
Spring 2020 GEOL1820
Homework 2, due Monday, February 24, 9AM

1 Vallis (2019) Problem 3.2

The constant potential temperature adiabatic lapse rate is (3.57):
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This stratification is neutrally stable. The ideal gas law and hydrostatic balance combine to
yield

p = ρRT,

∂p

∂z
= −ρg,

∂ ln(p)

∂z
=

1

p

∂p

∂z
=

1

RT
=

cp/R

cpTs/g − z
,

Integrating the last equation in z yields
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Which means that the pressure decreases to zero near 29.5 km. This result is not a problem for a
thin atmosphere approximation, as this height of the atmosphere is small compared to the earth’s
radius. It is a problem for the Boussinesq approximation if motions are a sizeable fraction of 29.5
km, which would be true of warm anomalies in this system, as the background is neutrally buoyant
(i.e., a warm air parcel would continue to rise to the top). The atmospheric boundary layer (which
is a strange concept in a neutrally-stable atmosphere, but anyway) might still have the Boussinesq
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2 ? PROBLEM 3.5

approximation apply. In the real world, the stratosphere–where potential temperature increases due
to radiation absorption causing stable stratification–prevents air masses from ascending to the top
of the atmosphere. Even the anelastic equations are a bit funny as ρ→ 0 is approached, although
they are better suited than the Boussinesq equations.

2 Vallis (2019) Problem 3.5

A little googling yields this section of atmospheric potential temperature (Marshall &
Plumb, 2008) and Atlantic potential density (Talley et al., 2011).

a) Midlatitude Troposphere: 70K warmer over 800 mb of pressure, which is about 10 km high.

So, N2 = 9.81m/s2

300K
70K
10km

≈ 2 · 10−4s−2, N = 0.015s−1 = 2π
400s

.
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3 ? PROBLEM 4.4

b) Stratosphere: 70K warmer over 200 mb of pressure, which is about 30 km high. So, N2 =
9.81m/s2

400K
70K
30km

≈ 6 · 10−5s−2, N = 0.007s−1 = 2π
800s

.

c) Ocean Pycnocline: potential density (anomaly) of 26.4kg/m3 to 27.4 over 700m of depth. So,

N2 = 9.81m/s2

1027kg/m3

1kg/m3

700m
≈ 1 · 10−5s−2, N = 0.004s−1 = 2π

1700s

d) Ocean Abyss: potential density (anomaly) of 27.84kg/m3 to 27.88 over 3000m of depth (note–
really should use a deeper reference pressure potential density, but it’s just an estimate). So,

N2 = 9.81m/s2

1028kg/m3

0.04kg/m3

3000m
≈ 1 · 10−7s−2, N = 0.0004s−1 = 2π

18,000s

3 Vallis (2019) Problem 4.4

Du

Dt
+ f × u = −g∇η,

Dh

Dt
+ h∇ · u = 0,

DQ

Dt
= 0.

Linearized over a flat bottom (h = H + η), these equations become

∂u

∂t
+ f × u = −g∇η,

∂η

∂t
+H∇ · u = 0,

∂

∂t
q =

∂
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(
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η

H

)
= 0

The initial conditions are

η =
x

η̃k,je
ikx+ily dk dl
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3 ? PROBLEM 4.4

a) Obtain the geopotential field at the end of geostrophic adjustment. Note that the different modes
do not interact, so we can just analyze the state of one mode at a time and sum them up at the
end. Thus,

qk.l = −f0
η̃k,j
H
eikx+ily = ζk,l − f0

ηk,l
H

Where I use the notation that a k, l subscript without a tilde includes the eikx+ily factor and is a
function of time if needed. For the final state to be in geostrophic balance, we must have

ζk.l =
∂vk,l
∂x
− ∂uk,l

∂y
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(
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)
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Note, this relies on the waves “propagating away”, which doesn’t make sense in an integral over an
infinite domain. So, we should imagine that there are some limits on the area integrals or that the
waves are damped otherwise. Thus, the end state for each mode is:
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H
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H

]
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1 + L2
d(k
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η =
x η̃k,l

1 + L2
d(k

2 + l2)
eikx+ily dk dl.

