standard, nondispersive, wave equation is very similar to the heat equation in that it can
also be split into a Helmholtz in space and a linear, constant coefficient, homogeneous equation in
time.

T =" éila,y)Ti(t), (11.34)
k
2

T () Vor (2, y) = ¢’“(:2’ v 9 ;;f;(t) , (11.35)

, 0Ty (t)

Vie(z,y) 0 o2

aley) " Pnm (11.36)
V3éi(x,y) + K2 ép(z,y) =0 and 81{;’2(& + E2a2Ty(t) = 0. (11.37)

11.6 Special Functions of Most Importance

In this section, we introduce some of the special functions that allow our guess and check and
separation of variables methods to be more broadly applied.

11.6.1 Solutions of Helmholtz and Laplace

Reading: (Boas, 2006, 12.6)

Many of the coordinate systems we use are useful precisely because they are natural choices in terms
of the Helmholtz and Laplace equations. That is, solving these equation is such a common step in
applications that we tend to only like coordinate systems where these solutions are easy.

Rectangular Coordinates—Sines

The Helmholtz equation in rectangular coordinates is simply

2p 92
_ 2 2. 2
0=V29+10= 505+ 55+ (11.38)

As we have seen many times, using separation of variables on this equation leads to exponentials,
sines, and cosines as the basis for constructing a solution. These functions are accessible since x,y
are separable in this equation. Our normal mode solution is of the form

(]5 = ZAmnemzeny‘ (1139)

Which can also be expressed using sines and sinhs, etc., if desired.

The key reason why these functions are useful in series solutions is the same reason why they
are useful as bases for series expansions: they have orthogonality relationships allowing us to use
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Fourier’s trick. Recall these relationships from our work on Fourier series:

1 s
(sinmx cosnz) = — / sin ma cosnz dz = 0. (11.40)
2 J_,
1 (7 0, ifm=n=0,
(sinmaxsinnz) = — / sinmasinnzdr = ¢ 0, if m#n, (11.41)
TS L ifm=n+#0
2 = :
1 7 1, ifm=n=0,
(cosmx cosnx) = — / cosmrcosnrdr =< 0, if m#n, (11.42)
2 J_, 1 _
5, ifm=n#0.
sin(a + b) = sinacosb + sinbcosa, (11.43)
cos(a + b) = cosacosb — sinbsin a. (11.44)
The complex exponential equivalent averages also come in handy.
<€imazeinx> _ i " eimw-l—inx do = 07 ifm ?é —-n, (11 45)
2 f_, 1, ifm=—n. ‘
Cylindrical Coordinates—Bessel
Reading: (Boas, 2006, 12.12)
In cylindrical coordinates, the Helmholtz equation is,
10 0 1 9% 0%
0=V3+ko¢=-—(r— )+ =05+ -5 + & 11.46
ok T8T<T8T>+T2602+822+ ¢ ( )

In 0, z, this equation is not much more difficult than the Cartesian one. However, in r, the first
term is quite complicated. It is linear, but the coefficients are not constant.

The r equation is the tough one, and with a little work it can be made equivalent to

-

The solutions to this equation are Bessel functions.

$2ZN+:EZ/—|—

Z =0. (11.47)

Bessel functions have a more complicated orthogonality relationship than sines and cosines and

complex exponentials, but it still can be employed for a Fourier’s trick-like method. It can be
expressed on the interval from 0 to 1 as

, ifa=b=0, and m # 1.
; if a # b, (11.48)

(xdm(azx)dpy (b)) = /1 xJm(ax) Iy (bx) dz =
0 Im+1(a), ifa=0b#0.

= O O
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Spherical Coordinates—Legendre

Reading: (Boas, 2006, 12.2, 12.10)

As in the cylindrical coordinates case, the Laplacian takes on a different character in the spherical
coordinate system.

19 0P 1 9 0P 1 9%
0=V2®+kP=— —(r?— ————— — | sinf — — —— 4+ k’® 11.49
* r2 or <T or ) T 7Zsine o0 \*™" T 2 ing D2 * ( )
The r equation is the tough one, and with a little work separation of variables comes through. The

solutions to this equation are the associated Legendre functions, " () (Boas, 2006, 12.10).

The associated Legendre functions have an orthogonality relationship on both m and [ over the
interval —1 to 1, which is

MmN pm L om 0, i1,
Fr @Ry @) = [ Br@Rr@de =3 s g Ly (11.50)
-1 A+1 (I—m)!” =
Pr@B @)\ R @Rr @, o if m # ', s
1 — 22 ) 1 — 22 v WEI(T_WQL'),, ifm=m' )

11.6.2 Leading Edge of a Wave: The Airy Function

In the Laplace problem, we found oscillatory and exponential solutions solving, respectively,
¢+ k2 =0, (11.52)
& — k¢ =0. (11.53)

Sometimes, we arrive at problems where there is a transition from oscillatory to exponential behav-
ior in a particular location (the leading edge of a Tsunami is one). In this case, the Airy function
is interesting. It solves the simplest such problem which is

¢ —xp=0 (11.54)

Thus, for all negative x, it is oscillatory and for all positive x is is exponential. This function is a
useful guide in what to expect under such circumstances.

11.6.3 Inhomogeneous Solutions—The Green Function Approach

Reading: (Boas, 2006, 13.8)

We have intensively studied the homogeneous equations featuring the Laplacian: Laplace, Wave,
Heat, & Helmholtz. However, what about the innocent-looking Poisson equation?

Vi = f(x,y,2) (11.55)

This problem seems as though its solutions would depend intimately on the choice of the function
f. However, there is an approach, called the Green function approach, which builds on the linearity
of the Laplacian.
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Suppose that we could break down f into a combination of simpler functions (e.g., point sources).
Then, we could add all of these together to find a solution to the full function f. This is the
essential idea behind the formula (Boas, 2006, (8.9)),

o(z,y, 2 fff\/ (m v, ) 2dx/dy’dz/ (11.56)

(y =)+ (2 —2)

which is a general solution to (11.55) for a localized region of nonzero f(z,y,2) in an unbounded
domain. In bounded domains, or when f(x,y, z) extends to infinity in one or more directions, this
solution must be adapted.

The Green function is the function that results from a point source, or
V3G (r;r') = 6(r — 1) (11.57)
Where I use the Dirac delta symbol, §, to express the following idea,

ffff (r —1r')da’ dy’ d2’ = f(r). (11.58)

That is, the Dirac delta is a special function-like object that is nonzero (and infinite) at only one
location. It is exactly the right magnitude to select the value of a function at only that location
when an integral containing that location is performed. In the Poisson equation case, it allows us
to consider “point sources” with § times f that sum up to the full f over all space when integrated,
or

)= [[] Gl f(x) da’ dy' a2 (11.59)

Note that this form results from integrating both sides of (11.55).

11.7 Example Problems

11.7.1 Application

Example 11.1 Problem 13.1.4 of Boas (2006). Obtain the heat flow equation (1.3) as follows:
The quantity of heat QQ flowing across a surface is proportional to the mormal component of the
(negative) temperature gradient, (?VT) -n. Compare Chapter 6, equation (10.4), and apply the
discussion of flow of water given there to the flow of heat. Thus show that the rate of gain of heat
per unit volume per unit time is proportional to ¥V - VT. But 0T /0t is proportional to this gain in
heat; thus show that T' satisfies (1.3).

Consider any volume that is fixed in time. According to the statement of the problem, the heat flow
through the sides of the volume will be proportional to the opposite of the gradient of temperature
normal to the surface. Thus, the heat flowing in will be proportional to

(fvr-ada= [[[v-vrav = [[[ viTav.

where the equality is due to the divergence theorem. The rate of change of heat in the volume is

il rav = [ff G av
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174 11.7. EXAMPLE PROBLEMS

The derivative can come inside of the integral by Leibniz’s rule, since the bounds of the volume are
fixed in time. Now, we equate the rate of change of heat inside to the flow of heat inward times a

(positive) constant to find
[1f v =2 f[[ v*rav

Because the volume we chose was arbitrary, the only way this relationship can hold regardless of

which volume we choose is if the integrands themselves are equal, thus
— ="V T
a

Q.E.D.

11.7.2 Scheming Schematics and Articulate Analysis

Example 11.2 Problem 13.2.5 of Boas (2006). You do not need to make a computer plot of your
results.

Show that the solutions of (2.5) can also be written as and the other sides are at 0°. X = (e*** Y =
sinh ky or coshky Also show that these solutions are equivalent to (2.7) if k is real and equivalent
to (2.18) if k is pure imaginary. (See Chapter 2, Section 12.) Also show that X = sink(x?a),Y =
sinhk(y?b) are solutions of (2.5).

The solutions to (2.5) can be either of
X = A+eikz + A_eiikx,
X = Bgsinkx + B.cos k.

