Assignment 2 for GEOL 1820:
 Geophysical Fluid Dynamics,
 Waves and Mean Flows Edition
 Due Oct. 17, 2016

Baylor Fox-Kemper
October 7, 2016

Contacts

The professor for this class is: Baylor Fox-Kemper
baylor@brown.edu
401-863-3979
Office: GeoChem room 133
http://fox-kemper.com/teaching, http://fox-kemper.com/gfd

Getting Help!

I am usually available by email. You can make an appointment other times. Just check my calendar at http://fox-kemper.com/contact and suggest a time that works for you.

1 Problem 1: Parabolic Ray Focusing

Do problem 3.4.2 of (Bühler, 2014).

2 Problem 2: Reconciling Wave Flux with Energy and Group Velocity

In the WKB expansion of (Bühler, 2014), we have the ansatz (i.e., solution guess) and equations,

$$
\begin{align*}
h & =A(x, y) e^{i\left(\kappa_{0} s(x, y)-\alpha-\omega t\right)} \tag{1}\\
|\nabla s|^{2} & =n^{2}, \tag{2}\\
\nabla & \cdot\left(\frac{A^{2}}{n^{2}} \nabla s\right)=0 . \tag{3}
\end{align*}
$$

In the phase velocity, group velocity slides (see also Chp. 1 of Chapman \& Rizzoli, 1989) , it is discussed how energy propagates with the group velocity.

$$
\begin{equation*}
\mathbf{c}_{g}=\frac{\partial \omega}{\partial k} \hat{\mathbf{k}} \tag{4}
\end{equation*}
$$

Relate these two frameworks to express the argument of the divergence in (3) as a group velocity times a conserved quantity. What is the conserved quantity? How do you relate $\frac{\partial \omega}{\partial k}$ to $s(x, y)$? Hints: Here ω doesn't vary k does, and $c_{g}=c_{p}$ for shallow water waves.

3 Comparison of Stationary Phase

Compare section 3.2.3 of Bühler (2014) with section 1.4 of Chapman \& Rizzoli (1989). What is the essence of the method of stationary phase?

4 Phase and Group Velocity

Find the phase speed in k, ℓ directions and the group velocity (vector, gradient w.r.t. k, ℓ) for the following dispersion relations for x wavenumber k and y wavenumber $\ell .(k, l)=\boldsymbol{\kappa}$, and $\kappa=|\boldsymbol{\kappa}|$. Subscript 0 indicates a constant. Hint: $\frac{\partial \kappa}{\partial k}=\frac{k}{\kappa}, \frac{\partial \kappa}{\partial \ell}=\frac{\ell}{\kappa}$

$$
\begin{align*}
\omega & =\mathbf{c}_{0} \cdot \boldsymbol{\kappa} \tag{5}\\
\omega^{2} & =\mathbf{c}_{0}^{2} \kappa^{2} \tag{6}\\
\omega^{2} & =g H \kappa^{2} \quad \text { shallow-water waves } \tag{7}\\
\omega^{2} & =g \kappa \quad \text { deep-water waves } \tag{8}\\
\omega & =\frac{-\beta k}{\kappa^{2}} \quad \text { Rossby waves } \tag{9}
\end{align*}
$$

5 Piecewise Beach

Consider the following index of refraction variations:

$$
n(x, y)=\left\{\begin{array}{cc}
n_{d} & x \leq-L \tag{10}\\
x \frac{n_{s}-n_{d}}{2 L}+\frac{n_{s}+n_{d}}{2} & |x| \leq|L| \\
n_{s} & x \geq L
\end{array}\right.
$$

5.1

For shallow water waves, how does the depth vary over this region?

5.2

For waves that are directly incident on the slope (i.e, $s(x, y)=x$ and $A=1$ at $x \ll-L$), solve for $A(x, y)$ and $s(x, y)$ using equations (3.6) and (3.8) of Bühler (2014).

5.3

For waves that hit the slope obliquely (i.e, $s(x, y)=x \cos \theta_{0}+y \sin \theta_{0}$ and $A=1$ at $x \ll-L$), solve for $A(x, y)$ and $s(x, y)$ using equations (3.6) and (3.8) of Bühler (2014).

References

Bühler, Oliver 2014 Waves and mean flows, 2nd edn. Cambridge, United Kingdom: Cambridge University Press.

Chapman, David C. \& Rizzoli, Paola M. 1989 Wave motions in the ocean: Myrl's view. Tech. Rep.. MIT/WHOI Joint Program, Woods Hole, Mass.