Thus, the final state looks a lot like the initial state, but scaled to decrease to zero as (k2 + l2)−1

becomes greater than L2
d, i.e., for scales much smaller than the deformation radius. For scales much

larger than the deformation radius, the final state is the same as the initial state!
b) Show that the energy decreases. The total energy is the area integral of the kinetic and poten-
tial energies (4.26), which is proportional to the amplitude of the Fourier integrals by Parseval’s
theorem:
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The squared velocities of the final state are in geostrophic balance, thus
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Thus, the initial energy is
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and the final energy is
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So, the total energy is conserved when (k2 + l2)−1 � L2
d and all energy is lost when k2 + l2 → ∞.
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6 ? PROBLEM 4.8

4 Vallis (2019) Problem 4.5

The energy is not lost, it propagates away. In the preceding problem, this is a bit confusing since the
waves were removed by finding the final PV, but the domain was infinite. As mentioned above, the
waves need to be damped to arrive at a final geostrophically balanced state. If the waves propagate
away to infinity, or are selectively damped without affecting the PV, then the solution above works.
In both cases, energy is lost along with the removed waves.

5 Vallis (2019) Problem 4.7

As shown above,

Ê =
1

2

x
L2

d(k
2 + l2)︸ ︷︷ ︸
KE

+ 1︸︷︷︸
PE

 g|ηk,l|2 dk dl

Thus “large” scale is (k2 + l2)−1 � L2
d and “small” scale is (k2 + l2)−1 � L2

d.

6 Vallis (2019) Problem 4.8

Thus, recalling the end state of PV for each mode from above:

−f0

H
η̃k,le

ikx+ily = −
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+
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=
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.
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8 ? PROBLEM 3-3

At large scales in geostrophic balance, the PV and energy are dominated by the height field/potential
energy. At small scales in geostrophic balance, the PV and energy are dominated by the velocity
contribution and the kinetic energy contribution. So, when considering how the final PV matches
the initial PV, it is a function of scale, where the larger scales have PV dominated by height so the
velocity adjusts to the height while the smaller scales have PV dominated by velocity so the height
adjusts.

7 Cushman-Roisin (1994) Problem 3-1

In the final state, we match the centrifugal force to the pressure gradient force (shallow water
equation form), both of which are in the radial direction. The centrifugal force is Ω2r. The pressure
gradient force is (in cylindrical coordinates) g∇η = g dη

dr
. Thus,

Ω2r = g
dη

dr
,

η =
Ω2

2g
r2 =

0.5

m
(0.3m)2 = 0.045m = 0.22H

So, the outer tank is about 4 centimeters deeper than the center, or about 22% of the depth. To
find the depth at the center, one needs to conserve the total volume, which requires the following
integral.

x
(H + η)r dr dθ =

x
(Hr +

Ω2

2g
r3) dr dθ = 2π

ˆ R

0

(Hr +
Ω2

2g
r3) dr = π(HR2 +

Ω2

4g
R4)

In the beginning the volume is πR2(0.2m), at the end it is the formula above, which means that
H = 0.177 m, or just a bit more than 2 centimeters (10%) shallower than in the non-rotating tank.

8 Cushman-Roisin (1994) Problem 3-3

The scale in C-R is P = ρ0ΩLU , which is the same as Vallis (2019) (3.49), yields a pressure difference
across the GS of 2900kg/m/s2 = 2900Pa. The hydrostatic pressure of the GS is p = ρgH = 5·106Pa.
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The equivalent height of pressure from the dynamic pressure is ρ0ΩLU/ρ/g = 0.3m, which is a
difficult sea surface height difference to detect over 50 km of distance. It is, however, possible to do
so with 2 digits of precision with modern satellite altimeters.

9 Cushman-Roisin and Beckers (2011) Problem 3-5

The equation at hand is Dρ/Dt = κ∇2ρ. If the fluid is at rest, then Dρ/Dt = 0. If there is
a horizontal contribution to ∇2ρ, then it will drive a current through the thermal wind relation
or through horizontal pressure gradients. While it is possible to cancel out the horizontal density
gradient contributions to pressure at one depth, it is not possible to do so at all (hydrostatic
relation). Thus, the density ρ obeys d2ρ/dz2 = 0, which means that it can only be a function of z
(indeed, only a simple function for smooth κ!).
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