As differentiating any of these four functions satisfies X” = —k%X and each pair is linearly
independent. We can convert from one to the other using the Euler relation, e.g., A,e** =

Aj coskx + Ayisinkx, and the conversions can be written in matrix form as:

i —i || Ay B,

11 A B. |’
A, || =i/2 172 || B,
A_ |~ | i/2 1/2|] B,

Therefore, any solution expressible with A, A_ can be converted to one in By, B. and vice versa.
The real exponential part of the solution
Y =Cy e+ C e,
Y = Dgsinh kx + D, cosh k.
either pair is a complete solution as differentiating any of these four functions satisfies Y = k?Y

and each pair is linearly independent. Again, we can express the conversions as a linear matrix
problem:

1 -1 || Cy | | Ds

11 c_ | 7| D |
co | | 12 172 || D,
c_ || -1/2 172 || D |°
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If k is pure imaginary, the e'** = ¢~|k|z and e~*** = e|k]a:. Thus, the general solution with Ay, A_

and B,, B_ is just the same, except the oscillations have been switched from x to y, and the names
of the coefficients differ.

X =sink(x — a),
Y =sinhk(y —b).

Are also solutions to X” = —k2X, Y = k?Y as differentiation shows. In fact, they are the general
solutions, as

Aefikaeik:p _ Aeikaefikx

21 ’

Ae~kbeky _ Aekbe—ky
2

X = Asink(zr —a) =

Y =sinhk(y —b) =

By choosing a, b, A cleverly, any of the functions above can be recreated.

Example 11.3 Define, in your own words: a) field equation, b) boundary condition, c) initial
condition, d) general solution, e) particular solution, f) normal mode, g) forced mode.

Definition 11.1 Field Equation: In a spatio-temporal PDE, the field equation is the equation that
applies throughout the interior of a region for all times.

Definition 11.2 Boundary Condition: In a spatio-temporal PDE, a boundary condition is an equa-
tion that applies only on the boundary of a region for all times. It generally reduces the set of
solutions that satisfy the field equation alone. When combined with an initial condition, a unique
solution can be sought.

Definition 11.3 Initial Condition: In a spatio-temporal PDE, an initial condition is an equation
that applies throughout the region, but only at a given time. It generally reduces the set of solutions
that satisfy the field equation alone. When combined with boundary conditions, a unique solution
can be sought.

Definition 11.4 General Solution: A general solution is the name given to a solution of the field
equation, but still possessing coefficients or parameters that will be selected in order to match bound-
ary or initial conditions.

Definition 11.5 Particular Solution: A particular solution is the name given to a solution of an
imhomogeneous differential equation that satisfies the field equation in one case. It may not satisfy
the initial or boundary conditions, which require other degrees of freedom. Considering the deviation
from the particular solution typically renders an inhomogeneous field equation into a homogeneous
one.

Definition 11.6 Normal Mode: An ansatz for a class of solutions, typically for constant-coefficient,
linear, homogeneous differential equations. Fxponentials, sines and cosines are common in Carte-
sian normal mode solutions, but spherical harmonics or other orthogonal functions (e.g., Bessel,
Airy) might be used as normal modes in other coordinate systems. Often the normal mode solutions
are based on solutions of the Helmholtz equation.

Definition 11.7 Forced Mode: A particular solution resulting from boundary conditions or external
forces applied within the field equations. It is typically not a normal mode solution.
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176 11.7. EXAMPLE PROBLEMS

Example 11.4 Verify that each of the one-dimensional D’Alembert wave solutions satisfies one
of the nondispersive auziliary wave equations, but not both, while both D’Alembert wave solutions
satisfy the general nondispersive wave equation.

_ 0?p(x — ct)

AV2(a — ct) = ¢ (x — ct) o = ¢ ‘W = c*¢'(w —ct),
AV2(z +ct) = ¢ (x +ct) = W =—c W = (@ +ct),
CW — el (x — ct) # W = —cd/(z — ct)
c ‘W = ¢/ (z + ct) = W = c¢/(x + ct)
_ ‘%(‘Z;‘j) = —c¢/(x —ct) = W = —c¢/(z —ct)
e W = —cd/(z + ct) £ W = c¢/(z + ct)

Example 11.5 Find two different particular solutions to the nondispersive wave equation for waves
¢(z,y,t) on an infinite two-dimensional plane (x,y) using D’Alembert’s general solutions. The
particular solutions a, b in question should satisfy the initial conditions: a) ¢(x,y,0) = cos(kx) +

sin(ky), % t=0=0 and b) ¢(x,y,0) =0, % t =0 = cos(kz) + sin(ky). HINT: Add together a
wave propagating in the y direction to a wave propagating in the x direction.

a) We know that the general solution will be of the form ¢ = f(x — ct) + g(x + ct) for waves
propagating in x and ¢ = f(y — ct) + g(y + ct) for waves propagating in y. Thus, we consider a
solution of the form ¢ = ¢4 (2 + ct) + ¢p—(x — ct) + Py1(y + ct) + ¢y—(y — ct), for four arbitrary
functions. We need to simultaneously satisfy the initial conditions on ¢ and %, so for a), we
have

d(x,y,0) = cos(kx) + sin(ky) = ¢poy (7) + ¢ () + dys (y) + dy— (),
99

ot
t=0

=0=c¢p i (2) — e, () + cdyy (y) — ¢y, (y)-
It is clear that these are solved if
1
5 cos(ka) = 6y (2) = g (2),
1.
5 sin(ky) = oy (y) = dy-(y).
Which means that the full solution is
1 1 1. 1.
p = 3 coslk(xz + ct)] + 3 cos[k(x — ct)] + 3 sin[k(y + ct)] + 3 sin[k(y — ct)].
b) Again, we know that the general solution will be of the form ¢ = f(x — ct) + g(z + ct) for waves
propagating in x and ¢ = f(y — ct) + g(y + ct) for waves propagating in y. Thus, we consider a

solution of the form ¢ = ¢, (2 + ct) + ¢p—(x — ct) + Py1(y + ct) + ¢y—(y — ct), for four arbitrary
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functions. We need to simultaneously satisfy the initial conditions on ¢ and %, so for a), we
have

o(2,9,0) =0 = ¢ppp () + Pu— () + dyr (y) + &y (y),

9%

21 = cos(k) + sin(ky) = edh (@) — bl () + By () — By (y),

=0
It is clear that these are solved if
5 cos(ha) = 6, () = ~¢,_ (),
%Sin(ky) = ¢y (y) = =y, (v).
Which means that the full solution is

1 . 1 . 1 1
o= 2ok sinfk(x + ct)] — 2ok sin[k(z — ct)] — 2ok coslk(y + ct)] + 2ok coslk(y — ct)].
11.7.3 Application

Example 11.6 The equations of motion for linear, irrotational (V x u = 0) waves in a uniform
depth fluid are, where n is the displacement of the surface from z = 0, ¢ is the velocity potential so

that derivatives are the horizontal and vertical velocity (g—q5 = u, % = w), D is the depth, and g
x z
is the gravitational acceleration (9.81ms™2).
Vi =0 (11.60)

on _9¢
on _ 99 P 11.61
5 = B at z =0 (11.61)
0
a—f = —gn at z =0 (11.62)
0
a—f =0 at z=—-D (11.63)

a) Assume a normal mode/plane wave form for ¢(zx,y,z,t) and n(zx,y,t) (note that n is at the
surface only, so does not depend on z). Show that the condition for nontrivial solutions (remember
how to avoid applying Cramer’s rule-set the determinant to zero!) is 0 = grtanh kD, where o is
the frequency in time of each mode and k = Vk? + (2 is wavenumber of the wave, and k and | are
the wavenumbers in the x and y directions.

We begin by noting that all of the equations are linear, constant-coefficient, homogeneous PDEs.
Thus, we guess a solution of the form:

qb _ Pekmelyemzeiot
n= Eekxelyeiat.
Note that we have arbitrarily assumed that the coefficient with time will be imaginary. We could

find otherwise as we proceed. Indeed, we will find otherwise for m,n. The field equation results
in

V=0 k+1P+m?=0— k> +12=—-m?
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178 11.8. HOMEWORK PROBLEMS

Thus, we see that satisfying the field equation means that some of the exponential coefficients have
to be imaginary, while others must be real. The symmetry of the problem is such that we expect
the x direction and the y direction to be the same (as there are no boundaries in z, y) while the
situation in z might be different since there are upper and lower boundaries. A particular worry is
the boundary condition at z = — D, which suggests that

do

F
The latter relationship would be resolved most easily by P = 0 or m = 0, but either would be a
trivial solution.

a) To avoid this, we note that k? + (> = —m? has two roots for m, m = =+r, and add them
together.

