Fall 2015 GEOL0350-GeoMath Midterm Exam

1 Seismic Waves

The seismic wave equation can be written

$$
\begin{equation*}
\frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=\alpha^{2} \nabla(\nabla \cdot \mathbf{u})-\beta^{2} \nabla \times(\nabla \times \mathbf{u}) . \tag{1}
\end{equation*}
$$

The vector \mathbf{u} is a function of space and time, and it measures the displacement of every point in a solid from its original location. The two parameters α and β are constants.

1.1 Fields

What kind of a mathematical object is \mathbf{u} ? \mathbf{u} is a vector field.

1.2 Dimensions

What are the dimensions of α and β ? They both have the dimensions of velocity, L / T.

1.3 Split It Up

Suppose we write the displacement as a combination of a scalar potential ϕ and a vector streamfunction $\boldsymbol{\psi}$ (a Helmholtz decomposition), that is $\mathbf{u}=\nabla \phi+\nabla \times \boldsymbol{\psi}$. Plug this assumed form into the seismic wave equation, and collect all of the terms that depend only on ϕ on the left hand side and those that depend only on $\boldsymbol{\psi}$ on the right hand side. Simplify where you can easily.

$$
\begin{aligned}
\frac{\partial^{2} \nabla \phi+\nabla \times \psi}{\partial t^{2}}=\frac{\partial^{2} \nabla \phi}{\partial t^{2}}+\frac{\partial^{2} \nabla \times \psi}{\partial t^{2}} & =\alpha^{2} \nabla(\nabla \cdot[\nabla \phi+\nabla \times \boldsymbol{\psi}])^{0}-\beta^{2} \nabla \times(\nabla \times[\nabla \bar{\phi}+\nabla \times \boldsymbol{\psi}]), \\
\frac{\partial^{2} \nabla \phi}{\partial t^{2}}-\alpha^{2} \nabla^{2} \nabla \phi & =-\frac{\partial^{2} \nabla \times \psi}{\partial t^{2}}-\beta^{2} \nabla \times(\nabla \times[\nabla \times \boldsymbol{\psi}]) \\
& =-\frac{\partial^{2} \nabla \times \boldsymbol{\psi}}{\partial t^{2}}-\beta^{2} \nabla(\nabla \cdot[\nabla \times \boldsymbol{\psi}])^{0}+\beta^{2} \nabla^{2}(\nabla \times \boldsymbol{\psi}),
\end{aligned}
$$

1.4 Solution

The seismic P -wave is associated with ϕ and the S -wave is associated with $\boldsymbol{\psi}$. Show that $\phi=$ $f(x-\alpha t)$, for any function f makes the left hand side of the equation from the last part equal zero.

$$
\frac{\partial^{2} \nabla f(x-\alpha t)}{\partial t^{2}}-\alpha^{2} \nabla^{2} \nabla f(x-\alpha t)=\alpha^{2} \hat{\mathbf{x}} f^{\prime \prime \prime}[x-\alpha t]-\alpha^{2} \hat{\mathbf{x}} f^{\prime \prime \prime}[x-\alpha t]=0 .
$$

2 Linear and Nonlinear

We have talked a lot about linear and nonlinear functions and equations. This question explores these ideas.

2.1 Equations for a Line

Show that $y=m x$ is linear, by considering $x=2 x_{0}$ and $x=x_{1}+x_{2}$, with m being constant.

$$
y=m x=m\left(x_{1}+x_{2}\right)=m x_{1}+m x_{2}=y_{1}+y_{2}, \quad y=m 2 x_{0}=2 m x_{0}=2 y_{0}
$$

2.2 Parabolic

Use the same approach to show that $y=m x^{2}$ is not linear.
$y=m x^{2}=m\left(x_{1}+x_{2}\right)^{2}=m x_{1}^{2}+m x_{2}^{2}+2 m x_{1} x_{2} \neq m x_{1}^{2}+m x_{2}^{2}=y_{1}+y_{2}, \quad y=m\left(2 x_{0}\right)^{2}=4 m x_{0}^{2}=4 y_{0}$.

