Submesoscale Dynamics and

 Parameterization:Potential Implications for Mesoscale Parameterization?

Baylor Fox-Kemper
University of Colorado at Boulder

GLIVAR WGOMD Workshop on Ocean Mesoscale Eddies

Collaborations with: R. Ferrari, G. Boccaletti, G. Danabasoqlu, R. Hallberq, F. Bryan, J. Dennis

Upper Ocean in Climate Models

- Large-scale ocean circulation $(100-10,000 \mathrm{~km}$, yrs->centuries) $=>$ resolved
- Submesoscale variability $(100 \mathrm{~m}-10 \mathrm{~km}, \mathrm{~d}->\mathrm{mo})=>$ ignored until recently
- Interhal waves \& Langmuir circulations (10-100m, hr \rightarrow day) $=>$ crudely param.
- Turbulent mixing ($10 \mathrm{~cm}-100 \mathrm{~m}, \mathrm{~s}->\mathrm{hr})=>$ parameterized

The Future of Resolution

Surface Submesoscale

Characteristics

- Ro=O(1), Ri=O(1) (Post-Rossby adjustment after mixing events or frontogenesis).
- Frontogenesis: Capet, McWilliams et al.; Klein, Lapeyre et al.
- Eddies and Instabilities? Fox-Kemper, Ferrari et al.; Molemaker, McW. et al.
- Climate Significance: The Ocean and Atmosphere 'Talk' through the Mixed Layer, and Phytoplankton live there
- Why focus on the mixed layer? Next slides.

Upper Ocean: Mixed Layer

The mixed layer is not TOTALLY mixed.
Fronts are common.

This weakly-stratified, fairly rapidly mixed region is active at the submesoscale...

Typical Stratification Permits
Two Types of Baroclinic Instability:

and SubMesoscale Eddies (Boccaletti et al., 2006)

Typical Stratification Permits
Two Types of Baroclinic Instability:
and SubMesoscale Eddies (Boccaletti et al., 2006)

Density variability at larger scale than ML Def. Radius (Hosegood et al., 2006)

C) $20-\tau$

$$
\log _{10} \Psi\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)^{2} \mathrm{~km}^{-2}
$$

Wavelet Scalograms of Seasoar Towyos of N. Pacific Subtropical Front.

Also, Mixed Layer Fronts are Submesoscale:
Density variability at larger scale than ML Def. Radius (Hosegood et al., 2006)

Regarding First BC mode def. radius motion: 'The Ocean has a great deal more variability than that' -C. Wunsch

Wavelet Scalograms of Seasoar Towyos of N. Pacific Subtropical Front.

Mesoscale and
SubMesoscale are Coupled Together:

ML Fronts are formed by

Straining.

Submesoscale eddies remove PE from those fronts.

The Character of

the Submesoscale

(Capet et al., 2008)

Longitude

FIG. 16. Sea surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the
California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently California Current from Coast Watch (http://coastwatch.pfeg.noaa.gov). The fronts between recently
upwelled water (i.., $15^{\circ}-16^{\circ} \mathrm{C}$) and offfshore water ($\geq 17^{\circ} \mathrm{C}$) show submesoscale instabilities with wavelengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show persistence of the instability events.

Vertical fluxes are Submesoscale and tend to restratify

Figure 1: Contours of temperature at the a) surface and b) below the mixed layer base in a simulation with both mesoscale eddies and MLEs $\left(0.2^{\circ} C\right.$ contour intervals). Shading indicates the value at the depth where $\overline{w^{\prime} b^{\prime}}$ (upper panel) and $\left|\overline{\mathbf{u}_{H}^{\prime} b^{\prime}}\right|$ (lower panel) take the largest magnitude.

Horizontal fluxes are Mesoscale and tend to stir

Remixing the Mixed Layer Counts!

The vertical buoyancy flux in the ML ($\left.\left\langle w^{\prime} b^{\prime}\right\rangle\right)$

without diurnal cycle is

 than with cycle (ML)

Temperature Section along Channel Center

Remixing the Mixed Layer Counts!

The vertical buoyancy flux in the ML ($\left.\left\langle w^{\prime} b^{\prime}\right\rangle\right)$

without diurnal cycle is

 than with cycle (ML)

Temperature Section along Channel Center

Vertical buoyancy fluxes increase as submeso becomes resolved

- Comparison of vertical buoyancy fluxes at two different resolutions
- Fourfold enhancement of fluxes critically depends on presence of a mixed layer
- The fluxes are such as to rapidly restratify the surface mixed layer

Known since Oschlies, `O2

Observed:

Strongest Mixed Layer Eddies= Spirals on the Sea?

Figure 1. A pair of interconnected spirals in the Mediterranean Sea south of Crete. This vortex pair has a clearly visible stagnation point between the two spirals, the cores of which are aligned with the preconditioning wind field. 7 October 1984.

