
Spring 2020 GEOL1820
Homework 5 (Last One!), due Monday, April 27, 9AM

1 Wyngaard (2010) Problem 8.2

First, we collect (8.1), (8.2), (8.6),

p0 = ρ0RdT0, (1)

dp0
dx3

= −ρ0g, (2)

dT0
dx3

= − g
cp
. (3)

The last, temperature equation can be solved immediately, based on the surface temperature.
Density can be eliminated from the first two equations.

T0 = Ts −
gx3
cp
, (4)

p0 =
−1

g

dp0
dx3

Rd

(
Ts −

gx3
cp

)
. (5)

The last equation can be simplified and integrated by collecting terms

−g

Rd

(
Ts − gx3

cp

) =
1

p0

p0
x3
, (6)

cp ln
([
cpRdTs − gRdTs

]
/cpRdTs

)
Rd

= ln
p0
ps
. (7)

Thus,

T0 = Ts −
gx3
cp
, (8)

p0 = ps

(
1− gx3

cpTs

)cp/Rd

, (9)

ρ0 =
ps
RdTs

(
1− gx3

cpTs

)cp/Rd−1

(10)

NOTE: Wyngaard (2010) is accessible at https://login.revproxy.brown.edu/login?url=http:
//search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=324086
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4 ? PROBLEM 9.15

2 Wyngaard (2010) Problem 8.6

I’m skipping all tildes. . . We show c is conserved by showing its conservation equation can be derived
from that of ρ and ρc:

Dc

Dt
=

D

Dt

ρc
ρ

=
1

ρ

Dρc
Dt
− ρc
ρ2
Dρ

Dt
=

1

ρ

[
�
�
�
��>

−ρc
∂ui
∂xi

+ γ
∂2ρc
∂xi∂xi

]
︸ ︷︷ ︸

(8.31)

−ρc
ρ2

[
�
�
�
�>

−ρ∂ui
∂xi

]
︸ ︷︷ ︸

(8.10)

, (11)

=
γ

ρ

∂2ρc
∂xi∂xi

≈ γ
∂2c

∂xi∂xi
(12)

Where the last step assumes the variations in mixing ratio are much larger than the variations in
either density.

3 Wyngaard (2010) Problem 9.6

Figure 1: Fig 11.1 excerpt

4 Wyngaard (2010) Problem 9.15
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6 ? PROBLEM 10.12

The turbulence Rossby number Ro∗ is the turbulent velocity scale divided by the Coriolis parameter
and turbulence lengthscale: u∗/f`. This can be estimated a number of ways, here are some:

1 : Ro∗ =
1m/s

10−4/s 103m
= 10, (13)

2 : 0.25 ≈ Rif =

g
θ0
θw

uiuj
∂U
∂xj

∼ gdθ

θ0

`

u2∗
=
gdθ

θ0`

1

f 2

f 2`2

u2∗
∼ N2

f 2

1

Ro2
∗

(14)

∴ Ro∗ ≈
1√
Rif

N

f
≈ 2

Ld
`
� 2, (15)

3 :
∂uw

∂z
= f

(
V − Vg

)
, (16)

∴ Ro∗ =
u∗
f`

=

√
1

f 2`

u2∗
`
∼
√

1

f 2`

uw

∂z
=

√
1

f`

(
V − Vg

)
∼

√
|Vg|
f`

=

√
Ro

Ld
`
� 1 (17)

Where Ro is the large scale flow Rossby number, which is typically less than one and thus
√

Ro is
closer to one.

5 Wyngaard (2010) Problem 10.3

We take as inputs Q0, Uref , zref , z0, L, zT ,Θref , Qref where the zT serves the same role as z0 but in
temperature, which might be different due to e.g., thermal over a variety of surfaces. In practice,
it’s probably normally acceptable to have z0 ≈ zT . By definition, we have

Q0 = −T ∗u∗ (18)

There are 8 dimensional parameters, and 3 units, so we expect 5 dimensionless groups. Thus,

Q0

ΘrefUref
≡ ch = ch(

zref
z0

,
zref
z0

,
zref
L

) (19)

Following the example of (10.21), we can take Qref ≡ ΘrefUref as the definition of Θref , or we can
use the mean temperature profile to do so instead of the flux, in which case we would need another
dimensionless parameter to compare Qref to ΘrefUref , such as a Nusselt number. Note that in
M-O similarity, it is argued that the mean velocity can be neglected to preserve Gallilean invariance
(although it is hard to argue that this is relevant over a rough surface, which might have specific
features that synch with the overlying turbulence.)