2.3 Differential

Use the same approach to show that $x=\frac{\partial x}{\partial t}$ is linear.

$$
x=\frac{\partial x}{\partial t}=\frac{\partial x_{1}+x_{2}}{\partial t}=\frac{\partial x_{1}}{\partial t}+\frac{\partial x_{2}}{\partial t}=x_{1}+x_{2}, \quad x=2 x_{0}=\frac{\partial 2 x_{0}}{\partial t}=2 \frac{\partial x_{0}}{\partial t}=2 x_{0} .
$$

2.4 Linear Equations, Nonlinear Solutions?

In class, we saw that the solution to $x=\frac{\partial x}{\partial t}$ was $x=C e^{t}$. Is this equation linear? Is this solution a line? What does this tell you about linear equations? Equation is linear, solution is not a line. Thus, linear equations can be solved by lines sometimes, but other times other functions. Just because the solution is not a line doesn't mean the equation is not linear.

3 Taylor rhymes with Baylor

Suppose the function $h(x)$ plotted in the figure is found by measuring topography along the x direction, and in particular consider fitting it with a series expansion near the point marked A. Sea level is $h=0$, so we are particularly interested in $h(x)=0$, which indicates the location of coastlines. The function is not known, but we consider the possibility of approximating a Taylor series expansion to it.

Figure 1: A function to be fit by Taylor expansion near point A at the star.

3.1 Counting

How many coastlines are there, that is how many solutions to $h(x)=0$ are there? 4

3.2 Constant

If the function is fit with a Taylor series and truncated at the first (constant) term. If the truncated approximation is denoted $\tilde{h}_{0}(x)$, then how many solutions are there to $\tilde{h}_{0}(x)=0$? None

3.3 Variations

If the Taylor series is instead truncated after two terms $\left(\tilde{h}_{1}(x)\right)$ then how many solutions are there to $\tilde{h}_{1}(x)=0$, and what is the approximate value of the solution x ? One, near $x=12$.

3.4 How many?

What is the minimum number of terms in the Taylor series that must be retained to approximate all of the coastlines in the real function $h(x)$? Why? Since there are 4 roots to the equation $h(x)=0$, $\tilde{h}(x)$ must be at least a fourth-order polynomial to have this many roots, which has 5 terms of the Taylor series retained.

3.5 Extremes

Consider the function at large magnitudes of positive and negative x. If the truncated Taylor series matches this behavior at large $|x|$, predict the sign of the coefficient in the largest power of x and whether the power is even or odd. Positive and even power. Negative would tend toward $-\infty$, and even power since the function increases on both sides of A or 0 .

4 Impossible!

Indicate why the following equations cannot be true.

4.1 Q1

$$
\sin (k x) \approx a+b x^{2}+c x^{4}+\ldots
$$

Sine is odd and the RHS is even.

4.2 Q2

$$
f\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\theta
$$

The function on the left must be constant in theta, since its argument is independent of θ, while the other side depends on θ.

$4.3 \quad$ Q3

$$
\oint \mathbf{v} \cdot \mathrm{d} \mathbf{l}=\mathbf{v}
$$

At first, it seems like the LHS would be zero, but it might not be if $\nabla \times v \neq 0$. However, the LHS is a scalar and the RHS is a vector!

4.4 Q4

$$
\oiiint(\nabla \times \mathbf{v}) \cdot \hat{\mathbf{n}} \mathrm{d} A=1
$$

By the divergence theorem, $\oiint(\nabla \times \mathbf{v}) \cdot \hat{\mathbf{n}} \mathrm{d} A=\iiint \nabla \cdot(\nabla \times \mathbf{v}) \mathrm{d} V=0$ so the LHS is zero.

4.5 Q5

Speed always equals speed squared.
Two problems. 1) Units/dimensions don't match. 2) $s=s^{2}$ only if $s=1$, not always.

