
Spring 2020 GEOL1820
Homework 1, due Friday, February 7, 9AM

1 Vallis (2019) Problem 1.1

You may assume Leibniz Integral Rule to begin (see Wikipedia for the rule and a proof).

The Leibniz rule is:

So, when applying it to the problem posed by Vallis, we just swap variable names.

d

dx

ˆ b(x)

a(x)

f(x, t) dt =

ˆ b(x)

a(x)

∂

∂x
f(x, t) dt+ f(x, t)

db(x)

dx
− f(x, t)

da(x)

dx

d

dt

ˆ x2(t)

x1(t)

ϕ(x, t) dx =

ˆ x2(t)

x1(t)

∂

∂t
ϕ(x, t) dt+ ϕ(x, t)

dx2(t)

dt
− ϕ(x, t)

dx1(t)

dt

In 1D, if the bounds of the integral are taken to follow the material, the the rate of change of the
bounds is just the fluid velocity.

D

Dt

ˆ x2(t)

x1(t)

ϕ(x, t) dx =

ˆ x2(t)

x1(t)

∂

∂t
ϕ(x, t) dt+ ϕ(x, t)u(x2, t)− ϕ(x, t)u(x1, t)

If we consider a small rectangular solid, then we just need to evaluate the normal velocity at each
boundary of the rectangular solid and integrate over each face, noting that for a small enough solid
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2 ? PROBLEM 1.2

the velocity will be constant over each face or

D

Dt

ˆ x2(t)

x1(t)

ˆ y2(t)

y1(t)

ˆ z2(t)

z1(t)

ϕ(x, t) dx dy dz =

ˆ
V

∂

∂t
ϕ(x, t) dV

+

ˆ y2(t)

y1(t)

ˆ z2(t)

z1(t)

ϕ(x, t)u(x2, y, z, t) dy dz −
ˆ y2(t)

y1(t)

ˆ z2(t)

z1(t)

ϕ(x, t)u(x1, y, z, t) dy dz

+

ˆ x2(t)

x1(t)

ˆ z2(t)

z1(t)

ϕ(x, t)v(x, y2, z, t) dx dz −
ˆ x2(t)

x1(t)

ˆ z2(t)

z1(t)

ϕ(x, t)v(x, y1, z, t) dx dz

+

ˆ x2(t)

x1(t)

ˆ y2(t)

y1(t)

ϕ(x, t)w(x, y, z2, t) dx dy −
ˆ x2(t)

x1(t)

ˆ y2(t)

y1(t)

ϕ(x, t)w(x, y, z1, t) dx dy

=

ˆ
V

∂

∂t
ϕ(x, t) dV +

ˆ
S

ϕ(x, t)v · dS

=

ˆ
V

[
∂

∂t
ϕ(x, t) +∇ ·

(
ϕ(x, t)v

)]
dV

For a more general solid, you have to be very careful about the inner integrals depending on the
variables being integrated over in the outer integrals. However, you can just sum up squares like
this to any arbitrary shape (Riemann Solids). Finally, using the conservation of mass, and setting
ϕ = ρφ in the relationship above, we note

∂

∂t
ϕ+∇ · (ϕv) =

∂ρφ

∂t
+∇ · (ρφv) = φ

���
���

���:
0[

∂ρ

∂t
+∇ · (ρv)

]
+ ρ

∂φ

∂t
+ ρv · ∇φ = ρ

Dφ

Dt
.

Thus,

D

Dt

ˆ
V

ρφ dV =

ˆ
V

ρ
Dφ

Dt
dV

2 Vallis (2019) Problem 1.2

a) Because the velocity is defined as tracking the mass of each parcel. If mass could diffuse, then the
velocity would not be the velocity. b) In a mixture of two species, then they may diffuse through
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3 ? PROBLEM 1.5

each other. If ρa is the density of just the dry air, and ρw is the water vapor density, then

Dρa
Dt

+ ρa∇ · v = κ∇2ρa,

Dρw
Dt

+ ρw∇ · v = κ∇2ρw,

ρ = ρa + ρw,

0 =
Dρ

Dt
+ ρ∇ · v =

Dρa
Dt

+
Dρw
Dt

+ ρa∇ · v + ρw∇ · v.

