Spring 2020 GEOL1820
Homework 3, due Friday, March 6, 9AM

1 Vallis (2019) Problem 5.1a

5.1 Do either or both:

(@) Carry through the derivation of the quasi-geostrophic system start-
ing with the anelastic equations and obtain (5.66).

In each case, state the differences between your results and the Boussinesq
result.

We begin with the anelastic equations
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To leading order, we have
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And thus w is much smaller than the magnitude of u,. As in the Boussinesq case, the vertical vor-
ticity equation arrives by differentiating the horizontal momentum equations, which is (5.58)

D+ f) ou 82}) (8u0w 8v8w>

i Z—(C+f)(ax+ay

Dy(G+ ) _ foOpw
Dt 0z

=0.

And if we approximate the leading order buoyancy equation,
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2 7?7 PROBLEM 5.2

Where the middle steps come in noting that p and N? depend only on z, not time or horizontal
directions (by definition or to leading order, either can be justified). Note that the thermal wind
relationship makes the last term vanish, as
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Thus, combining the left and right sides of the equation before last we arrive at the anelastic QGPV

equation,
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2 Vallis (2019) Problem 5.2

5.2 (a) The shallow water planetary geostrophic equations may be derived by
simply omitting { in the equation

Do+f
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by invoking a small Rossby number, so that {/f is small. We then

relate the velocity field to the height field by hydrostatic balance and
obtain:
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The assumptions of hydrostatic balance and small Rossby number
are the same as those used in deriving the quasi-geostrophic equa-
tions. Explain nevertheless how some of the assumptions used for
quasi-geostrophy are in fact different from those used for planetary-
geostrophy, and how the derivations and resulting systems differ
from each other. Use any or all of the momentum and mass conti-
nuity equations, scaling, nondimensionalization and verbal explana-
tions as needed.

(b) Explain if and how your arguments in part (a) also apply to the strati-
fied equations (using, for example, the Boussinesq equations or pres-
sure coordinates).

a) The key distinction between the PG and QG equations is that in addition to small Rossby
number, the QG equations also take (L/Lg)*> ~ 1 scaling. But, in order to keep other terms that
arise at the same order in control, the QG equations also have fy/fy ~ Ro and a nonzero H/H
arriving at order Ro(L/Lg)*.

b) The continuously stratified PG system has the buoyancy equation in place of the thickness
equation, but again the (L/L4)* > 1 differentiates it from the QG system where (L/L4)* ~ 1. This
makes f more variable in PG system so the dw/0z term arrives at leading order in PG. In QG
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3 7 PROBLEM 5.4

the leading order geostrophic (based on fj) velocity is nondivergent. So, the game to eliminate w
arrives at a higher order equation for slight divergences, which are from: [y, ageostrophic effects
from 0/0t, ageostrophic effects from ¢, and the stretching term fyow/0z.

3 Vallis (2019) Problem 5.4

5.4 Consider a wind stress imposed by a mesoscale cyclonic storm (in the at-
mosphere) given by

T=-Ae (yi-xj), (P5.3)

where 7* = x* + y*, and A and A are constants. Also assume constant Cori-

olis gradient § = 0 f/0y and constant ocean depth H. In the ocean, find

(a) the Ekman transport, (b) the vertical velocity wg(x, y, z) below the Ek-
man layer, (c) the northward velocity v(x, y, z) below the Ekman layer and
(d) indicate how you would find the westward velocity u(x, y, z) below the
Ekman layer.

Not yet! Next HW.
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4 7?7 PROBLEM 5.5

4 Vallis (2019) Problem 5.5

5.5 Inan atmospheric Ekman layer on the f-plane let us write the momentum
equation as
1 or

Pa 0z

a

[fxu=-V¢+ (P5.4)
where T = Ap,0u/dz and A is a constant eddy viscosity coefficient. An
independent formula for the stress at the ground is T = Cp,u, where Cis a
constant. Let us take p, = 1, and assume that in the free atmosphere the
wind is geostrophic and zonal, with u, = Ui
(a) Find an expression for the wind vector at the ground. Discuss the lim-
its C = 0 and C = co. Show that when C = 0 the frictionally-induced
vertical velocity at the top of the Ekman layer is zero.
(b) Find the vertically integrated horizontal mass flux caused by the
boundary layer.
(c) When the stress on the atmosphere is 7, the stress on the ocean beneath
is also 7. Why? Show how this is consistent with Newton'’s third law.
(d) Determine the direction and strength of the surface current, and the
mass flux in the oceanic Ekman layer, in terms of the geostrophic wind
in the atmosphere, the oceanic Ekman depth and the ratio p,/p,, where
p, is the density of the seawater. Include a figure showing the direc-
tions of the various winds and currents. How does the boundary-layer
mass flux in the ocean compare to that in the atmosphere? (Assume,
as needed, that the stress in the ocean may be parameterized with an
eddy viscosity.)
Partial solution for (a): A useful trick in Ekman layer problems is to write
the velocity as a complex number, ## = u + iv and #, = u, +iv,. The
fundamental Ekman layer equation may then be written as
A@ =ifU, (P5.5)
0z?

where U = ii — ﬁg. The solution to this is

(1+i)z} (P5.6)

-, = [7(0) —ﬁg] exp[— 3

where d = /2A/f and the boundary condition of finiteness at infinity
eliminates the exponentially growing solution. The boundary condition
at z = 0is 0#i/0z = (C/A)is; applying this gives [#(0) — i,] exp(in/4) =
—Cdii(0)/(V2A4), from which we obtain i(0), and the rest of the solution
follows. SE

Not yet! Next HW.
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5 7 PROBLEM 8.3

5 Vallis (2019) Problem 8.3

8.3 Following the same procedure used in Sections 8.3 and 8.7, obtain the nec-
essary conditions for instability in the two-level quasi-geostrophic model
in the case with uniform shear. Show that these conditions are consistent
with the conditions for instability calculated directly with a normal-mode

approach.

The equations for the 2-level or 2-layer model (Section 5.6) are:
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For example, a basic state resembling the Eady problem arrives via ¢, = —Uy, 19 = Uy. A general
plane-parallel flow yields the linearized equations
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Multiplying these equations by ¢; and ¢; yields
d q'12 Uy 8q’12

rr
dy dy
0 qu U2 3%2 Vi
dy dy

Now, noting that

o 0 0 0
ol ol K2 ol ol k2
JJ Wi + oz day = [f | s %%7%/*%%—%) o %g‘j{+§<wa—w;> d dy
k3 (0, )
= I8 (% - ] + 52 [t — vt )

:ﬂ%ﬁMmdy:o

ff an % dedy p =0
dy

So,

Page 5, March 8, 2020 Version



REFERENCES REFERENCES

Thus, the necessary condition for instability in the 2-level model is: @), must change sign somewhere
in the domain, which may either be by variation of Q, iny or by having d% and 08%2 be of different

s1gm.
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