
Spring 2020 GEOL1820
Homework 4, due Monday, April 6, 9AM

1 Vallis (2019) Problem 5.4

a) This is cleanly found from Section 14.2 of Vallis (2019), which is very similar to equations from
Wyngaard (2010). These are the steady boundary layer equations with an imposed stress.

−fv = −∂φ
∂x

+
1

ρ0

∂τx

∂z
(1)

fu = −∂φ
∂y

+
1

ρ0

∂τ y

∂z
(2)

Or, writing out the pressure gradients in terms of their geostrophic velocities,

f(vg − v) = −fva =
1

ρ0

∂τx

∂z
(3)

f(u− ug) = fua =
1

ρ0

∂τ y

∂z
(4)

Integrating in the vertical we find the Ekman transport:

(V − Vg) =

ˆ 0

−h
va dz = − 1

ρ0f
τx (5)

(U − Ug) =

ˆ 0

−h
ua dz =

1

ρ0f
τ y (6)

b) Find the vertical velocity at the bottom of the Ekman layer. We consider incompressibility and
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1 ? PROBLEM 5.4

then integrate over the Ekman layer:

∂w

∂z
= −∂u

∂x
− ∂v

∂y
(7)

w(−h) =
∂U

∂x
+
∂V

∂y
(8)

=
∂

∂x

τ y

ρ0f
− ∂

∂y

τx

ρ0f
(9)

=
2A

ρ0f
e−(r/λ)

2 − 2Ar2

ρ0fλ2
e−(r/λ)

2 − Ayβ

ρ0f 2
e−(r/λ)

2

(10)

c) The northward velocity below the Ekman layer can be found from integrating the vorticity
budgets, across the layers below the surface layer and ignoring bottom drag, or

f

(
∂u

∂x
+
∂v

∂y

)
+ βv = 0−

���
���

���
���:0

1

ρ0

(
∂2τx

∂z∂y
− ∂2τ y

∂z∂x

)
(11)

ˆ −h
−H

v dz =
1

β

[
∂

∂x

τ y

ρ0f
− ∂

∂y

τx

ρ0f

]
(12)

ˆ −h
−H

v dz =
1

β

[
2A

ρ0
e−(r/λ)

2 − 2Ar2

ρ0λ2
e−(r/λ)

2 − Ayβ

ρ0f
e−(r/λ)

2

]
(13)

If the flow is barotropic below the boundary layer, then it will be independent of depth for all depths
below −h, or

v =
1

β(H − h)

[
2A

ρ0
e−(r/λ)

2 − 2Ar2

ρ0λ2
e−(r/λ)

2 − Ayβ

ρ0f
e−(r/λ)

2

]
(14)

d) To find the u velocity associated with this v, one can find the pressure field associated with the
v velocity (i.e., the streamfunction), and then use the continuity equation to find u.
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2 ? PROBLEM 5.5

2 Vallis (2019) Problem 5.5

We begin by organizing the equations somewhat, with no baroclinicity (geostrophic velocity/pressure
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2 ? PROBLEM 5.5

gradient independent of height), then

f(u− ug) = −∂τ
y/ρ0
∂z

= A
∂2

∂z2
v (15)

f(v − vg) =
∂τx/ρ0
∂z

= −A ∂2

∂z2
u (16)

With the hint, this this becomes

û− ûg =
[
û(0)− ûg

]
e

−(1+i)z
d (17)

∂

∂z
û =
−(1 + i)

d

[
û(0)− ûg

]
=
C

A
û(0) (18)

d =

√
2A

f
(19)

a) Find û(0).

û(0)

(
1 +

Cd

A(1 + i)

)
= Ug (20)

û(0) = Ug
2 + (1 + i)Cd

A

1 +
(

1 + Cd
A

)2 (21)

lim
C→0

û(0) = Ug (22)

lim
C→∞

û(0) = lim
C→∞

Ug
(1 + i)A

Cd
= 0 (23)

So the drag coefficient strongly affects the flow at the ground. Furthermore, when C = 0, then
û(0) = Ug, which means that the vertical velocity is also zero.
b) The vertical integral of the mass flux is

ˆ ∞
0

û− ûg dz =
d

1 + i

[
û(0)− ûg

]
= d

[
û(0)− ûg

](1

2
− i

2

) 2 + (1 + i)Cd
A

1 +
(

1 + Cd
A

)2 − 1

 (24)

c) The stress constitutes a vertical transport of momentum. The stress on one fluid must be exerted
on the other if there is to be no accumulation of momentum. In fact, there can be an accumulation
of momentum at the interface if it is carried away by interfacial waves.
d) The ocean has the same momentum balance as the atmosphere, but we need to retain the other
root of the exponential so that the solution decays as z goes to minus infinity.