κ∇2ρa =
Dρa
Dt

+ ρa∇ · v = −
(
Dρw
Dt

+ ρw∇ · v
)

= −κ∇2ρw

Note that the last step does not require any special form of the diffusivity operator, any linear
operator acting on each component’s density would work similarly, e.g. additional advection by a
“slip velocity” vs · ∇ρa which would then be equal and opposite for the two constituents.

Hint: the diffusion equation for either of the two constituents is

Dρi
Dt

+ ρi∇ · v = κ∇2ρi, (1)

and their combined density is ρ = ρa + ρw.

3 Vallis (2019) Problem 1.5

Hint: Use integration by parts over the whole fluid volume with no-slip (i.e., velocity is zero on the
boundaries), following Section 1.7.3. The correct compressible viscous Navier-Stokes momentum
equation is

ρ
Dv

Dt
+∇p− ρg = µ∇2v +

1

3
µ∇(∇ · v)

Vallis already treats the left side of this equation in (1.73), so let’s focus on the right-hand side. We
will only prove that energy is dissipated over the whole volume, not pointwise.

ˆ
V

v ·
[
µ∇2v +

1

3
µ∇(∇ · v)

]
dV,

µ

ˆ
V

v ·
[
∇ · ∇v +

1

3
∇(∇ · v)

]
dV

This is considerably easier if index notation is used with Einstein summation implied, then

µ

ˆ
V

[
vi∇j∇jvi +

1

3
vi∇i(∇jvj)

]
dV,

Page 3, February 13, 2020 Version



4 ? PROBLEM 2.2

Now we note two different flavors of integration by parts

ˆ
S

(
vi∇jvi

)
nj dS =

ˆ
V

∇j

(
vi∇jvi

)
dV =

ˆ
V

(
vi∇j∇jvi

)
dV +

ˆ
V

(
∇jvi

) (
∇jvi

)
dV

ˆ
S

(
vi∇jvj

)
ni dS =

ˆ
V

∇i

(
vi∇jvj

)
dV =

ˆ
V

(
vi∇i∇jvj

)
dV +

ˆ
V

(∇ivi)
(
∇jvj

)
dV

and ˆ
S

(
vi∇jvi

)
nj dS = 0,

ˆ
S

(
vi∇jvj

)
ni dS = 0

Because either the velocity (no-slip) or its normal derivative (slip) vanishes at the boundary.
Thus,

ˆ
V

v ·
[
µ∇2v +

1

3
µ∇(∇ · v)

]
dV = −µ

ˆ
V

(
∇jvi

) (
∇jvi

)
dV − µ

3

ˆ
V

(∇ · v) (∇ · v) dV

Both of the terms on the RHS are negative definite, so the energy is dissipated. Note that because
we used the boundary conditions of no-slip or slip, this proof does not work for an arbitrary volume
or for manipulations of the differential equations, so it is possible that these viscous terms could
generate energy locally but globally they must dissipate energy.

4 Vallis (2019) Problem 2.2

On Earth |Ω| ≈ 2π
24hr

(approximately because the sidereal day is about 4 minutes less than the solar
day which is 24 hours).

a) Note that the local “vertical” Vallis uses here is not the “plumb line” definition of vertical which
is the direction a motionless pendulum points, but the direction perpendicular to the surface.

a) The centrifugal force is Ω × Ω × r scales as Ω2r⊥ where r⊥ is the minimum radius from the
rotation axis. The Coriolis force is 2Ω × v, which scales as 2ΩV . Thus, their ratio is 2V/(Ωr⊥),
which is like a Rossby number. Ωr⊥/2 ranges from 0 at the pole to π

24hr
6379km ≈ 231m/s. Since

most atmospheric and oceanic motions are much slower that 231m/s, the centrifugal force should
be larger.
a2) Estimate the angle. At 30N, r⊥ is re cos(θ) = re

√
(3)/2. The Coriolis force is thus Ω2r⊥(6 ·

10−5)26 · 106
√

3/2m/s2 ≈ 0.02m/s2. Thus, the two vectors to be compared are −gr̂ + Ω2r⊥r̂⊥ and
−gr̂. The triangle with its base aligned with r̂⊥ and its hypotenuse aligned along r̂, which are
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5 ? PROBLEM 2.7

separated by an angle of 30 degrees is what we want to think about. The component of g along
the base is −g cos(30) = −g

√
3/2 and along the other side is −g sin(30) = −g/2. When we include

the Coriolis force, we think about the smaller right triangle with sides −g/2 and −g
√

3/2 + 0.02,
so the new angle is tan−1[−g/2/(−g

√
3/2 + 0.02m/s2)] = tan−1[1/(

√
3− 0.004)] = 30.06◦. So, the

deviation in this case is about 0.002 degrees or 0.00003 radians.
b) If Earth were a perfect sphere, the oceans would sense that the equator was “downhill”, i.e., at
a lower potential because of the centrifugal force. After readjusting, the oceans at the poles would
be shallow and those at the equator would be very deep. Instead, on the real earth, the solid earth
is “level” when it is parallel to the combined gravitational and centrifugal potentials (i.e., isostasy),
which makes the ocean roughly the same depth at the poles and at the equator.