0 at z = —D — mPeFel¥emzeiot — ),

d) _ P+eik:xeily€f€ze7lat + P eikxeilye—nzeiat,
n= Eeikxeilyeiat.
With these results, the boundary condition equations become
1ok = HP+ — rP_
icPy +iocP_ = —gFE
EP+€7”D — kP_e"P =0

Or, in matrix form,

0 —K K E
g 10 1o} P, | =0
0 ke P —gesD P_

To find a nontrivial solution, we set the determinant of the matrix in the last equation to zero,
which yields after some algebra,

0% = gk tanh kD

11.8 Homework Problems

11.8.1 Manipulation

Exercise 11.1 Problem 13.1.2 of Boas (2006). (a) Show that the expression u = sin(x % vt)
describing a sinusoidal wave (see Chapter 7, Figure 2.3), satisfies the wave equation (1.4). Show
that, in general, w = f(x —vt) and u = f(x + vt) satisfy the wave equation, where f is any function
with a second derivative. This is the d’Alembert solution of the wave equation. (See Chapter 4,
Section 11, Example 1.) The function f(x—vt) represents a wave moving in the positive x direction
and f(x + vt) represents a wave moving in the opposite direction.

(b) Show that u(r,t) = (1/r)f(r — vt) and u(r,t) = (1/r)f(r + vt) satisfy the wave equation in
spherical coordinates. [Use the first term of (7.1) for V?u since here u is independent of 0 and
¢.] These functions represent spherical waves spreading out from the origin or converging on the
origin.
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Exercise 11.2 Problem 13.2.10 of Boas (2006). You do not need to make a computer plot of your
results.

Find the steady-state temperature distribution in a metal plate 10 cm square if one side is held at
100° and the other three sides at (0°. Find the temperature at the center of the plate. (The answer,
but not the solution method, is written out in Boas).

Exercise 11.3 Problem 13.3.2 of Boas (2006). You do not need to make a computer plot of your
results.

A bar 10 cm long with insulated sides is initially at 100°. Starting at t = 0, the ends are held at 0°.
Find the temperature distribution in the bar at time t. (The answer, but not the solution method,
is written out in Boas).

11.8.2 Manipulation

Exercise 11.4 Write the Helmholtz equation in earth coordinates. Do you think the separable
solutions will be the same or different from those found in spherical coordinates? Why or why not?

11.8.3 Application

Exercise 11.5 The equations of motion for linear, irrotational (V x u = 0) waves in a uniform
depth fluid are, where n is the displacement of the surface from z =0, ¢ is the velocity potential so

that derivatives are the horizontal and vertical velocity (% = u, % = w), D is the depth, and g
is the gravitational acceleration (9.81ms™2).

V=0 (11.64)

% = g—f at z=20 (11.65)

% = —gn at z=10 (11.66)

% =0 at z = —D (11.67)

(Part a) is the example problem already solved above in example 11.6. You don’t need to do it
again, begin with part b. I repeat it here only to point out that part b builds on this result.) Assume
a normal mode/plane wave form for ¢(z,y,z,t) and n(z,y,t) (note that n is at the surface only,
so does not depend on z). Show that the condition for nontrivial solutions (remember how to avoid
applying Cramer’s rule-set the determinant to zero!) is 0? = gk tanh kD, where o is the frequency
in time of each mode and k = V' k2 + 12 is wavenumber of the wave, and k and 1 are the wavenumbers
in the x and y directions.

b) In very deep water, 0> = grtanh kD ~ grk. Redo the normal mode analysis in a), but in the
semi-infinite plane (i.e., infinite depth) ocean.

¢) Compare the deep water case in b) to the nondispersive waves of previous problems. Show that
the phase of deep water waves propagates at different speeds depending on the wavenumber, whereas
nondispersive waves always have the same speed regardless of k.
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180 11.8. HOMEWORK PROBLEMS

11.8.4 Scheming Schematics and Articulate Analysis

Exercise 11.6 Look at http://tinyurl. com/mljujml and http://tinyurl. com/ol3al47.
a) Contrast these against the separation of variables in the Cartesian coordinate cases. b) Why
aren’t the solutions sines and cosines? c¢) How can it matter which coordinate system we choose—
that is, what is so special about separable solutions?
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Chapter 12

Continuum Mechanics

12.1 Basics of Continua

All matter is made up of molecules, which are made up of atoms, which are made up of electrons,
protons, and neutrons, and so on. However, on large scales, where the separations between molecules
can be considered to be tiny, matter behaves as though it is continuous. Such materials are called
continua, and the formulation of their equations of motion is called continuum mechanics. In a
continuum mechanics, the motion of the individual molecules and sub-molecular particles won'’t
be considered directly, only the motion of the large bodies will. Some molecular effects do affect
the larger scales (e.g., viscosity, diffusivity), but only collectively rather than one molecule at a
time. Mathematically, assuming a material is a continuum means that we can use all of the power
of calculus, differential geometry, and partial differential equations, assuming that taking limits to
infinitesimal distances and time scales (i.e., taking derivatives in space and time) is acceptable even
though we know that in the real world there is a limit to how far down we can go. We use the term
parcel to imply an infinitesimal piece (i.e., a differential mass or volume element) of the continuum,
which is still larger than the separations of the particles that make up the continuum.

Continuum mechanics includes the study of all states of matter. Thus, fluids (both liquids and
gasses) and solids are covered, as well as more esoteric phases such as plasmas. Even for phases
where quantum mechanics effects are important (e.g., Bose-Einstein condensates, superfluids) con-
tinuum mechanics can still be a useful guide. In geophysics, we also consider multiphase systems,
such as liquids propagating through a solid matrix, ice crystals forming into clouds or sea ice, as
well as deformable materials such as mineral phases, plastics, and viscoelastics. This chapter will
briefly introduce the equations that govern the motions of the simplest such continua.

A pedagogical reason for including continuum mechanics in this course is to further motivate the
study of partial differential equations in the last chapter and ordinary differential equations in
preceding chapters. There, scenarios—warming a solid, disturbing a liquid, budgets for the earth’s
energy, or budgets for temperature and salinity in the ocean—were used to motivate study of the heat
equation, wave equation, or coupled sets of ordinary differential equations. Here, the relationships
between conservation of mass, momentum, and energy and these differential equations will be made
plain.
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182 12.2. CONSERVATION

12.2 Conservation

All of the equations of motion of continuua are framed as conservation principles (as indeed are
almost all of the equations of physics). The fundamental ones are conservation of mass, momentum,
and energy. A few other conserved quantities, such as conservation of angular momentum, vorticity,
and potential vorticity can be useful as well.

12.2.1 Displacements

When a continuum moves, it is often useful to think of every point in the continuum as having
an original location X and a present location x. Since every point came from somewhere, we can
think of original location X as a function of space x and time ¢, i.e., X(x,t). We can also invert
this relationship to find present position x(X,t), that is the location at present of a point in the
continuum that originated at each point X occupied by the continuum at time ¢ = 0.

The displacement from initial position is then
Ax =x — X. (12.1)

We can consider the displacement as a function of present location and time Ax(x,t), which is
called the Eulerian description, or initial location and time Ax(X,¢) which is called the Lagrangian
description. Note that writing it this way abuses notation a bit, since the function Ax in Ax(x,?)
can’t be the same function as Ax in Ax(X,t) even though we use the same symbol for it. A
slightly more formally correct way to write the second function is Ax(x(X),t). The arguments of
the function are used to distinguish between the two. The continuum velocity at a point is the rate
at which Ax is changing, for a given parcel of continuum (i.e., hold X constant):

v = 98X fived = 5F (12.2)

There is actually quite a bit of thought that goes into Eulerian versus Lagrangian descriptions. For
example, suppose we consider a flow property that is conserved following a parcel, ¢. It should be
determined from only the initial field of ¢ distributed over all space, that is, ¢ = ¢(X,t). We can
consider taking the derivative of ¢(X, ) with respect to time following a fluid parcel,

Do(X,t)  gox.t)
Dt 9

(12.3)

This is the Lagrangian perspective, and we call D% the Lagrangian or material derivative, as it is
the derivative following the flow of the material-or the derivative with respect to time holding X
fixed. Or, instead, we could think of the value of ¢ as depending on x (again, implying a different
function ¢), thus

Do(x(X,t),t x x x
( E)t L0 _ 06xX0) | 0xXt) | Gy (X, 1), 1) = 220D |y Tg(x(X,b),8).  (12.4)

Here V is the gradient operator with respect to the components of x, and it appears here just by
ordinary application of the chain rule.

Notice that at any moment, (12.2) implies that the Eulerian velocity and the Lagrangian velocity
are the same everywhere v(x,t) = v(x(X,¢),¢). This is true instantaneously, but a moment later
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the parcel initially located at X will not be at this same location, i.e., x(X,t) # x(X,t + At).
Likewise, we can think of a Lagrangian-averaged velocity (the average velocity following a parcel
trajectory or holding X fixed) and an Eulerian-averaged velocity (the velocity at a point averaged
in time or holding x fixed).