Figure 12: Probability density function of relative vorticity divided by Coriolis parameter. Results from the numerical simulation of a slumping horizontal density front. ($z>100$ only to exclude bottom Ekman layer.) The PDF is estimated using surface velocity measurements at day 25 (see also Fig. 11). A positive skewness appears as soon as the baroclinic instability enters in the nonlinear stage, and it continues to grow. Note that the peak at $\zeta / f=0$ is due to the model's initial resting condition; that fluid has not yet been contacted by the MLI. (b) Results from ADCP measurements in the North Pacific. The PDF is calculated in bins of width 0.02 .

Mixed Layer Eddies are predominantly cyclonic, as are obs.
(Boccaletti et al., 2007)

Other submesoscale features... not yet parameterized.

- Front-Wind interactions \& Intrathermocline Eddies-Thomas, Thomas \& Ferrari (08)
- Meddies and other SCVs--McW. (85), Lilly et al. (03)
- Coastal Submesoscale Eddies \& Shelfbreak Front Eddies--Gawarkiewicz et al., Capet et al. (08)
- Submesoscale and Energy Cascade--Capet et al (08, pt. III)
- SQG and the Submesoscale--LaCasce, Klein, Lapeyre
- Review--Thomas, Tandon, Mahadevan (08)

First: Mixed Layer Eddy Parameterization

A Global Parameterization of

 Mixed Layer Eddy Restratification$$
\begin{gathered}
\mathbf{\Psi}=\left[\frac{\Delta x}{L_{f}}\right] \frac{C_{e} H^{2} \mu(z)}{\sqrt{f^{2}+\tau^{-2}}} \nabla \bar{b} \times \hat{\mathbf{z}} \\
\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]
\end{gathered}
$$

Which parameterizes eddy-induced velocity and buoyancy fluxes

Where does this parameterization come from, and what can be applied to the mesoscale?

Prototype: Mixed Layer Front Adjustment

Note: initial geostrophic adjustment overwhelmed by eddy restratification: Ri>1 is our focus

Overturning Schematic:

 An Eady-like Problem

Horizontal scale of overturning = scale of front Vertical structure of overturning = ?

The Scaling of MLIs

Mixed Layer Eddies (MLEs) begin as ageostrophic baroclinic instability of a front in the Mixed Layer: the Mixed Layer Instability (MLI)

MLI=infinitesimal
MLE=finite amplitude

$$
L_{s}=\frac{2 \pi U}{|f|} \sqrt{\frac{1+R i}{5 / 2}} \approx 5.6 \frac{N H}{|f|}
$$

$$
\begin{aligned}
& \tau_{s}=\sqrt{\frac{54}{5}} \frac{\sqrt{1+R i}}{|f|} \approx \frac{4.6}{|f|} \\
& \text { (Fastest growing modes of Stone 66, 70, 72) }
\end{aligned}
$$

See Boccaletti et al 07, Fox-Kemper et al 08 \& Hosegood et al 06

- MLI selected by Eady edge wave interaction

Eady,

 SQG-like $P V=0=f-\left(k^{2}+l^{2}\right) \Psi+\frac{\partial}{\partial z} \frac{f^{2}}{N^{2}} \frac{\partial \Psi}{\partial z}$ Problem:Vertical decay scale set by horizontal length-scale, Growing lengthscale matches edge wave phase.

Parameterization of MLEs: Ingredients

Parameterization of MLEs: Ingredients

Eddies at Finite

Amplitude

Restratification occurs with * finite* MLEs

Parameterization of MLEs: Ingredients

Restratification occurs with *finite* MLEs

Parameterization of MLEs: Ingredients

Eddies at Finite Amplitude
Restratification occurs with * finite* MLEs

Power Spectrum of KE

Parameterization of MLEs: Ingredients

Parameterization of MLEs: Ingredients

Parameterization of MLEs: Ingredients

Inverse Cascade => Different Scaling from Linear Instability

The Scaling of MLEs

MLEs form from MLIs, but scale differently due to this inverse cascade.

