Mesoscale and Submesoscale Parameterizations: Current Practice, New Developments, and Future Plans

Baylor Fox-Kemper, University of Colorado

Lots of other input as mentioned in slides GFDL Ocean Climate Model Development Meeting Th 29 Oct.

The Future of Resolution

The Future of Resolution

Outline

Phenomenology of the Subgridscale--Mesoscale through Finescale
Subgridscale Closure--in principle
Subgridscale Closure--in practice
Subgridscale Closure--in development

The Character of the Mesoscale

(Capet et al., 2008)

Longitude

FIG. 16. Sea surface temperature measured at 1832 UTC 3 Jan 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently ipwelled water (i.e., 15"-16°C) and offshore water (>17°C) show submesoscale instabilities with waveengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show ce of the instability events

Soundary Currents Seddies Ri=O(1000) Second Full Depth Projects on Fronts

Eddy processes mainly baroclinic & barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

IOOkm, months

10

km

The Character of the Submesoscale

Longitude

Fronts & ageo wind
Eddies
Ro=O(1)
Ri=O(1)

Port of the second seco

near-surface
10km, days
Parameterizations of eddies (FFH)

The Character of the Finescale (Capet et al., 2008)

Longitude

FIG. 16. Sea surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfcg.noaa.gov). The fronts between recently apwelled water (i.e., 15'-16'C) and offshore water (≥17'C) show submesoscale instabilities with waveengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show ersistence of the instability events.

@ 3d

turbulent @ Ro>>1

@ Ri<1 to <<1

100

m

near-surface, bottom surface wave (Langmuir, breaking) o internal waves/loss of balance/nonhydrostatic <100m, minutes-hrs.</p>

Subgridscale Closure--In Principle

Divvy the world up into spatially resolved and unresolved motions--Filter/avg. unresolved for resolved

 All nonlinear terms couple: u'v', u'b', u't', EKE, etc.
 Use & simulate fluctuation eqtns as guide. Beware thermodynamic constraints, e.g., nearly adiabatic flow.

I: MORANS->Gridscale in scale separation

II: MOLES->Gridscale as spectral truncation

Grid/Filter scale sets physics: MO=Mesoscale Ocean,
 SO=Submesoscale Ocean, FO=Finescale Ocean, etc.

RANS=Reynolds Ava Navier-Stokes, LES=Larae Eddy

Subgridscale Closure--In Practice Divvy the world up into resolved and unresolved

Divvy the world up into resolved and unresolved motions--Filters usually temporal/ensemble, not spatial!

- Some nonlinear terms couple: u'b', u't'. Use hodgepodge of obs., intuition, heuristics, scaling to motivate. Use neutral physics as constraint, but ignore distinctions between diabatic and dia-(coarsegrain neutral surf.)
 - Slend ideas from RANS/LES, e.g., Smag. + GM?
- Grid/Filter scale ignored, or scaled for on computational not physical reasoning (e.g., the model blows up if...)

MORANS, Objectives

- IPCC now, and with paleo/biogeochem for a long time, we will be coarser than def. radius.
- This means we are usually MORANS
- If the eddies doing the mixing are larger* than def. radius, no eddy momentum fluxes *(how do we know how big the unresolved eddies are?)
- So, first order of MORANS business: need buoyancy & tracer flux closures

Tracer Flux-Gradient Relationship $u'\tau' = -M \nabla \overline{\tau}$

 Virtually all extant subgridscale eddy closures may be written as above, e.g.: GM, Redi, FFH

Relates the eddy flux to the coarse-grain gradients

May have a flow/property dependent M:
 (FFH, Visbeck, Green, Held & Larichev, Stone, Canuto & Dubovikov, Griffies et al '05)

May consider gridscale (FFH, Hallberg & Adcroft)

Isopycnal & lagrangian coordinate versions possible/known

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

General Form

 $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = - \begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$

Diagnostically: 9 elements requires at least 3 similar-transport tracers to specify uniquely

Could vary tracer by tracer, or active tracer vs. passive, etc. In practice we don't do this.