12.2.2 Mass

In continuum mechanics, the motion of the continuum moves around the mass of the material.
The continuity equation ensures that during these motions, no mass is created or destroyed. The
continuity equation is often written in two forms. The first form is the “flux form,”

90 4 V- (pv) =0. (12.5)

The density of the continuum (mass per unit volume) is p and the velocity of the continuum is v.
We can integrate this equation over a volume that is fixed in time and space (a control volume
delineating a range of x) to find

(ft/pdV—i—/V-(pv)dV:(ftM—i-ygpv-ﬁdS:O. (12.6)
14 14 S

The integral of the density becomes the mass contained within the volume (M), and using the
divergence theorem allows us to understand that pv represents the mass per unit area flowing into
and out of the control volume. Notice that the divergence theorem (8.69) is the key mathematical
tool allowing us to express the concept of “stuff flowing in and out” versus “accumulation of stuff
inside.”

Often, the conservation of mass is taken in different forms. One common form is to expand out the
divergence and recombine the terms,

Dp

-v=0. 12.
Dt—l—va 0 (12.7)

2] 0
HHV-(pv) =3 +v-Vp+pV . -v =
| —
Dp
Dt
Here the material derivative % = % + v - V- appears. This derivative has the meaning of the rate
of change of a continuum property along a path following along with the motion of the continuum.
Such a perspective is often called Lagrangian, while the idea of sitting still at a point and letting
the continuum pass by is called the Fulerian perspective. Note that the change of perspective is
mathematically just an application of the chain rule. The total derivative with time of a property
f(x,y, z,t) that moves with the continuum depends both on the partial derivative with respect to
time and the partial derivatives with respect to space:

df(x7y727t) 0 Z,Y,z, €T 0 4

di = it (9:11‘// ) + (?977 aii/v ?97) ' vf(x7y7zat)? (128)
Df(xayaz7t) of(x,y,z

Dt = K éih t) + (u,v,w) : vf(xaya 2y t)? (129)
Df(xayazat) of(x,y,z,

LT = Al 4y V(g2 t). (12.10)

What distinguishes the material derivative from the total derivative, is that in a material or contin-
uum, the way that the continuum varies in space with respect to time (e.g., %) is governed solely
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by the velocity of the continuum’s motion (u,v,w) = v. Some authors like to use % to denote the
material derivative, but this glosses over the fact that other propagation through space would be
determined by a similar law, but would not depend on the motion of the continuum. For example,
the propagation of light through a transparent gas obeys the following

df(x,y,z,t) Of(zy,z,t Oz Oy 0 9f(z,y,2,t
DD = Dt 4 (90 50 82) Vf(ay, s t) = L) e V(e y it (1210)
However, the speed of light ¢ doesn’t depend much on the motion of the gas, so ¢ # v, so using %
would be inappropriate for light, while using % remains appropriate.

We might also be interested in the conservation of mass of only a constituent of the continuum,
such as the salt in seawater or humidity in air. Well-mixed constituents such as these mostly travel
along with the continuum, so do not require a different velocity. The equation of continuity for a
well-mixed constituent is just

% + V- (pcv) =V - uVe. (12.12)

Here ¢ is the mass fraction of the constituent’s mass to the continuum mass in a control volume.
Thus, the constituent mass per unit volume is just pc. There is now a dynamic diffusivity (u,
dimensions M/LT) of the constituent added to the right hand side. Sometimes, a kinematic
diffusivity (x = p/p, dimensions L?/T) is used if density variations are small. Here pc is the mass
of tracer per unit volume, and pcv is the advective flux of tracer. This fluz form of the equation is
useful for tracers measured in quantity per unit volume.

We can distribute out the derivatives and use the continuity equation to make another form of the
well-mixed tracer equation, assuming negligible diffusivity

B+ Y (pev) = 3 + i + ¢V (pv) +pv - Vem 0, (12.13)
0
(G eoGv)) +p (5 +v-Ve) =0, (12.14)
Dc
“Cxo. 12.15
- (12.15)

Thus, the material derivative is a useful way to think about the transport of mass fractions of
well-mixed quantities being transported by a continuum.

Liquids, unlike gasses, tend to be difficult to compress. Thus, their density changes very little while
flowing. We can express incompressibility as

0
901V - (pv) = X2 +v - Vp+p2-—v= 0, (12.16)
~——
Dp
Dt
D
Ff —0and V-v = 0. (12.17)

A fully incompressible continuum has density that is constant for each fluid parcel, although density
may vary among fluid parcels. In the more interesting geophysical cases, the density of a fluid parcel
may vary, but only by a small fraction of a background value of the density. In this approximation,
called the Boussinesq approximation, we can still assume V - v = 0 as our continuity equation, but
forces resulting from variations in density are not neglected.
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Incompressibility also has a simple form when the displacements are taken to be the variable, rather
than the velocities. Since each displacement is just the time integral of each velocity, incompress-
ibility becomes just

p(X,0) = p(X,t) and V- Ax = 0. (12.18)

12.2.3 Momentum

The fundamental equation of motion of continuua is the Cauchy Equation of Motion, which is the
continuum version of Newton’s Second Law (F = ma = i—f) for the conservation of momentum p.
If we consider the force and momentum per unit volume over a control volume, we arrive at

fﬁ’:(?t/ pvde/(%deV%—ygpv/\v-ﬁdS:/png—Fyga-ﬁdS (12.19)
14 14 S 14 S

The momentum per unit volume of a continuum is just pv. Using the divergence theorem and
continuity equation results in

v
=p—=V -0+ pg. 12.20
P D g (12.20)
In this form, it is easy to make the association between a control mass and the normal mass times
acceleration: fV]\/I p% dV = ma.

o)
FE+V - (pv Av)

Here body forces per unit volume, such as gravity, are included in pg. Body forces are usually
conservative, in which case we might write them as the gradient of a potential, pg = —V®. Forces
that result from stresses across interfaces within the continuum result in the stress tensor o. The
rate of change of momentum is on the left side, both as a flux form for momentum per unit volume
pv and as an acceleration following a parcel per unit volume p%‘t’.

The stress tensor is probably unfamiliar, so it deserves a few words. Recall that we said that a
tensor is an object like a scalar, a vector, or a matrix, but with the special property that under
changes of coordinates it behaves the way we expect it to. Examine the momentum equation above,
we take the divergence of the stress tensor, and the result is a vector. Since the divergence involves
a dot product which combines three directions, just as V - v produces a scalar from a vector v,
that means that the stress tensor must have more directions in it than a vector. In fact, it’s like
a matrix, in that you can take its dot product from either the left or the right! Let’s write out
one example of the stress tensor for concreteness, the Reynolds stress tensor which results from
averaging over a turbulent flow (we’ll use overbar to denote averaging). The Reynolds stress tensor
is (in the absence of background flow):

ot = —pv AV, (12.21)

05 = —pViv;. (12.22)

The wedge product here implies that we consider nine different things, the x component of the
velocity times all of the other components, the ¥ component times all of the other components, etc.
This forms a matrix, which we can see more clearly using the index notation as shown on the second
line. The stress tensor is a second-rank tensor (i.e., it is like the wedge product of two vectors, or a
square matrix) and it is always symmetric o;; = 0j;. This is obviously true for the Reynolds stress
tensor, where the two velocities are just the velocity of the fluid and hence interchangeable. In
general, the symmetry of the stress tensor results in the conservation of angular momentum.
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Three important examples of dynamic stress tensors will be given below: one for elastic solids, one
for Newtonian incompressible liquids, and one for Newtonian gasses. The former resists deforma-
tion, and the latter resists the rate of deformation. Much of the business of continuum mechanics,
especially solid mechanics, is involved in finding a good approximation of the stress tensor for the
material at hand. In both fluids and solids, however, there is a simple form of the static stress tensor
for undeformed solids or inviscid fluids, which is sometimes called the perfect form. It is

o= —pl (12.23)
The equations of motion in this case become
Dv

— =-V 12.24

P D P+ g, (12.24)

9 4 V- (pv) = 0. (12.25)

These are called the Euler equations of motion for perfect (i.e., inviscid and diffusionless) flu-
ids.

Often, the combination of the conservation of mass and conservation of momentum are not enough
to fully describe the motion of a continuum. For example, let’s count up variables and equations. We
have the continuity equation and the momentum equation for three components of the acceleration,
thus four equations. We have the unknowns p,p and three components of velocity: five! So, we
need another equation to close the set.

One way to close the set is to assume incompressibility, because in this case the one continuity
equation (12.16) becomes two separate equations (12.17), for five equations in five unknowns.
However, even in this simplified case of perfect, incompressible fluids, the fluxes are all nonlinear
in the unknowns, so we expect it to be difficult to solve these equations!

12.3 Angular Momentum

The conservation of linear momentum times a moment arm r is also conserved.

Im(rxv)=rxF. (12.26)

Taking the time derivative following a constant mass, this is

mW—iQ mrxa=rxF. (12.27)

Above, in the continuum case, we split the forces acting on a mass into a body force pg and a
surface stress o. In order to satisfy the conservation of angular momentum, it turns out that o
must be symmetric. Otherwise, the continuum version of the preceding equation gains an extra
term, which is like the cross-product of ¢ with itself.