ûo − (ûg)o =
[
ûo(0)− (ûg)o

]
e

(1+i)z
do (25)

∂

∂z
û =
−(1 + i)

do

[
ûo(0)− (ûg)o

]
=
Co
Ao
ûo(0) =

Caρaûa(0)

Aoρo
=
CaρaUg
Aoρo

2 + (1 + i)Cada
Aa

1 +
(

1 + Cada
Aa

)2 (26)

do =

√
2Ao
f

(27)
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3 ? PROBLEM 10.1

Figure 1: Ekman spiral directions (courtesy: Z. Sorbjan)

The oceanic flow is to the right of the surface wind, and the Ekman spirals are in opposing directions.

The vertical integral of the momentum flux doesn’t depend on the eddy viscosity, as the vertical
integral of

ρf(u− ug) = −∂τ
y

∂z
(28)

ρf(v − vg) =
∂τx

∂z
(29)

depends only on the density times velocity (momentum/mass transport) and the stress. Going from
high in the atmosphere to deep in the ocean, where the stresses vanish, we can see that there can be
no integrated deviation from the net geostrophic mass flux in added together in both fluids. Noting
that the stress on one fluid equals the stress on the other, we can see that the Ekman mass flux in
the atmosphere equals the Ekman mass flux in the ocean.

3 Vallis (2019) Problem 10.1
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3 ? PROBLEM 10.1

This problem had issues in the statement. I have contacted Vallis to get his take, and have updated
to his response.
Let’s restate the problem as the predictability timescale depending on the average time, and ks
being the small scales (i.e., large wavenumbers) and kl being the large scales (small wavenumbers).
Also, the differential should go with the logarithm of k, which is because the way to think about
time here is how long it takes for an error at small scales to pass to a larger scale that is a multiple
of the original scale, e.g., wavenumber k/2, not a fixed additive dk larger. Vallis recommended
reading a few papers as well (Vallis, 1985; Lorenz, 1969b,a; Kraichnan, 1971; Lilly, 1972). Lorenz
(1969b) is particularly helpful.

T =

ˆ ln ks

ln kl

τk d(ln k) (30)

The 2D case is then:

T2D = lim
ks→∞

ˆ ln ks

ln kl

η−1/3 d(ln k) = lim
ks→∞

ˆ ks

kl

η−1/3
dk

k
= lim

ks→∞
η−1/3 ln(ks/kl) =∞ (31)

The 3D case is then:

T3D = lim
ks→∞

ˆ ks

kl

ε−1/3k−2/3
dk

k
= lim

ks→∞

3

2
ε−1/3

[
k
−2/3
l − k−2/3s

]
=

3

2
ε−1/3k

−2/3
l (32)

The case where it is 3D on scales smaller than kb = 2π/50 km and 2D on larger scales is

Tmix = lim
ks→∞

ˆ kb

kl

η−1/3
dk

k
+ lim

ks→∞

ˆ ks

kb

ε−1/3k−2/3
dk

k
(33)

= lim
ks→∞

[
η−1/3 ln(kb/kl) +

3

2
ε−1/3

(
k
−2/3
b − k−2/3s

)]
(34)

=

[
η−1/3 ln(kb/kl) +

3

2
ε−1/3

(
k
−2/3
b

)]
(35)

Let’s estimate the enstrophy and energy cascade rates. One method would be to use observations,
such as the important Nastrom and Gage (1985) ones. Using this data together with the enstrophy
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3 ? PROBLEM 10.1

cascade E(k) ∼ η2/3k−3 and energy cascade scalings E(k) ∼ ε2/3k−5/3 where k=2π/(50km) ≈
10−4/m, and assuming a constant of proportionality (the Kraichnan-Kolmogorov constants) between
these scalings of spectra and the spectra themselves, we find that E(k) ≈ 105m3/s2 implies η ≈[
(105m3/s2)(10−4/m)3

]3/2
= 3·10−11s−3, and since the breakpoint between 2D and 3D occurs there,

likewise ε ≈
[
(105m3/s2)(10−4/m)5/3

]3/2
= 3 · 10−3m2s−3. Plugging in, this implies

Tmix =

[
η−1/3 ln(kb/kl) +

3

2
ε−1/3

(
k
−2/3
b

)]
(36)

≈
[
η−1/3 ln(10, 000/50) +

3

2
ε−1/3

(
k
−2/3
b

)]
(37)

= 0.0372 · [5 + 1.5] days (38)

= 0.24 days (39)