- Advective, not instability, Timescale
- Saturated, not exponentially growing, EKE
- Inverse Cascade, not unstable lengthscale

See Fox-Kemper et al 08

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Scaling of MLEs: Ingredients

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

$$
\langle w b\rangle \propto \frac{-\Delta z \Delta b}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.

$$
\langle w b\rangle \propto \frac{-\Delta z \Delta b}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.

$$
\langle w b\rangle \propto \frac{-\Delta z\left(\Delta y \frac{\partial \bar{b}}{\partial y}+\Delta z \frac{\partial \bar{b}}{\partial z}\right)}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$

$$
\langle w b\rangle \propto \frac{-\Delta z\left(\Delta y \frac{\partial \bar{b}}{\partial y}+\Delta z \frac{\partial \bar{b}}{\partial z}\right)}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$

$$
\langle w b\rangle \propto \frac{\Delta z \Delta y \frac{\partial \bar{b}}{\partial v}}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$
Time scale is turnover time

$$
\langle w b\rangle \propto \frac{\Delta z \Delta y \frac{\partial \bar{b}}{\partial y}}{\Delta t}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$
Time scale is turnover time

$$
\langle w b\rangle \propto \frac{\Delta z \Delta y \frac{\partial \bar{b}}{\partial y}}{\Delta y / V}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$
Time scale is turnover time from mean thermal wind:

$$
\langle w b\rangle \propto \frac{\Delta z H}{|f|}\left[\frac{\partial \bar{b}}{\partial y}\right]^{2}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$
Time scale is turnover time from mean thermal wind:
Vertical scale known: $\Delta z \propto H$

$$
\langle w b\rangle \propto \frac{\Delta z H}{|f|}\left[\frac{\partial \bar{b}}{\partial y}\right]^{2}
$$

Magnitude Analysis: Vert. Fluxes

Extraction of potential energy by submesoscale eddies:

$$
-\langle w b\rangle=\frac{\partial\langle P E\rangle}{\partial t} \approx \frac{\Delta P E}{\Delta t} \propto \frac{\Delta z \Delta b}{\Delta t}
$$

Buoy. diff just parcel exchange of large-scale buoy.
Flux slope scales with the buoy. slope: $\frac{\Delta y}{\Delta z} \propto \frac{-\frac{\partial \bar{b}}{\partial z}}{\frac{\partial \bar{b}}{\partial y}}$
Time scale is turnover time from mean thermal wind:
Vertical scale known: $\Delta z \propto H$

$$
\langle w b\rangle \propto \frac{H^{2}}{|f|}\left[\frac{\partial \bar{b}}{\partial y}\right]^{2}
$$

- MLE halted by vertical constraint and fluxes along isopyenal slope

Still Eady or SQG-like problem, but horiz. scale linked to vertical scale by PE extraction slope;

Vertical scale limited by ML depth.

Linear Solution $\left\langle w^{\prime} b^{\prime}\right\rangle$ Shape for vertical structure. As in Branscome '83... MLE are trapped within the Mixed Layer!

Stone Solution $\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]$
to $O\left(\mathrm{Ro}^{2}\right)$

The Parameterization:

$\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}$

$$
\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]
$$

- The horizontal fluxes are downgradient:

$$
\overline{\overline{\mathbf{u}_{\mathrm{H}}^{\prime} b^{\prime}}}=-\frac{C_{e} H^{2} \mu(z) \frac{\partial \bar{b}}{\partial z}}{|f|} \nabla_{H} \bar{b}
$$

- Vertical fluxes always upward to restratify with correct extraction rate of potential energy:

$$
\overline{w^{\prime} b^{\prime}}=\frac{C_{e} H^{2} \mu(z)}{|f|}|\nabla \bar{b}|^{2}
$$

- Just like it has to be... at least according to Peter G.

It works for Prototype front slumping

Red: No Diurnal

Blue: With Diurnal

>2 orders of
Circles: Balanced Initial Cond.
Squares: Unbalanced Initial Cond.

Better than the Competition:

Extends over
Ri more mesoscale (9000)
than submesoscale
(1)

Better than the Competition:

Green equals
Visbeck (97)
Held \& Larichev (95)

Extends over
Ri more mesoscale (9000)
than
submesoscale
(1)

And Agrees with Deep Convection Studies: Jones \& Marshall $(93,97)$, Haine \& Marshall (98)

What does it look like?

2d, Coarse Parameterization
7d01h from 2d parameterization

3d, Submeso-Resolving
7d01h from 3d MITgcm (smoothed)

Comparing N^{2}

The Global Parameterization:

$$
\begin{gathered}
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}} \\
\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]
\end{gathered}
$$

At equator, go frictional! to (Young 94)

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{\sqrt{f^{2}+\tau^{-2}}} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

Account for coarse res. by scaleup

$$
E_{b}(k) \sim k^{-2} \rightarrow \mathbf{\Psi}=\left[\frac{\Delta x}{L_{f}}\right] \frac{C_{e} H^{2} \mu(z)}{\sqrt{f^{2}+\tau^{-2}}} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

Obs. reveal (Hosegood et al., 2006): $L_{f} \sim R_{d}$

A Global Parameterization of

 Mixed Layer Eddy Restratification$$
\begin{gathered}
\Psi=\left[\frac{\Delta x}{L_{f}}\right] \frac{C_{e} H^{2} \mu(z)}{\sqrt{f^{2}+\tau^{-2}}} \nabla \bar{b} \times \hat{\mathbf{z}} \\
\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]
\end{gathered}
$$