5 Vallis (2019) Problem 2.7

Hint: follow the procedure from Section 1.7, but beginning with equations 2.41. You can use the
tangent plane form, rather than the spherical (i.e., 2.43a and 2.43b instead of 2.41a and 2.41b).
Also, you can use either the compressible form or the Boussinesq form–the latter will be more
directly applicable in this class.

Compressible:

Du

Dt
− fv = −1

ρ

∂p

∂x
,

Dv

Dt
− fu = −1

ρ

∂p

∂y
,

ρ
∂Φ

∂z
=
∂p

∂z
,

We form a horizontal kinetic energy equation by multiplying the first equation by u, and the second
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5 ? PROBLEM 2.7

by v, and we recall (1.69) and (1.70)

ρ

2

Du2
h

Dt
= −uh · ∇p,

ρ
DI

Dt
= −p∇ · v = −p∇ · uh − p

∂w

∂z
,

ρ
DΦ

Dt
= −ρv · ∇Φ = −w∂p

∂z
.

Thus,

ρ
D

Dt

(
u2
h

2
+ I + Φ

)
= −∇ · (pv),

∂

∂t

ρ(u2
h

2
+ I + Φ

)+∇ ·

v

ρ(u2
h

2
+ I + Φ

)
+ p


 = 0

Which is the flux form of the hydrostatic energy.

Boussinesq:

Du

Dt
− fv = −∂φ

∂x
,

Dv

Dt
− fu = −∂φ

∂y
,

∂φ

∂z
= b,

Db

Dt
= 0,

∇ · v = 0.

We form a horizontal kinetic energy equation by multiplying the first equation by u, and the second
by v, and we recall (1.69) and (1.70)

1

2

Du2
h

Dt
= −uh · ∇φ,

0 = wb− w∂φ
∂z
,

D(−z)

Dt
= −w,

D(−zb)
Dt

= −wb,

Thus,

∂

∂t

(
u2
h

2
− zb

)
+∇ ·

v

(
u2
h

2
− zb+ φ

) = 0

So, the Boussinesq system has kinetic energy (which in the hydrostatic case is only from horizontal
velocity), and potential energy (−zb), which are transported by the 3D velocity field. Internal
energy does not appear, as its conversion vanishes due to ∇ · v = 0.
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6 ? PROBLEM 2.8

6 Vallis (2019) Problem 2.8

b) Hint: write out the velocity in each frame explicitly using (2.7): vI = vR + Ω× r

a) The value of a scalar is unaffected by what direction it is viewed from. Thus, a rotating observer
and a fixed observer see the same value. The material derivative of a scalar describes the rate of
change of the scalar following the motion of the fluid. Given that both observers agree about the
motion of the fluid (although they disagree about how to write the components of velocity), the
change (material derivative) of the scalar is likewise unaffected by rotation.
b) Here we use vI = vR + Ω× r

DT

Dt
=
∂T

∂t
+ v · ∇T

∂T

∂t I
+ vI · ∇IT =

∂T

∂t I
+ (vR + Ω× r) · ∇T

∂T

∂t I
=
∂T

∂t R
+ Ω× r · ∇T

The last relationship is seen by using the chain rule on the time derivative of the tracer. If the
tracer is stationary in the inertial frame, then its location is moving in the rotating frame, and vice
versa. So, the partial derivative with respect to time, while holding position fixed, means something
different in each frame. Thus, you need to account for the relative motion of the coordinate systems,
i.e., a partial derivative also differentiates the moving coordinate location,

∂T (xR(t), t)

∂t
=
∂xR
∂t
· ∇T +

∂T

∂t
= Ω× r · ∇T +

∂T

∂t
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7 ? PROBLEM 3.1

7 Vallis (2019) Problem 3.1

a) Hint: Without loss of generality, align the coordinate system so that the initial velocity is in the
x direction: u0 = |U |, v0 = 0.