That value is a bit short, probably related to the issues surrounding the estimation of the η, ε and
the neglect of the Kolmogorov-Kraichnan constants. Note that the contribution over the 2D part
of the integral is larger, and that the largest eddies are taken to be roughly 10,000 km.
An alternative, is just to calculate the timescales and sum them up. As we saw above, it takes about
7-8 steps of a factor of 2, i.e., 27 = 128 < 10, 000/50 < 256 = 28. If we take the eddy turnover time
as the timescale for each step, then we can get

Tmix = τ6400km + τ3200km + τ1600km + τ800km + τ400km + τ200km + τ100km + τ50km (40)

Tmix = 8τ50km ≈ 8 days (41)

Where we have taken advantage of the fact that eddy turnover time is independent of scale in the
2D case, and that a typical eddy might have Rossby number of 1. Lorenz (1969b) finds values from
2.5 to 5.6 days at this scale, by a much more elaborate method.

RETRACTED OLD VERSION: This problem has issues in the statement in Essentials. I have
contacted Vallis to get his take, but this was my answer based on his old version.
Let’s restate the problem as the predictability timescale depending on the average time, and ks being
the small scales (i.e., large wavenumbers) and kl being the large scales (small wavenumbers):

T =
1

ks − kl

ˆ ks

kl

τk dk (42)

The 2D case is then:

T2D = lim
ks→∞

1

ks − kl

ˆ ks

kl

η1/3 dk = η1/3 (43)

The 3D case is then:

T3D = lim
ks→∞

1

ks − kl

ˆ ks

kl

ε−1/3k−2/3 dk = lim
ks→∞

ε−1/3
k
1/3
s − k1/3l

ks − kl
= lim

ks→∞
ε−1/3 k−2/3s = 0 (44)
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5 ? PROBLEM 1.9

The case where it is 3D on scales larger than kb = 2π/50 km is

Tmix = lim
ks→∞

1

ks − kl

ˆ kb

kl

η1/3 dk + lim
ks→∞

1

ks − kl

ˆ ks

kb

ε−1/3k−2/3 dk (45)

= lim
ks→∞

[
η1/3

kb − kl
ks − kl

+ ε−1/3
k
1/3
s − k1/3b

ks − kl

]
(46)

= 0 (47)

4 Thorpe (2007) Problem 1.2

NOTE: Thorpe (2007) is accessible at https://login.revproxy.brown.edu/login?url=http:

//search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=304600

The Reynolds number criterion for pipe flow is

Re > Rec = O(104) (48)

Interpreting this for the Irish Sea with d ≈ 60m,U ≈ 0.1→ 1.0m/s, ν ≈ 10−6m2/s, we find

Re ∼ Ud

ν
=

6m2/s→ 60m2/s

10−6m2/s
= 6 · 106 → 6 · 107 � 104 (49)

Thus, the Irish Sea is expected to be highly turbulent with a Reynolds number more than 100x the
critical one.

5 Thorpe (2007) Problem 1.9
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6 ? PROBLEM 2.5

We consider the problem for the initial density ρi and final density ρf . They are both related to
stratification by a differential equation

N2
0 =
−g
ρ0

∂ρi
∂z

, (50)

N2 =
−g
ρ0

∂ρf
∂z

(51)

which are solved for constant stratification by

ρi =
−N2

0ρ0
g

z + ci, (52)

ρf =
−N2ρ0
g

z + cf . (53)

If we enforce conservation of mass over the layer from −h to h,

2hci =

ˆ h

−h

(
−N2

0ρ0
g

z + ci

)
dz =

ˆ h

−h
ρi dz =

ˆ h

−h
ρf dz =

ˆ h

−h

(
−N2ρ0
g

z + cf

)
dz = 2hcf (54)

Which tells us that ci = cf = c. Now, we consider the potential energy per unit volume (ρgh)
change from the initial state to the final, which gives the potential energy change as

A

ˆ h

−h
ρigz dz = A

ˆ h

−h

(
−N2ρ0
g

z + c

)
gz dz =

−2AN2ρ0h
3

3
(55)

A

ˆ h

−h
ρfgz dz = A

ˆ h

−h

(
−N2

0ρ0
g

z + c

)
gz dz =

−2AN2
0ρ0h

3

3
(56)

with A as the area. Thus, the rise in potential energy, which is the minimum possible expended for
the mixing, is

2(N2
0 −N2)Aρ0h

3

3
(57)

6 Thorpe (2007) Problem 2.5

If we use angle brackets to denote the units of a particular quantity, then[
Φ(k)

]
=

[
Energy

m wavenumber

]
=
L3

T 2
(58)

[ε] =

[
Energy

m time

]
=
L2

T 3
(59)

[k] =
1

L
(60)

[
Φ(k)

]
=
[
qεakb

]
=

(
L2

T 3

)a(
1

L

)b
=
L3

T 2
(61)
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8 ? PROBLEM 3.5

This is only satisfied if a = 2/3 and b = −5/3.