6 Wyngaard (2010) Problem 10.12
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7 ? PROBLEM 11.2

Second moment budgets serve a variety of roles.
The first, which is exemplified by many of the examples in Chapter 10, is to first examine the mean
flow equations and which second moments likely contribute, then use the second moment budgets to
estimate the behavior of these terms. This approach could be said to be scaling or parameterizing
the second moments.
A second approach is a second moment closure approach. In this approach (e.g. ?), all of the
mean profile equations and second moment budgets are written together as PDEs in z and t. As
they share many terms in common (e.g., the buoyancy production term in the diagonal Reynolds
stresses is also the vertical transport of buoyancy in the buoyancy equation and part of the turbulent
transport of buoyancy variance), they form a coupled set of equations for more unknowns than there
are equations (the turbulent closure problem). By neglecting or parameterizing just enough of these
unknowns, a closed set of equations can be formed. Finally, by expanding about a steady solution
or a set of basis functions, these equations are converted into an algebraic set of equations instead
of differential equations.
A third and final approach is used when observations or Large Eddy Simulations allow direct
calculation of the second moments. In this case, they can be used either in the mean equations to
understand the coupling of the turbulence and the mean or they can be used together to attempt
to close the second moment budgets, with any residuals in failing to close the budgets serving as
an estimate of the terms that were unable to be measured (e.g., the triple product terms, which are
noisier and harder to measure).

7 Wyngaard (2010) Problem 11.2

These constraints can really be found whenever a dominant balance is thought to be in jeopardy of
being violated. Let’s take the three similarity equations (10.12) as a starting point,

If we examine the mean momentum equations,

we see that the assumptions of homogeneity and stationarity imply retaining a turbulent term which
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8 ? PROBLEM 12.2

must be larger than the time derivative or the advective term,

1

T

u∗
k
∼
∣∣∣∣∂U∂t

∣∣∣∣� ∣∣∣∣∂uw∂z
∣∣∣∣ ∼ u2∗

z
(20)

1� z

u∗T
≈ |L|
u∗T

(21)

That is, the time scale of variations should be slow enough that it is not relevant at the M-O height.
For spatial scales, the same procedure follows, except one compares the advection of divergence of
stresses to the shear production term. Thus,

U
u2∗
Lx
� u3∗

z
≈ u3∗
|L|

, (22)

U

u∗
|L| � Lx (23)

So, the horizontal must be long compared to the M-O depth, scaled by the ratio of the mean
velocity to the friction velocity. The latter ratio does not appear if it is only the turbulence that
is heterogeneous, not the mean flow, which can occur if there are variations in roughness. In that
case, the lengthscale of roughness variation must obey |L| � Lx.

8 Wyngaard (2010) Problem 12.2

Here we realize that Q0 scales for the buoyancy, not the temperature, as it appears as a scaling in
the potential energy equation not the thermal energy equation. Thus, we consider the Q0 to be the
surface flux of virtual temperature. Consulting equation (10.11),

θ̃v = T̃ (1 + 0.61q̃) (24)

wθv = Q0 ∝ T∗ = 0 (25)

wθ = −0.61Twq (26)

lim
Q0→0

z

L
= 0 (27)

Thus, the surface layer rules apply, where we expect a nearly constant flux of temperature and

∂θv
∂z

=
T∗
kz

= 0 (28)

∂θv
∂z

=
−wθ
u∗kz

φθ

(
z

L

)
=

0.61Twq

u∗kz
φθ

(
z

L

)
. (29)

The surface layer scalings, furthermore, provide the limiting value of φ(0) ≈ 1, so

∂θv
∂z
≈ −wθ
u∗kz

=
0.61Twq

u∗kz
. (30)
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