First linearize:

Dv

Dt
+ f × v = −∇φ ≈ ∂v

∂t
+ f × v

a) Solve the following assuming u(t = 0) = U, v(t = 0) = 0, φ = 0. Noting that U is independent of
space, and there are no spatial derivatives remaining, the system is now just the ODEs:

du

dt
− fv = 0,

dv

dt
+ fu = 0,

d2u

dt2
− f dv

dt
=
d2u

dt2
+ f 2u = 0,

d2v

dt2
+ f

du

dt
=
d2v

dt2
+ f 2v = 0,

u = U cos(ft), v = −U sin(ft)

∆x =

ˆ
u dt = U/f sin(ft), ∆y =

ˆ
v dt = U/f cos(ft)

These trajectories inscribe a circle.
b) f is the angular frequency, so 2π/f is the period (12 hours at the pole, i.e., twice per day).
c) Parcels travel in straight lines in the inertial frame, but the Coriolis force alone is not sufficient
to reflect the straight lines, the combination of Coriolis and centrifugal are required. Combining
both of those provides spiral patterns whose period is the rotation period.
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8 Vallis (2019) Problem 3.3

a) If we scale the geostrophic relation:

f × v︸ ︷︷ ︸
fU

= − ∇φ︸︷︷︸
φL−1

For these terms to balance, we must have φ ∼ fUL.
b) Taking the cross derivatives of the pressure term, we find horizontal incompressibility,

−f dvg
dy

= − d2φ

dxdy
, f

dug
dx

= − d2φ

dxdy
,

dug
dx

+
dvg
dy

=
1

f

[
− d2φ

dxdy
+

d2φ

dxdy

]
= 0

Thus, although each of the terms on the left scales as U/L their sum is zero (or small for finite
Rossby number), and so the horizontal terms of the 3D divergence ∇3 ·v sum up to less than U/L,
so W/H � U/L.
c) The conditions for hydrostatic balance to hold were that Dw/Dt � −∂φ

∂z
was less than the

pressure gradient. In geostrophic balance, the pressure gradient is large and φ ∼ fUL, thus ∂φ
∂z
∼

fUL/H. If U � fL, then fUL/H � U2/H. U2/H is in turn much greater than WW/H or
WU/L if W/H � U/L. The W scale is RoHU/L, as in (3.47), because the ageostrophic horizontal
velocity, which can converge, is Rossby smaller than the geostrophic.

9 Vallis (2019) Problem 3.7
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b) For Mars, you can take T = −125◦C at the pole and T = 20◦C at the equator (https:
//www.space.com/16907-what-is-the-temperature-of-mars.html). For Venus, you can use
T = 460◦C at the pole and T = 460◦C at the equator (https://www.universetoday.com/14306/
temperature-of-venus/). No need to do both summer & winter.

To address these problems, we can simplify the log-pressure coordinate version of the thermal wind:
f ∂ug
∂Z
≈ f ug

H
= −R

H
∇ZT , where we assume that ug ≈ 0 on the ground. Thus, ug ≈ R

f
∇ZT ≈

R∆T
frπ/2

≈ 183m2/s2/K∆T
fr

. a) On earth, f ≈ 1 · 10−4/s and r = 6 · 106m, so ug ≈ 0.3m/s/K∆T . Using
18◦C for the equator and 0◦C for the summer pole and −40◦C for the winter pole, the log-pressure
coordinates thermal wind gives ug ≈ 6− 20m/s. This is an underestimate of the westerlies, which
occupy less than 1/4 of the circumference of the Earth.
b) On Mars, the day is only 37 minutes longer, so f ≈ 1 ·10−4/s is still OK, but r = 3 ·106m. Thus,
ug ≈ 0.6m/s/K∆T , which is 90m/s–much faster than Earth! On Venus, the temperatures are the
same so no zonal winds are expected.
c) For the ocean, the temperature differences are about the same as the summertime Earth’s atmo-
sphere (20K), however, you can’t use the ideal gas law. Instead, you need to calculate the buoyancy
difference to use the Boussinesq approximation. Using the equation of state from Vallis equation
(1.42), ∆b = gβT∆T = 0.03m/s2. Then ug ≈ H∆b/(frπ/2) ≈ 1s∆b, so 0.03m/s.
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