7 Thorpe (2007) Problem 2.6

If we use angle brackets to denote the units of a particular quantity, then[
Φω(ω)

]
=

[
Energy

m frequency

]
=
L2

T
(62)

[ε] =

[
Energy

m time

]
=
L2

T 3
(63)

[σ] = T−1 (64)[
Φω(ω)

]
= [ε]

[
σ−2
]

(65)

Φω(ω) = cεσ−2 (66)

Examining Fig. 2.6, we see that when log(σ/N) = 0, i.e., σ = N , then log(Φ/(εN2)) = 0, so
Φ = εN2. Thus,

Φω(ω) = εσ−2 when σ � N, (67)

Φω(ω) = εN−2 when σ � N. (68)

Where the last relation is not obvious from dimensional analysis alone, but seems clear from Fig.
2.6 which shows that the spectrum is not dependent on σ for small values.

8 Thorpe (2007) Problem 3.5

Revisiting the log-layer relations in Thorpe, we find

ε =
τ

ρ0

dU

dz
=

τ

ρ0

u∗
kz

=
u3∗
kz
, (69)

lK =

(
ν3

ε

)1/4

=

(
ν3kz

u3∗

)1/4

=

(
ν

u∗

)3/4

(kz)1/4 (70)
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which gives the dependence of the Kolmogorov scale on z. If we want to estimate the values, we
need a few more pieces of info

u2∗ = CdU
2 = 2.5 · 10−3U2 =

(
1

20
U

)2

(71)

u∗ =
√
CdU =

U

20
(72)

k = 0.41 (73)

ν = 1 · 10−6m2/s (74)

So, if U = 0.2m/s, then

U = 0.2m/s (75)

u∗ = 0.01m/s (76)

lK =

(
ν

u∗

)3/4

(0.41× 1m)1/4 ≈ 8 · 10−4m (77)

So, if U = 1.0m/s, then

U = 1.0m/s (78)

u∗ = 0.05m/s (79)

lK =

(
ν

u∗

)3/4

(0.41× 1m)1/4 ≈ 2 · 10−4m (80)

9 Final Project Proposal/Abstract

Please include a 1 page proposal for your final paper, following the instructions here: http://www.
geo.brown.edu/research/Fox-Kemper/classes/GEOL1820_20/notes/2020_FinalPaper.pdf.

References

Kraichnan, R. H. (1971). Inertial-range transfer in two-and three-dimensional turbulence. Journal
of Fluid Mechanics, 47(3):525–535.

Lilly, D. K. (1972). Numerical simulation studies of two-dimensional turbulence: Ii. stability and
predictability studies. Geophysical & Astrophysical Fluid Dynamics, 4(1):1–28.

Lorenz, E. (1969a). 3 approaches to atmospheric predictability. Bulletin of the American Meteoro-
logical Society, 50:345–351.

Lorenz, E. N. (1969b). The predictability of a flow which possesses many scales of motion. Tellus,
21(3):289–307.

Nastrom, G. D. and Gage, K. S. (1985). A climatology of atmospheric wavenumber spectra of
wind and temperature observed by commercial aircraft. Journal of the Atmospheric Sciences,
42:950–960.

Page 11, April 19, 2020 Version

http://www.geo.brown.edu/research/Fox-Kemper/classes/GEOL1820_20/notes/2020_FinalPaper.pdf
http://www.geo.brown.edu/research/Fox-Kemper/classes/GEOL1820_20/notes/2020_FinalPaper.pdf


REFERENCES REFERENCES

Thorpe, S. A. (2007). An introduction to ocean turbulence. Cambridge University Press, Cambridge.

Vallis, G. K. (1985). Remarks on the predictability properties of two-and three-dimensional flow.
Quarterly Journal of the Royal Meteorological Society, 111(470):1039–1047.

Vallis, G. K. (2019). Essentials of Atmospheric and Oceanic Dynamics. Cambridge University
Press.

Wyngaard, J. C. (2010). Turbulence in the Atmosphere. Cambridge University Press.

Page 12, April 19, 2020 Version


	Vallis19 Problem 5.4
	Vallis19 Problem 5.5
	Vallis19 Problem 10.1
	Thorpe07 Problem 1.2
	Thorpe07 Problem 1.9
	Thorpe07 Problem 2.5
	Thorpe07 Problem 2.6
	Thorpe07 Problem 3.5
	Final Project Proposal/Abstract