12.4 Solids

The simplest stress tensor for a solid relates the stress to the deformation of the solid. Such a
relationship is called a constitutive relationship. Suppose, like a spring, a solid has a stress-free
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initial location of all of the parcels X. We might consider all Ax displacements from this initial
state. If all deviations produce a stress proportional to the gradient of this deformation, i.e.,
proportional in any given direction to V;Az;. This is almost a complete form, except we need a
symmetric tensor if we want to produce a stress tensor, so how about

1
045 = —péij + Si (VZAI'J + VJAIL‘z) = —péij + SEZ']'. (12.28)

The strain tensor epsilon is symmetric by construction. However, it turns out that this is not a
very good model for a solid, because not all kinds of strain are the same as the others, and so
they do not produce the same amount of stress. Thus, we can consider a generalized relationship,
where

1
Oij = _p(sij + Sz’jkl§ (vaafl + VZAeTk) = —p5ij + Sijklﬁkl- (12.29)

Now the proportionality can be different in each direction.

12.5 Liquids: Incompressible Fluids

Incompressible Newtonian fluids have the stress tensor which looks much the same, but there is a
velocity in the place of the displacement. So, fluids don’t resist displacement, they resist the rate
of displacement.

1
Oij = —p(sij + 2/15 (Vﬂ)j + Vjvi) = —p(sij + 2/,LDZ~]~. (12.30)

Here we have assumed that the liquid is incompressible. The difference between a liquid and a
solid, then, is that the liquid resists the rate of strain D;; with stresses while a solid resists the
strain itself €;; with stresses. Both have a static pressure p.

12.6 Gasses: Compressible Fluids

A gas expands to fill its container, and is also compressible if the size of the container changes.
Therefore, we need to preserve the full form of the continuity equation, which allows for changing
mass within a given volume.

Additionally, there is the possibility that the gas will viscously oppose the compression. So, a
general linear form for the stress tensor is

Oij = (—p+ )\Dkk)éij +2uD;;. (12.31)
The reason for the new term appears since Dy = Vvg, which is zero for an incompressible liquid.
In a gas, this term need not disappear. It is often assumed that A\ = —%u, which avoids any

appearance of the viscous terms in a motionless gas.
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188 12.6. GASSES: COMPRESSIBLE FLUIDS

12.6.1 Energy and Entropy

Let’s review the situation with unknowns and equations in the compressible equations. The mo-
mentum equation has three unknown velocity components and three equations (one for each direc-
tion):

Dv
— = —Vp+pg. 12.32
P D P+ g (12.32)
However, it also introduces the density and pressure, which are two other unknowns. The continuity
equation introduces no new unknowns:

90 4 V- (pv) =0. (12.33)

It is only one constraint. Thus, we have four equations in five unknowns.

If incompressibility is not assumed, then additional constraints, such as the First Law of Thermody-
namics (conservation of energy) or the Second Law of Thermodynamics are required. The internal
energy and kinetic energy of a continuum generally flow along with the motion of the continuum,
but potential energy depends on position, and the motion of the continuum itself may represent
work being done. Dissipation of continuum energy, through viscosity or diffusion, really represents
an exchange of internal energy (the energy of the molecular motions within the continuum) and
the kinetic energy of the continuum’s motion.

The Second Law of Thermodynamics (conservation or increase of entropy) can also be a useful
thermodynamic constraint on continuum mechanics. Often the flows of entropy in a system are
categorized into reversible (entropy-conserving) and irreversible (entropy-increasing) phenomena.
Like the conservation of energy, care is required to account for the dissipative effects which act to
make continuum mechanics irreversible. If we write the equation of motion for the entropy of a
continuum parcel, and assume that all processes are perfectly isentropic (dissipationless, inviscid,
reversible), then the entropy s just obeys

Ds

— =0. 12.34

T (12.34)
This adds another equation to our set, but also another variable (the entropy). However, for many
materials, there are known relations among the thermodynamic variables, such as entropy, density,
and pressure, called the equation of state. So, if we add in the equation of state for a perfect fluid,
where entropy is just a function of density and pressure, then

s=s(p,p). (12.35)
Now we have six equations in six unknowns.

Furthermore, solids, fluids, and gasses are significantly different in the way they respond to changes
in energy and entropy, which is governed by the equation of (thermodynamic) state of the contin-
uum. Technically, most continuum flows are not in thermodynamic equilibrium (e.g., because there
are gradients in temperature, entropy, etc., throughout the continuum). However, in a similar spirit
to the continuum assumption, continuua are usually assumed to be in local thermodynamic equi-
librium, which means that averaging over the molecular motions in a hunk of continuous material
yields a meaningful definition of temperature, energy, etc., of that hunk.
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Chapter 13

Statistics & Probability

13.1 Introduction—Probably a Stat for That

Reading: Boas (2006, 15.1)

So far, almost everything we’ve worked on has been deterministic. That is, there is one, and only
one answer being sought for each mathematical problem. Sometimes, as in the case of truncated
series, our answer was only an approximation to the one answer. Sometimes, a series would not
converge and there would be no meaningful answer. Sometimes, as in the case of some sets of linear
equations, there was no consistent answer or there was an infinite number of possible choices of
answers. Even when we studied chaos, it was still deterministic chaos where there was an exact
(but complicated to determine or estimate) answer to each question.

Statistics and probability are topics that confront a different kind of mathematical problem, those
where it is not possible to choose one answer over others from a set of possibilities, or where
measurement accuracy or imperfect models prevent an exact answer from being possible. The
mindset and approach to these topics is quite different from that of deterministic mathematics, and
many people have a strong preference for one or the other. As geoscientists, we have an interest in
familiarity with both, as deterministic methods are the tools for developing theories and models,
while statistics and probability are the mathematics of experiment.

13.1.1 Probability
Assessing probability is the science (and sometimes art) of determining how likely a given outcome
is from the total set of possible similar outcomes.

Definition 13.1 (Probability) The ratio of the number of times a particular outcome is expected
to the number of all possible total outcomes, where each of the number is equally likely and mutually
exclusive.

Many people who enjoy probabilistic thinking enjoy games of chance and gambling, and many clean
example problems to illustrate probabilistic thinking are framed in these types of games.

189



190 13.2. HISTOGRAM AND PROBABILITY DENSITY FUNCTION

13.1.2 Statistics

Statistics are manipulations of observations or other random or uncertain data to complement and
inform our understanding of their probability. A statistic, a metric, a unit, a dimension, and a
measurement are all related concepts involved in the gathering and generation of data. A statistic
differs in that it need not involve new observations to be created, it may just be a manipulation of
existing metrics or measurements.

13.1.3 A Bunch of Randos

Definition 13.2 (Rando) An unpredictable, awkward and often creepy individual. a rando is
always there in the background, even though no one invited him. Randos tend to be isolated within
large groups; they sit in corners and lurk in the shadows of others. Fven though everyone is aware
of the presence of a rando, no one knows anything about him or her and therefore randos are often
unwittingly ignored. Source: The Urban Dictionary.

There are many closely related applications of probabilistic and statistical mathematics. Something
is random if it can be repeatedly sampled with a variety of different outcomes. Probability is the
quantification of the likelihood of those outcomes. Some topics of recent mathematical investigation
are stochastic dynamics, which is similar to dynamical systems but involve random variables and are
therefore nondeterministic. Fuzzy math is a similar idea, except for logic of random processes rather
than dynamical systems. Uncertainty is the quite the same as randomness, in that it describes how
measurable something is rather than intrinsic randomness. However, we often associate repeated
measurements under uncertainty as being usefully modeled by random processes. The Copenhagen
interpretation of quantum mechanics has made the unknowable a part of physical sciences, but
the idea of unknowable truths is much older in nonscientific realms such as religion. The methods
of statistics and probability in quantum mechanics allow quantification of the unknowable even
without there being a knowable variable underlying the probability, this odd situation is partly a
consequence of the peculiarities of quantum mechanics but mainly a demonstration of the power
of probabilistic thinking. In geosciences, where many processes are poorly modeled because of
limited understanding or limitations of computers or measurements, probabilistic thinking can be
used to supplement models. The limited capability of models can have its “uncertainty quantified,”
and stochastic models or stochastic parameterizations are sometimes used to represent incomplete
theories even in otherwise deterministic models. Deterministic chaos can also be tamed somewhat
using probabilistic thinking, hence we have ensemble forecasts of the weather where many different
versions of deterministic or stochastic weather models are run simultaneously to try and map the
probabilities of different outcomes. Finally, much of geosciences, particularly planetary sciences and
oceanography, is grossly undersampled because of the exceptional cost per measurement. Proba-
bilistic methods can be used to better understand how representative limited observations are likely
to be of the whole system were it possible to sample it better.

