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21st Century Joe
Joe was so productive 

working as he did...

Is his style of work still useful in the 
face of tomorrow’s huge datasets & 

fast computers?



We don’t need to 
think, just compute...
Moore’s Law: Doubling of CPU speed every 1.5 yrs

Kryder’s Law: Doubling of hard drive density every 1 yr

Ray Kurzweil predicts that: 

In 2009, networked clusters will exceed the processing 
power of the human brain (2x1016 flops) 

By 2020, this processing power will cost only $1000

By 2050, $1000 will buy the processing power of all 
human brains combined

The End of 
Theory
is Near



If we’re not clever, what do 
we brutes need to resolve?
Mesoscale Eddies (10km):  CPUx1 (teraflops, terabytes, 10MW)

Submesoscale Eddies (1km): CPUx103 (petaflops,100MW)

Langmuir Circulations (10m): CPUx106 (exaflops, GW???)

Finescale Turbulence (1m): CPUx109 (zettaflops)

Viscous scales (0.01m): CPUx1015  (1027 flops)

Salinity diffusion (0.0001m): CPUx1021  (1033 flops)
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If we’re not clever, what do 
we brutes need to resolve?
Mesoscale Eddies (10km):  CPUx1 (teraflops, terabytes, 10MW)

Submesoscale Eddies (1km): CPUx103 (petaflops,100MW)

Langmuir Circulations (10m): CPUx106 (exaflops, GW???)

Finescale Turbulence (1m): CPUx109 (zettaflops)

Viscous scales (0.01m): CPUx1015  (1027 flops)

Salinity diffusion (0.0001m): CPUx1021  (1033 flops)

Human Brain: 10 petaflops

Oschlies 2002:  2km Important!

Even Moore doesn’t believe 
Moore’s Law will hold!!! Inquirer (2005)

Mythology ~1990:  With resolved mesoscale, we’re done.

My Brain



Guidance from Joe:
Some Examples

Equilibration of a Damped, Unstable Wave

Parson’s Model (with R. Ferrari)

Time-Dependent Ocean



It’s hard to substitute 
algorithms for eyes...



A Simple Wave Problem
Two Density Layers

Rotating Infinite Channel

Quasi-Geostrophic

Ekman Layers Top & Bottom

One Wave at a time



Not as simple as it seems...

All of this *before* Mandelbrot’s popularity, concurrent with Feigenbaum!



Pedlosky & Frenzen Summary...



A New Look...



A New Look...

Period

Convergence?



Know the derivations...
Massage the definitions...
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The Parson’s
 Model
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and Flierl (1987) propose an isolated western bound-
ary current running along the western wall (marked
Tiso in Fig. 2). The streamfunction at the outcrop
therefore is different from Ψ1e = 0, and is found
from the net geostrophic and Ekman flow east of
the outcrop,

Ψ1m = −h
2
1e

2f
+ λ(1− x)

τ

f
. (36)

The critical latitude of separation yc is found by
locating the point where the outcrop would meet
the western boundary,

Ψ1m = −h
2
1e

2fc
+ λ

τc

fc
. (37)

The values of fc and τc are the Coriolis parameter
and wind stress at yc. The outcrop location is given
by

xo = 1−
h
2
1e
2 (fc − f) + λfτc

λτfc
.

Because the boundary current is narrow and
geostrophic in the along-current direction, the loca-
tion of the outcrop can be estimated without a de-
tailed knowledge of the boundary current processes.
Thus, all of the results of Huang and Flierl (1987)
immediately generalize to the model here, so long as
upper layer thickness is taken as mean upper layer
thickness, and transports are taken to include the
eddy thickness fluxes.

d. Isolated Western and Northern Boundary Cur-
rent

It should be clear at this point how to solve for
the other boundary currents described in detail in
Huang and Flierl (1987) by adding the eddy form
drag to the interfacial drag and replacing the steady
solution with the thickness-weighted mean. The re-
mainder of this paper will focus on the particular
aspects of the inclusion of eddies solution.

4. An Important Condition on Eddy Fluxes

A number of authors have emphasized that eddies do
not create momentum during baroclinic instability–
they merely rearrange it–and that this is an impor-
tant constraint for developing eddy parameteriza-
tions similar to (12). Following Killworth (1997) for
the model used here, this amounts to the require-
ment that

0 =
∑

∀i

h′
iu

′
i ≡

∑

∀i

hiu
∗
i (38)

Figure 2: The transports, sources, and sinks of the
Nurser and Williams (1990) generalization of the
Huang and Flierl (1987) and Veronis (1978) models.
Boundary currents are thick double arrows, curvy
arrows are mixed layer flows, and solid bent arrows
are interior geostrophic flows. The zero wind lines
(ZWL), and zero wind stress curl lines (ZWCL) are
indicated.

This guarantees that the effects on depth-integrated
momentum by the PV flux forcing term in (8) vanish
in this model,

∑

∀i

h
2
i P

′
iu

′
i =

∑

∀i

h
2
i P i

P ′
iu

′
i

P i
=

∑

∀i

h
2
i P i

h′
iu

′
i

hi

,

=
∑

∀i

fh′
iu

′
i = 0.

Killworth (1997) demonstrates that linear instabil-
ities automatically obey this constraint. Marshall
(1981) shows that the constraint persists even at
modest Rossby numbers in a channel. Similar con-
straints are studied elsewhere (Green, 1970; Held,
1975; Treguier et al., 1997).

Even in a simple two-layer rigid lid model neglect-
ing relative vorticity gradients as above, but with a
moving lower layer, this is relatively difficult con-

Two Density Layers

Nearly Motionless Lower 
Layer

Wind-driven

Add localized cooling/
heating

Steady State

Requires artificially large 
friction between layers



Six of one, a half dozen of 
the other?