Which parameterizes eddy-induced velocity and buoyancy fluxes

Improves Restratification after Deep Convection

Note: param. reproduces Haine\&Marshall (98) and Jones\&Marshall $(93,97)$

\& generally shallower boundary layers

GFDL CM2. 2.1 MOM

100

CCSMIPOP h_{b} Control-Submeso (m) JAN

NCAR CCSM/POP

MLE-Control:Climatologies at end of $>100 \mathrm{yr}$ simulation

Improves Restratification after Deep Convection

Note: param. reproduces Haine\&Marshall (98) and Jones\&Marshall $(93,97)$

\& generally shallower mixed layers

(nonzonal structure as in obs: Rintoul)

GFDL CM2. $1 / \mathrm{MOM}$
CM2.1 $\mathrm{MOM} \mathrm{h}_{\mathrm{ml}}$ Control-Submeso (m) JAN

CCSMIPOP $h_{m l}$ Control-Submeso (m) JAN

NCAR Normal Year/POP
NCAR CCSM/POP
MLE-Control:Climatologies at end of $>100 \mathrm{yr}$ simulation

Bias Reduction in POP Mixed Layer Depth

RMS error: 16 m reduced to 8m Skewness: 2.4
reduced to 0.6

Fox-Kemper, Danabasoglu, Ferrari, Hallberg '08.

Changes other variables we care about...

Sfc Heat Flux
CM2.1MOM Sfc Heat Flux Control-Submeso ($\mathrm{W} / \mathrm{m}^{2}$) JAN

Sea Ice Melting
CCSMIPOP Melt Control-Submeso ($\mathrm{kg}_{\mathrm{g}} / \mathrm{m}^{2} / \mathrm{day}$) JAN

CM2.1/MOM Sfc CFC Flux (mollm² ${ }^{2}$ s) Control-Submeso (mollm ${ }^{2} / \mathrm{s}$) JAN

CFC-11 Flux (cf outgassing: Rintoul)

MLE-Control:Climatologies at end of $>100 \mathrm{yr}$ simulation

Changes other variables we care about...

Avg. Ideal Age 4 yrs older at 500 m with MLE (up to 30%)
(as big as coarse vs 10km, Frank)

MOC 10\% greater with MLE

MLE-Control:Climatologies at end of $>100 \mathrm{yr}$ simulation

MLE Parameterization Conclusions

- A restratification parameterization based on nonlinear Mixed Layer Eddies has been formulated
- It outperforms other scalings in prototype simulations, and new evidence shows that it applies in more general settings including wind (Capet 08, Mahadevan et al. 09)
- It has now been implemented in a number of global models--producing nontrivial improvements of mixed layer properties

Mesoscale Implications? Mesoscale Connections?

(MLE parameterization blends naturally with GM, etc.: Just add together the streamfunctions

- But, shouldn't we be able to provide a similar scaling for Mesoscale GM coefficient, a la Visbeck?
- After all, MLE are quasibalanced, and scaling works up to at least $\mathrm{Ri}=9000$
- But, the real difficulty is illustrated by cases where the surface MLEs become subsurface SCVs...

An Example of MLE Becomes Subsurface SCV: Hurricane Wake Recovery

An Example of MLE Becomes Subsurface SCV: Hurricane Wake Recovery

MLE
 Param.

Od03h from 2d parameterization

Od03h from 3d MITgem (smoothed)

3d Model, (no wind or solar)

An Example of MLE Becomes Subsurface SCV: Deep Convection (vs. Jones \& Marshall '97)

Param gives same scaling, but...

Jones \& Marshall 97

An Example of MLE Becomes Subsurface SCV: Deep Convection (vs. Jones \& Marshall '97)

Od02h from 2d parameterization

Jones \& Marshall 97

The Problem is:

The mesoscale equivalent isn't rEady

. Clearly, MLE parameterization is challenged by situations where medium-sized interior PV grads; Big PV grads are equivalent to rigid surfaces and are OK, just medium-sized fail.
(2) Smith (07) shows Phillips-type (interior PV grads) dominate the energy extraction

The Problem is:

The mesoscale equivalent isn't rEady

. Clearly, MLE parameterization is challenged by situations where medium-sized interior PV grads; Big PV grads are equivalent to rigid surfaces and are OK, just medium-sized fail.
(2) Smith (07) shows Phillips-type (interior PV grads) dominate the energy extraction

What to do?

Parameterization Challenge Suite

- The needed stratification, shear, strain, etc. are in the global model Frank presented
(2) Will extract 'typical' eddy configurations by EOF or SOM
(2) Will simulate individually: O(2000) simulations
- Global run analog of mesoscale-submesoscale channel;
(3) Parameterization suite \rightarrow Analog of protype sim here