13.2 Histogram and Probability Density Function

Reading: Boas (2006, 15.3) A histogram is a method for mapping the estimated probability based
on a set of repeated measurements which are thought to be drawn from the same set of potential
outcomes. It is easy to create a histogram. One just makes a chart where the x axis gives a different
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location for each outcome and as the data is reported the y axis accumulates the number of times
that outcome occurs. Fig. 13.1 shows two examples, one where x is numerical and one where it is
not. In both cases, the set of possibilities is organized into a discrete set of bins—even the numerical
example is bunched by tens. This discretization is always true of histograms, since there is only a
finite number of observations available.

Histogram
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Figure 13.1: Two examples of histograms from the web.

Sometimes, the y axis of a histogram is normalized, that is, it is divided by the total number of
occurrences. If this is true, then the sum of all of the histogram columns is one, and each column
is less than or equal to one. The reason one might normalize the histogram is to better study the
shape of the histogram, which is independent of the number of observations, instead of a particular
history of observations.

A probability distribution function (PDF) is an idealization of a normalized histogram. If we could
take an infinite number of observations, what shape would the normalized histogram take? Or,
if we take only a limited number of samples from such an idealized distribution, the histogram
would be the approximation to this distribution based on a limited sample. Also, when we consider
an infinite number of observations, we can make the bins of the histogram infinitely thin. Thus,
we can begin to think of the ordinate (x) in the histogram as a continuous, rather than discrete-
valued, variable. In this case, the PDF is called a probability density function (PDF). The sum
of a probability density function over all values is always 1. The integral of a probability density
function over all values is likewise 1.

Definition 13.3 (Histogram) A histogram h(x) is a table or chart of the number of times each
of a set of particular, exclusive outcomes occurs out of a collection of events.

Definition 13.4 (Probability) For exclusive, equally likely outcomes, the probability of a partic-
ular outcome is the number of times they are positive taken out of the total number of outcomes.
See Fig. 13.2 for a graphical representation. (Positive is taken here to indicate a favorable result,
i.e., do they count toward a particular outcome? For example, are they true or within the desired
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192 13.2. HISTOGRAM AND PROBABILITY DENSITY FUNCTION

range of values?)

Number of positive outcomes

13.1
All possible outcomes (13.1)

Figure 3.1

Figure 13.2: A figure from Boas (2006) graphically illustrating probability as a Venn diagram. Each
point on the graph represents an equally likely, mutually exclusive outcome of an experiment.

Fig. 13.2 is a graphical representation of probability. Each point represents an equally likely,
mutually exclusive result of an experiment. Some of these results contribute to outcome A indicated
by the contour labeled A, some contribute to B, some contribute to both A and B which are
labelled AB. The probability p(A) is the ratio of the number of points inside the A contour
(N(A)) to the total number of points N, p(A) = N(A)/N. Similarly, the probability p(B) is the
ratio of the points in B to the total points, p(B) = N(B)/N. The probability of both A and
B, p(AB) is the ratio of the number of points in the intersection to the total number of points,
p(AB) = N(AB)/N. The conditional probability of B given that A is true, p4(B) (sometimes
written as p(A|B)) is the ratio of the number of points within the AB intersection to the number
of points within A—which is considerably different from the overall probability of p(AB) which is the
ratio of points in AB to all points in the domain, pa(B) = N(AB)/N(A) # N(AB)/N. Similarly,
pp(A) is the ratio of the number of points within the AB intersection to the number of points in
B, ps(A) = N(AB)/N(B) # N(AB)/N.

Definition 13.5 (Probability Distribution) For exclusive, equally likely outcomes, the proba-
bility distribution is the function expressing the probability of a each particular outcome versus an
index covering each outcome in turn. It is the limit of the normalized histogram over infinitely
many repeated experiments. The sum of the probability density over all outcomes equals one.

Number of outcomes positive to value x; .
p(z;) = . = lim
All possible outcomes Nooco N

(13.2)

Definition 13.6 (Probability Density) If outcomes are indexed by a continuous variable, the
probability density function, p(x), is the probability of the outcome lying within an infinitesimal
distance of a particular value x. The definite integral of the probability density function gives the
probability of the events lying between the endpoints of the integral. The integral of the probability
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density function over all values is one.

_ Number of outcomes positive to values between x and x + dw

p(r) = : (13.3)

All possible outcomes

b
pla<z<b) = / p(x)dz. (13.4)

13.2.1 Sample Estimates

Considering the histogram to be an estimate of the probability distribution function for a limited
sample of data is our first indication of a much larger idea—that of sampling and representativeness.
It is easy to imagine that one sample or another might be an incomplete representation of the PDF,
so that histogram would be an odd one. Thus, the histogram is not the PDF, but just an estimate
of it based on a finite size sample. We can only consider the PDF as the limit to which a histogram
converges with an infinite number of observations.

13.2.2 Do PDFs exist? Frequentists and Bayesians

This concept of defining an object that cannot be observed as the limit of an infinite number of
observations irritates many people. Some statisticians prefer the “frequentist” approach, where
all of probability and statistics can only be inferred from actual observations rather than through
experiments. The other camp, the Bayesians, like to perform thought experiments that suggest
PDF's of various processes or experiments, even if these experiments cannot be carried out.

Plato vs. Aristotle

This argument between frequentists and Bayesians is quite old. In some sense, it stems from the
same intellectual thread as the Platonists versus the Aristotelians. Plato liked to frame arguments
in terms of comparisons to “ideals” that exist outside of reality—indeed, if they did exist they could
not be an ideal. Bayesians tend to think of ideal probability distribution functions in a similar
vein, as derivable from thought experiment and then sampled data is an imperfect representation.
Aristotle on the other hand argued for measuring the essences (the what) and seeking causes (the
why), which is the nature of frequentist statistics. Frequentists define and measure statistics (the
what), and from these definitions can relate one statistic to another (the why).

13.3 What do you Mean Mean?

Reading: Boas (2006, 15.5, 15.6)
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13.3.1 Mean

We all learned how to take a mean or an average in second or third grade. You sum the values of
all of the elements of a sample and then divide by the number of elements V.

N

1 1 +2x2+ -+ TN

<@=N§fﬁz ~ : (13.5)
i

One big difficulty of the mean is that the operation of taking the mean does not commute with
nonlinear functions. That is, for a generic function F,

F((z)) # (F(z)). (13.6)
However, if F' is a linear function, this is true (Why? Can you prove this?).
Geometric & Harmonic Mean

The fact that the mean only commutes with functions that are linear leads us to sometimes consider
other kinds of means. The geometric mean and the harmonic mean are

1N
N
()g = HIL‘z = Yrzizo. . TN, (13.7)
i=1
N N

(@h = = (13.8)

=1 1 1
Yimim mtm ooty
These means are less common than the arithmetic mean, but they are useful sometimes. I include
them here primarily to accentuate that the mean is not the only way to consider a distribution of
values.

13.3.2 Median

The median is the n'" 50 percentile value. That is, for a given set of measurements, it is the value
that sits in the middle, with half of the set being smaller than it and half being larger (if there are
an even number of measurements, some people prefer to take the mean of the middle two as the
median, but this is a detail). One can also consider other percentiles or quartiles or deciles, etc.,
where the idea is that a given percentage of the measurements are below and the remainder are
above.

13.3.3 Mode, Maximum Likelihood, Range, Etc.

The mode, or statistical mode, or maximum likelihood value is the value where the probability
distribution function or the probability density function have their maximum value. It is therefore
the most likely value. The maximum value and the minimum value are likewise the ends of the
nonzero values of the PDF (for bounded pdfs). The difference between the maximum and the
minimum values is the range.

These statistics are particularly prone to error, since a single spurious value can skew the result
significantly. Thus, percentiles are usually preferred when the dataset is reasonably large.
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13.3.4 The Cumulative Distribution and Density Functions

A related idea is the cumulative distribution function or the cumulative density function (CDF),
which are the sum and integral of the probability distribution function and the probability density
function, respectively. Thus, the CDF has a value of 0 at the minimum of the range and 1 at the
maximum of the range. Any percentile or the median is easily read from the CDF, as the inverse
of the CDF is the value at which that that fraction of the number of events is smaller than the
value. The PDF can be found from the CDF by differentiation or differencing. Constructing a
sample estimate of the CDF can be more robust than a sample histogram, for the same reason that
integrals are less noisy than derivatives.