Consider the continuity, or thickness, equation for an 
isopycnal-coordinate model:

Parson’s model is steady; can we add eddies?

We can average like this,

Or, we could use the thickness-weighted average:

∂h

∂t
+∇ · hu = S

1

∇ · hu = −∇ · h′u′ + S

1

∇ · hu† = S u† ≡
hu

h

1



Redefining the mean, it’s easy! 

The Parson’s Model is readily adapted to solve for a 
thickness-weighted mean instead of a steady solution.

The outcrop location, boundary current transport, 
double-gyre solutions (Huang & Flierl), even diabatic 
and surface forcing and mixed layer effects (Pedlosky, 
Veronis, Nurser and Williams) carry through nearly 
effortlessly.

Constraints (Sverdrup, Fox-Kemper & Pedlosky) readily 
generalize, so long as eddies behave nicely.



Results in a Bdy Layer Width
The upper layer of the thickness-weighted Parson’s 
model can be nearly inviscid (the eddy fluxes transport 
momentum down where bottom drag can get it)

If so, the boundary layer width is close to an eddy 
mixing length, if the typical eddy velocity is taken to be 
the long Rossby wave speed.
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6. Conclusion and Summary

A reconciliation of the residual, or thickness-
weighted, mean and the traditional steady wind-
driven gyre model initially studied by Parsons
(1969) reveals that most of the traditional solution
methods proceed with little modification. The inter-
pretation of the solutions, however, is unfamiliar as
the thickness-weighted mean velocity (not the Eu-
lerian mean velocity) plays the role of the steady
velocity. The thickness-weighted mean velocity ap-
pears because its transport is nondivergent even in
an eddying flow, unlike the Eulerian mean. It is
shown that an ‘eddy form drag’ results from a pa-
rameterization of along-isopycnal eddy fluxes of po-
tential vorticity and plays a similar role to the inter-
facial frictions typically used in the steady models.

The boundary layer width of the upper layer flow
based on eddy statistics is found to be,

δb =
κ1

cR

Ann

ŝ · ŷ . (51)

Where cR is the long Rossby wave phase speed. This
boundary layer width holds if κ1 and Ann vary, so
long as they do not vary appreciably in the cross-
current direction at a given location along the cur-
rent. The boundary layer width is comparable to an
eddy mixing length scale, if the typical eddy velocity
is taken to be the long Rossby wave phase speed.

An important constraint–that eddies only rear-
range and do not create momentum–is shown to
make the depth-average of the thickness-weighted
equations sensible. For example, the traditional
Sverdrup (1947) relation is recovered upon integra-
tion over the total ocean depth.

A few crucial aspects are missing from this simple
model, which was chosen primarily to illustrate, not
simulate. The parameterization as implemented al-
lows PV fluxes through the boundary, which would
not be true of resolved eddies. Resolved eddies still
have to rely on a transfer to vertical or horizontal
viscosity or diffusion near the boundary due to a
global vorticity constraint resembling the 2d result
of Fox-Kemper and Pedlosky (2004). Advection of
relative vorticity is not treated here, either in the
mean flow or in the parameterization. The eddy ad-
vection of eddy relative vorticity–at least for weak
eddies–results in a similar form of eddy parameteri-
zation to that used here (see (7) and Plumb, 1990).
The mean advection of mean relative vorticity often
requires numerical simulations (e.g., Cessi and Ier-
ley, 1995; Speich et al., 1995) or analytic methods
beyond the treatment here (Charney, 1955; Huang,

1990).
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What do we know about the 
Eulerian mean velocity anyhow?

We rarely observe the mean flow directly.

We sometimes observe snapshots of the flow directly.

We usually infer the mean flow corresponding to our 
snapshots from the location of tracers, but tracers are 
advected by the thickness-weighted mean anyway!



Sometimes you already 
know everything you need...



A complete set...



With fascinating 
implications...Milan j. math. 70 (2002) 39–96
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Statistical Mechanics for Truncations of
the Burgers-Hopf Equation:
A Model for Intrinsic Stochastic
Behavior with Scaling

A. Majda and I. Timofeyev

Abstract. In this paper we consider both analytically and numerically
several finite-dimensional approximations for the inviscid Burgers-Hopf
equation. Fourier Galerkin truncation is introduced and studied as a
simple one-dimensional model with intrinsic chaos and a well-defined
mathematical structure allowing for an equilibrium statistical mechan-
ics formalism. A simple scaling theory for correlations is developed that
is supported strongly by the numerical evidence. Several semi-discrete
difference schemes with similar mathematical properties conserving dis-
crete momentum and energy are also considered. The mathematical
properties of the difference schemes are analyzed and the behavior of
the difference schemes is compared and contrasted with the Fourier
Galerkin truncation. Numerical simulations are presented which show
similarities and subtle differences between different finite-dimensional
approximations both in the deterministic and stochastic regimes with
many degrees of freedom.

1. Introduction

One challenging common feature of several important problems in contem-
porary science ranging from short term climate prediction for the coupled
atmosphere-ocean systems [1], [2], [3] to simulating protein folding through
molecular dynamics [4], [5] is the important fact that larger scale features



Tricky, though...

Little Noise

Original Signal Basin Mode Rep.
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More Noise

Original Signal Basin Mode Rep.



Tricky, though...

Strong Noise

Original Signal Basin Mode Rep.



To Conclude

The insights of human scientists will not be 
replaced by machines anytime soon...

Joe will not be replaced by man or 
machine...


