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0.1 Background

• The Gulf Stream and the Wind-Driven Ocean Model
(Sverdrup (1947), Stommel (1948), Munk (1950))

• Inertial Domination/Vorticity Removal
(Veronis (1966), Niiler (1966))

• Multi-Gyre Internal Cancellation of Vorticity
(Harrison and Holland (1981), Marshall (1984))

• Limited Intergyre Mass Flux/Dissipative Meandering
(Lozier and Riser (1989), Lozier and Riser (1990))
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0.2 My Results

• Control by Vorticity Flux to Enhanced Removal
Region

• Boundary Conditions affect Intergyre Vorticity Flux

• Sinuous Modes affect Vorticity Flux Efficiency

• Resonance of Basin Mode Waves and their Nonlinear
Self-Interaction
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1 Sverdrup, Stommel, and Munk

(Contouring Streamfunction)
Stommel: Steady, Linear, Bottom
Drag
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Munk: Steady, Linear, Lateral
(N-S) Friction
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1.1 Linear Models

• Sverdrup (1947): oceanic
context, linear depth-avg
vort. eq. tenable

• Stommel (1948): bottom
drag gives WBC as
frictional return flow

• Munk (1950): asymptotic
exp.: Navier-Stokes Fric.
works, too.

• Require HUGE friction to
produce correct BL width
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2 Inertial Domination (a.k.a Runaway)

Stommel Munk
δI/δS = 0 δ3

I/δ
3
M ≡Re= 0
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Munk with Eddies: δ3
I/δ

3
M ≡Re= 0

2.1 Single Gyre

• Mean flow fluxes vorticity
to IWBC

• Eddies flux from IWBC
to FSL

• Friction removes vorticity

• If bdy. visc. too small,
inertia takes over basin

• Only eddies & fric. flux
across mean streamlines
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Stommel Munk
δI/δS = 1 δ3

I/δ
3
M ≡Re= 1
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Munk with Eddies: δ3
I/δ

3
M ≡Re= 1

• Mean flow fluxes vorticity
to IWBC

• Eddies flux from IWBC
to FSL

• Friction removes vorticity

• If bdy. visc. too small,
inertia takes over basin

• Only eddies & fric. flux
across mean streamlines
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Stommel Munk
δI/δS = 2 δ3

I/δ
3
M ≡Re≈ 2
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Munk with Eddies: δ3
I/δ

3
M ≡Re≈ 3

• Mean flow fluxes vorticity
to IWBC

• Eddies flux from IWBC
to FSL

• Friction removes vorticity

• If bdy. visc. too small,
inertia takes over basin

• Only eddies & fric. flux
across mean streamlines
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Stommel Munk
δI/δS = 2.5 δ3

I/δ
3
M ≡Re≈ 4.3
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Munk with Eddies: δ3
I/δ

3
M ≡Re≈ 5

• Mean flow fluxes vorticity
to IWBC

• Eddies flux from IWBC
to FSL

• Friction removes vorticity

• If bdy. visc. too small,
inertia takes over basin

• Only eddies & fric. flux
across mean streamlines
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2.1.1 Circulation Control by Eddy Vorticity Flux to a
Region of Enhanced Removal

Circulation Control

• Eddies cannot ultimately
remove vorticity

• Increased viscosity in a
narrow region near bdy.
helps remove it

• IBL wider than FBL,
even in western-intensified
solns!

• Eddies can replace fric-
tion, but only in interior,
not at bdy.
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3 What about Multi-Gyres? Internal

Cancellation?

• Will eddies dispose of vorticity by an
intergyre eddy flux or by a flux to the
frictional sublayer?

• Does internal cancellation control the
circulation strength at high Re?
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3.1 Very Little intergyre Flux with No-slip

Re(bdy)=5, Re(int)=5.

Arrows=Eddy Vort. Flux as % of Subtrop. input=0.637. Movie
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3.2 Conflict with Slippery BC results

Eddy flux across y=1
• Different from Harrison and

Holland (1981), Marshall
(1984), Lozier and Riser
(1990) who use slippery bcs.