13.3.5 The Mean as a Moment

There is another way to calculate the mean of a random variable which is closely related to the
mean over a volume or area from chapter 6. Suppose we have a (not normalized) histogram h(z)
over a set of n different values of x over N different experimental results. We could sum up all of
the columns of the histogram like this

n

N = Z h(z;). (13.9)

Jj=1

to arrive at the total number of experiments. Or, we could form a normalized histogram like
this

1= Zn: hg?). (13.10)
j=1

Note that here j runs over all of the possible outcomes of z, hitting each only once. Since each
value of the histogram is associated with one particular value of the variable z;, we can compare
this to the ordinary average,

N
(x) = ;[Z:cz (13.11)

Suppose we rearranged the order of the sum in the average, so that we first summed all of the
occurrences that equal the first possible value x1, then the occurrences of the second value xz2, etc.
The number of terms of each type in the sum would just be the histogram! Thus,

N n
() = Jb;x _ Jb;xjh(xj). (13.12)

We can think of a few ways of expressing the same idea,

(13.13)

i zih(x;) Z?:l zih(z;)

1 n
<x>=N;wjh<zj>= N T Y k()

Jj=1

Each of these is exactly equal to the sample average over the experiments included in the his-
togram.
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Taking this idea to the limit of infinite experiments, we see that
n
(2) = 3 ajpley). (13.14)
j=1

For a probability density function of a continuous variable x, the equivalent form is

(x) = /OO zp(z)de. (13.15)

—00
Notice that the normalization of the probabilities means that we do not need the denominator if
we sum or integrate over all possible values.

Sometimes, the term moment is used to describe an operation like the average above over a dis-
tribution or density function. Thus, the first moment of the probability density function is the
average:

w={(x)= /OO zp(z)de. (13.16)
The second moment is
(z%) = /OO 22p(x) dz. (13.17)
The m! moment is
(™) = /OO x"p(x) dx. (13.18)

This name comes from the close relationship between this form and moments in physics, such as
the moment of inertia.

The moments are sometimes centralized and normalized. The central moments are the moments

th centralized moment is

pn = (=)™ = [ o= )" pla) (13.19)

—0o0

about the mean. The m

The moments can be normalized using the standard deviation o, = \/(x?) — (2)? (see below). The
m" normalized moment is

m m
<xm> = @ (13.20)
(Ve @)
The standardized moment, which is just the normalized, centralized moment is

pn _ (@ @)™ (13.21)

(Vi —wr)

The expectation value of any function f(z) is just the evaluation of that function weighted by the
probability of x or probability density of z if x is continuous.

(f@) =Y flajp(zy), (13.22)

<ﬂm>—/mfmm@nu. (13.23)

Thus, the moments are the expectation values of the powers of x.
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13.4 Error and Uncertainty

The average, mean, median, and percentile values of a distribution are all useful concepts, but we
will need a few more to be able to compare measurements. In particular, we might like to know if
a measured quantity A from a set of repeated experiments has a different value than a measured
quantity B. If both A and B are uncertain, or involve random noise in their measurement, then
what we need to do is compare the probability distribution of A and that of B. It is not just the
mean of these distributions we compare, since the distributions might be so wide that they are
indistinguishable. That is, even if their mean values differ, they must differ by an amount that
exceeds a quantification of the noise or spread of the distribution.

Thus, we associate the ideas of error, uncertainty, and precision with the width of the distribu-
tion.

13.4.1 Variance and Standard Deviation

The variance is a statistic to quantify the width of the distribution. It can be defined as (using the
standard notation) as

1 N
or =2 (i (13.24)

=1

The standard deviation is the square root, or just o,. Thus, the variance is the second centralized
moment.

We can also associate the standard deviation with the moments of the probability distribution or
probability density function.

9 1 N 2

=N > (i — (x) (13.25)
=1
1 N

=+ (a? = 2wifa) + (@)?) (13.26)
i=1

N R 22 X
= 2 (@) - S+ S (13.27)

) — 2z)? + (a)? (13.28)
x?) — (z)? (13.29)
= (z%) — (x)% (13.30)

This is a nice reminder of the fact that the average of a function is not the function of the average,
otherwise the variance would always be zero.
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13.4.2 Skewness and Kurtosis

Sometimes it is useful to consider quantities similar to variance, but based on higher moments
that the first and second. The primary ones are the skewness (the third centralized moment) and
the kurtosis. The kurtosis is the fourth standardized moment minus 3. The reason behind the
minus three is that the fourth centralized moment of the normal distribution is 3¢#, so the fourth
standardized moment is 3. Thus, the kurtosis is zero for a normal distribution. The skewness
indicates whether the largest deviations from the mean tend to occur above (positive skewness)
or below (negative skewness) the mean value. The kurtosis indicates how likely extreme values
(i.e., those far away from the mean) are. A positive kurtosis indicates more extreme values than is
typical for a normal distribution while a negative value indicates fewer extreme values.

13.4.3 Accuracy and Precision

Two concepts (related to variance, skewness, and kurtosis) are importantly differentiated in statis-
tics: accuracy and precision. The accuracy of a measurement provides information about the
reliability of the mean value. That is, a measurement is accurate (or sometimes called unbiased) if
the average over many repeated experiments converges to the true value. Thus, accuracy is about
(x). A measurement is precise if the distribution of experimental results is narrow (small variance).
A useful definition of precision might be o, < (z), for example.

However, the fact that a measurement is precise does not mean that it is accurate. Suppose for
example that I throw three darts at a dartboard and uniformly surround the bullseye, but do not
score any darts in the bullseye. That is accurate, but imprecise, throwing. If instead I miss the
dartboard all three times but all three of darts are clustered together in a bunch with the darts
touching each other, then that is precise, but inaccurate, dart throwing. If I throw all three darts
into the bullseye, that is both precise and accurate throwing.

13.5 Probability Theorems

There are a number of probability theorems that allow one to compare probabilities, add proba-
bilities (what is the probability of A and B occurring together?), determine whether occurrences
are independent or not (does A depend on B?), determine if they are mutually exclusive (does A
preclude the occurrence of B?), and related ideas.

13.5.1 Venn Diagrams

You probably all learned how to make Venn diagrams in school. They are a map of probability
distributions! Here are some of my favorite examples, which help illustrate the idea that some of
the outcomes that occur overlap or do not overlap with other outcomes. Probability is defined as
the fraction of positive outcomes You get the idea.

In the discussion of Fig. 13.2, we considered the number of experimental results (points) that fell
into a particular category or outcome (contour). We can readily interpret Venn diagrams in such a
manner. These interpretations lead us to quickly establish the fundamental theorems of combining
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Figure 13.3: Examples of funny Venn diagrams, a) and c) from Randall Munroe (http://xkcd.
com), b) from http://www.danga.com/words, and d) one by Adriana DiGennaro from http://
www.funnyordie. com.
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200 13.5. PROBABILITY THEOREMS

and comparing probabilities. Some less exciting Venn diagrams can help us to understand combining
and joining probabilities (Fig. 13.4).

a) b)

Figure 13.4: Examples of less funny Venn diagrams, a) indicates probability of A, p(A), probability
of B,p(B), and probability of A and B, p(AB) where the two intersect (compare to Fig. 13.3¢c-d).
b) Indicates the a case where A and B are mutually exclusive, in this case p(A+ B) = p(A) + p(B)
(compare to Fig. 13.3b).

We have already defined the probability of outcomes A, B, and both A and B or AB, and the
conditional probabilities ps(B) and pp(A). We can add to this list the probability of either A or
B or both, p(A + B). Fig. 13.4a shows all of these examples.

p(A) = =7 (13.31)
p(B) = N](VB) (13.32)
p(AB) = N(f,B) (13.33)
p(A+B) = N(A) + N(ﬁ,) — N(AB) (13.34)
pB(A4) = w (13.35)
pa(B) = ]\J[\Eiﬁ)' (13.36)

We can also make relationships between the probabilities by combining the counting formulas in
(13.31-13.36), such as

p(A+ B) =p(A) +p(B) — p(AB). (13.37)
p(AB) =pp(A) - p(B) = p(A) - pa(B). (13.38)
p(AB)

Bayes’ Theorem: ps(B) = (13.39)

p(4)
Bayes’ Theorem is the most famous of these relationships, for reasons we shall see later.

We can examine the probability of relationships between mutually exclusive outcomes and inde-
pendent outcomes,

~—
I
o

if mutually exclusive: p(A + B) = p(A4) + p(B),.". p(AB (13.40)
if independent: p(AB) = p(A) - p(B),.". pa(B) = p(B),pp(A) = p(A). (13.41)
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Note that two mutually exclusive outcomes of nonzero probability cannot be independent, because
Bayes’ Theorem says that pa(B) # 0 only if p(AB) # 0. To put it in words, if two events are
mutually exclusive, then knowing that one did occur means knowing that the other did not occur,
so they are not independent. Likewise, two independent outcomes of nonzero probability cannot
be mutually exclusive!

As examples of how logic and probability combine, we can examine the probability of combining
outcomes using the Boolean logical operators.

And (both): p(A
Not: ~ p(
Inclusive Or (either or both), OR: p(A +
Not Or (none), NOR: ~ p(A+
Exclusive Or (either but not both), XOR: p(A + B) — p(AB
Not And, NAND (either or none): 1 — p(AB
Not XOR, XNOR (both or none): ~ (p(A+ B) — p(AB)

pB(A) -p(B) =p(A) - pa(B).

1 —p(A).

p(A) +p(B) — p(AB).

1 —p(A) —p(B) + p(AB).

p(A) +p(B) — 2p(AB).
—pp(A) - p(B) =1-p(A)-pa(B).
—p(A) = p(B) + 2p(AB).

(A

B) =
)
B)
B)
)
)
)

13.6 Parametric Distributions

One way to estimate a distribution is by building histograms from large numbers of experiments.
However, if we take a more Bayesian attitude, there are many distributions that can be generated
from thought experiments. It is useful to be familiar with some of these standard distributions, as
they serve a good approximations to many types of experiments.

13.6.1 Uniform

The uniform distribution is the simplest distribution. It has either a discrete set of possible out-
comes, each of which is equally likely, or a continuous range out outcomes for which the probability
density is equal.

The uniform probability distribution for n values is

1
p(z;n) = —. (13.42)
n
The probability density function for the range of values between a and b, where b > a is
(w:a,b) = — (13.43)
p(z;0,b) = 3—. .

The meaning of expectation value for this distribution is a bit odd, as all values are equally likely.
So, the expected value is just the average of the possible values. Tables 13.1 and 13.2 table
summarizes important statistics about the binomial distribution.
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name ‘ statistic ‘ result
pdf [ p(a;n,p) =
mean (x) Li;l i

Y %2_(2?:1 xi)2

n

variance | (x2) — (z)?

Table 13.1: Statistics of the discrete uniform distribution.

name ‘ statistic ‘ result
pdf p(z;ba) |
mean (x) %"b

. 2 2 | (a—b)?
variance | (z%) — () o

Table 13.2: Statistics of the continuous uniform distribution.

13.6.2 Binomial & Bernoulli

Reading: Boas (2006, 15.7)

The binomial distribution is the probability of finding x successes in n independent experiments
with a probability of success of p. The special case of n = 1 is called the Bernoulli distribution, and
a single experiment with a yes or no outcome is called a Bernoulli trial. A Bernoulli distribution
with equal probability is one example of a uniform distribution. The distribution is given by

n!

p(z;n, p) = <Z> Pr(l—p) "= mpx (1—p)"". (13.44)

An example is the odds of getting exactly x heads out of 8 coin tosses. In this case p = %, n==_§.
So,

= (13.45)

s by (B) L1 81
RS o) = \g)or 98— = 218 — )1 28~

X

Another example is drawing a card from a well-shuffled deck, replacing the card randomly back
into the deck and reshuffling between draws. Fig. 13.5 from (Boas, 2006) gives examples of this
distribution for varying n, p. Table 13.3 summarizes important statistics about the binomial dis-
tribution.

13.6.3 Counting: Combinations and Permutations

Bernoulli trials and related experiments where outcomes are repeatedly drawn from a uniform
distribution lead one to consider forming probabilities by counting the number of possibilities. In
such problems, the permutation and the combination formulas are useful.

name ‘ statistic ‘ result
pdf p(z;n, p) #Lx)lf@x (1-p)""
mean (x) ng
variance | (z?) — (z)? np(l — p)

Table 13.3: Statistics of the binomial distribution.
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Graphs of the binomial distribution, f(x) = C(n, x)p*¢" ™~
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Figure 13.5: Examples of binomial distributions for varying n, p.

If we repeatedly draw from a uniform distribution, and the order in which the results are received is
important, and particular outcomes can be repeated, then the odds of a particular outcome is

b= (;)n (13.46)

where N is the number of total possibilities, and n is number of samples chosen. Imagine drawing
a card from a shuffled deck, writing down the answer, and then replacing the card and reshuffling
before drawing again. If N is the number of cards in the deck and n is the number of times this
process is repeated, then an ordered list made in this way will occur with the probability p. This
count is sometimes called the permutation with replacement.

A reordering is an accounting of how many ways one can resort an ordered list of things. Consider
an ordered deck of n cards. Shuffle it. How many possible shuffles are there? There are n choices
for the first card in the deck, n — 1 for the second, n — 2 for the third, etc. Thus, the number of
reorderings is n! and the probability of a given reordering is

1

There are surprisingly many ways to reshuffle or permute a list!

A permutation is the similar to the case above, except instead of considering the order of the whole
reshuffled deck, suppose we are interested in only the first r cards of the shuffled deck, but we still
care about the order in which they occur. Clearly, » < n, and when r = n we recover the whole
deck shuffle. The number of ways of reordering n cards choosing r at a time is P(n,r), can is called
the number of permutations of n items choosing r at a time. The number of such permutations
and the probability of any one of them is

n!
P(n,r) = Rk (13.48)
n—r)!
p(n,r) = 7) (13.49)
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Finally, suppose we don’t worry about the ordering of the choice we find. Then, reshuffling is
irrelevant unless we choose a number of cards less than n. This kind of counting is called the
number of combinations of n things r at a time, and the count and probability of one are

Cln,r) = <") o (13.50)

r (n—r)lr!’

(n—r)lr!

p(n,r) = (13.51)

n!

Note that this count is precisely the number of permutations divided by the number of ways r
things can be reordered! Thus, if order doesn’t matter, then these are all equivalent and we divide
by the number of these to arrive at the count. The n choose r notation is used here, which we have
seen before but in a different context (Section 5.2.1 on multivariate Taylor series)! The result is
the same as the formula for the coefficients of a polynomial expansion!

There is one more count that is useful to consider, which is very important for the bootstrapping
technique for estimating uncertainty we will learn later. This count is the number of combinations
with replacement. This is the number of ways that one can choose from n things r at a time,
where order does not matter, but duplicates are allowed. Think of drawing from a deck of cards,
writing down the card, replacing and shuffling, drawing the next card, etc., r times in a deck of
n cards. However, unlike the permutation with replacement, we don’t consider the order in which
we draw each card, just the fact that it was drawn. In the bootstrapping case, for example, we
will be interested only in an unordered statistic (e.g., the average value) of the cards drawn in this
manner. This count of combination with replacement results in

Cnyr)=C(n+r—1,r)= <n) :<n+’r—l>:(n—|—r—1)!. (13.52)

r r (n—1)!r!
The number of things to choose from is greater, because of the increased choice (freedom to choose

a duplicate). This makes the factorial in the numerator a bit bigger, but also the factorial in the
denominator a bit bigger. Overall, the larger numerator wins out.

13.6.4 Normal

The normal distribution (a.k.a. the Gaussian distribution, a.k.a. the bell curve) is one of the most
important ideas in statistics. The probability density function is

1
pz;0,p) = e~ (em?/(2e) (13.53)
oV 2m
This bell-shaped curve is extremely important, as it is the limiting distribution for the average
of any uniform, independent data drawn from the same distribution. Since we are often in the
business of averaging data, this distribution describes the randomness in our averages.

There are two adjustable parameters, the mean (u) and the variance (02) of the distribution. If one
samples from this probability distribution often enough, the sample mean and the sample variance
will converge to these values. That is, lim,, o () = p and lim,, o ((x — ())?) = 0 where n is the
number of samples taken from the distribution.

For finite n, the sampled mean and sampled variance will not be equal to these limits. Tests,
such as the t-test, allow one to estimate the uncertainty in these sample estimates versus the true
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99.7% of the data are within
3 standard deviations of the mean

95% within

2 standard deviations
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«— 1 standard —
deviation

i~ 30 u~ 20 H=0o " u+ao u+ 20 u+ 30

Figure 13.6: The Gaussian, normal, or bell-curve distribution, normalized and scaled by its mean
and variance (Wikimedia Commons).

values. The central limit theorem says that any average of independent samples drawn repeatedly
from the same distribution will eventually converge to being normally distributed. This effect gives
the variance of these averages, which can be used to determine a confidence interval on sample
estimates of the average.

13.6.5 Student’s t distribution

Just as the Gaussian distribution is the limit of samples of the mean, the Student t distribution is
the distribution of sample variances that result from sampling from a Gaussian distribution. Thus,
if one wants to test whether the variance is different in one set of measurements from another (is one
noisier?), the samples can be matched to a Student t distribution. The name t-test means exactly
this kind of comparison. The “student” who discovered this distribution and test was working for
the Guinness company at the time, and these statistics are useful in testing and guaranteeing the
quality of ingredients from limited subsamples. The author used “student” as a pen name on the

paper.
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Figure 13.7: The Student’s t distribution, for sample sizes of 1 to 10 (Wolfram Alpha).
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13.6.6 Dirac Delta

The Dirac delta distribution is sometimes called a function, but it really is not since it is discon-
tinuous and infinite. We touched on its use in solving differential equations, but it is also a useful
concept in statistics. It is the distribution that results from the examination of a set of possible
results where only one one of them ever occurs.

Discrete

For a discrete set of values, the probability distribution function for the Dirac delta is
e )1 ifr=2a"
plx;x*) = { 0 ifz £t (13.54)

Continuous

For a continuous s