• Most intergyre eddy flux in
slippery models is
dissipative meandering, not
by parcel exchange Lozier
and Riser (1989), Berloff
et al. (2002).
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3.3 Intergyre Flux due to Rel. Vort. in BL

No dissipative meandering with no-slip because 1) separation point
doesn’t meander easily and 2) rel. vorticity in BL is different as in
Stewart (1964). Movie
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3.4 So why not Slip BCs & Eddy Fluxes?

Slip Two-Gyre: w/o antisymmetric wind, intergyre eddy flux not
preferred, instead it’s mean flux. Cessi (1991): stronger WBC
no-slip/slip under/overshoots.

Re=2.5 Re= 5 Re= 10
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4 But why is No-Slip Multi-gyre Circ.

Controlled?

Negligible intergyre eddy flux of vorticity, yet circ. is reduced with
addition of a second gyre.

Re(bdy)=5, Re(int)=5.
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Circulation reduced even without subpolar wind forcing !

Re(bdy)=5, Re(int)=5, and no-slip boundary conditions.
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5 Sinuous Modes

Removing northern boundary changes eddies that flux vorticity to
the frictional sublayer. Rapidly-growing sinuous modes are then
present: Movie

Rest initial Single-gyre Rest initial after Asym. initial

18



'

&

$

%

5.1 Sinuous Efficiency (Total Flux/Fric. Flux)

Sinuous modes known to mix strongly on either side of the jet: e.g.,
Balmforth and Piccolo (2001), Rogerson et al. (1999). No intergyre
flux needed!
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5.2 Eventual Inertial Domination

At a sufficiently high Reynolds number inertial domination returns
even with sinous modes,

Thus, vorticity removal at high Re must still be considered.
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6 Eddies 6= Friction: Non-locality, for

example

Munk Steady
δ3
I/δ

3
M ≡Re≈ 4.3
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Munk with Eddies:
δ3
I/δ

3
M ≡Re≈ 5

Note the counter-rotating re-
gions only present in the time-
dependent calculation.
They rotate in a sense opposite
of the wind forcing!
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By examining the EOFs of the variability, it becomes clear that
most of the variance away from the WBC is in basin modes.

22



'

&

$

%

6.1 A Non-local Theory

Assuming that these are basin mode waves generated in WBC with
the same variance as their EOF, a theory for the wave-mean flow in
the interior explains counter-rotating gyres.
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7 Conclusions

• Friction 6= eddies: only friction removes vorticity; eddies have
barriers to transport, nonlocal effects, upgradient regions. . .

• However, eddies can prevent inertial domination so long as
vorticity removal is assured.

• Sources and sinks of vorticity are not the only important
consideration, efficiency of eddies also an important
consideration.

• Sinuous modes increase the efficiency of vort. flux to the FSL
and reduce circ. w/o requiring intergyre eddy flux.
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8 Implications?

• Eddy vort. flux is very important at high Re when mean
streamlines are closed. True also in real ocean.

• The removal of vorticity at the boundary can be very important
in determining the interior solution. Nonlocal control.

• If eddies are more efficient–as sinuous modes are–circulation
strength can be reduced, but vorticity removal always
important

• Intergyre eddy vort. flux seems to be restricted to symmetric
slip double-gyre, probably not a major player in real ocean.
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9 Issues?

• Baroclinicity? Thickness fluxes, outcropping, buoyancy budget.

• Precisely how does boundary remove vorticity? Perhaps
bottom drag (Hughes and De Cuevas, 2001).

• What are the instabilities in the real ocean, and how efficient
are they?

• Are basin modes active also in ocean, or just this model?
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9.1 We Compare 3 Models: Vorticity Input
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Single-gyre is in square
basin.
Two-gyre is in asymmetric
basin. 0 ≤ y ≤ 1.56
Double-gyre is in symmetric
basin. 0 ≤ y ≤ 2
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