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Anistropic* Redi Form

 $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = -\begin{bmatrix} K_{xx} & K_{xy} & \hat{\mathbf{x}}\cdot\mathbf{K}\cdot\tilde{\nabla}\mathbf{z} \\ K_{yx} & K_{yy} & \hat{\mathbf{y}}\cdot\mathbf{K}\cdot\tilde{\nabla}\mathbf{z} \\ \hat{\mathbf{x}}\cdot\mathbf{K}\cdot\tilde{\nabla}\mathbf{z} & \hat{\mathbf{y}}\cdot\mathbf{K}\cdot\tilde{\nabla}\mathbf{z} & \tilde{\nabla}z\cdot\mathbf{K}\cdot\tilde{\nabla}\mathbf{z} \end{bmatrix} \begin{bmatrix} \overline{\tau}_{x} \\ \overline{\tau}_{y} \\ \overline{\tau}_{z} \end{bmatrix}$ Yellow Elements are horizontal stirring Blue Elements in Redi (1982) are symmetric and scaled to make eddy mixing along neutral surfaces *Anistropic form due to Smith & Gent 04

$= - \mathbf{V} \mathbf{\nabla} \mathbf{\tau}$ $\mathbf{11}' \tau'$

Anisotropic* Gent-McWilliams

 $u'\tau'$

 $\begin{array}{cccc} 0 & 0 & -\hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \\ 0 & 0 & -\hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} \\ \hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} & \hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla} \mathbf{z} & 0 \end{array}$ $\overline{ au}_x \ \overline{ au}_y$ Antisymmetric Elements in GM (1990) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid equivalent to eddy-induced advection Q: Same K as Redi? *Anistropic form due to Smith & Gent 04 *Tensor Form (Griffies, 98)

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Fox-Kemper, Ferrari, & Hallberg (2008) form (a mixed layer (submeso) eddy param.): $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = -\begin{bmatrix} 0 & 0 & -\Psi_y \\ 0 & 0 & \Psi_x \\ \Psi_y & -\Psi_x & 0 \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$

Antisymmetric Elements in Fox-Kemper, Ferrari, & Hallberg (2008) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid, At a rate validated against eddying simulations!

CM/MOM AR5 Practice

M Antisymmetric Part: Veriation: Ferrari, Griffies, Nurser, Vallis (2009)

 Horiz. Variation: Griffies et al (2005) spatial dependent diffusivity (depends on vertically averaged baroclinicity; as in CM2.1). Max diffusivity is 800mks, min is 100mks. Implemented as skew diffusion.

Submeso param: FFH (in mixed layer only)
 Neutral diffusion: Griffies et al (1998) with constant diffusivity of 600m²/s (as in CM2.1)

Thanks to Griffies for this list

CCSM/POP AR5 Practice M Antisymmetric Part:

- Vert. Variation: The near-surface eddy flux parameterization of Ferrari et al. (2008) as implemented by Danabasoglu et al. (2008)
- GM90 with vertically-varying coefficients 3000 m²/s in surface diabatic layer to 300 m²/s by a 2km depth(Danabasoglu and Marshall 2007).
- Horiz. Variation: None.

Submeso param: FFH (in mixed layer only)
 Symmetric Part:
 Neutral diffusion equal to GM coefficient. Matching Horiz. diffusivity in surface diabatic layer.

Thanks to Gokhan for this list

CM/GOLD AR5 Practice

Antisymmetric Part:

Ø Vert. Variation: None.

Horiz. Variation: GM diffusivity ala Visbeck et al 97.
 More from Alistair and/or Bob later.

Submeso param: FFH (in mixed layer only)
 Symmetric Part:
 Neutral diffusion diffusivity is our final tuning, TBA?

Thanks to Griffies for this list

Topics for discussion: I Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor) Indeterminacy? (Baylor)

- Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair)
- Dia-(coarse pycnal) M? (All)
- Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Topics for discussion: II

- Scaling for MOLES (Bob)
- What can linear theory tell us? (Shafer)
- What can process models/idealized sims tell us? (Baylor)
- What can other theory tell us?
 - GLM? TEM? Stat Mech?
- Anisotropy, tracer type dependence, biogeochem tracers, etc.? (Baylor, others?)

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair)

- Dia-(coarse pycnal) M? (All)
- Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Need a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

> Fox-Kemper, with Frank Bryan, John Dennis (NCAR) Students: S. Bachman, A. Margolin

Need a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}'\tau' = -\mathbf{M}\nabla\overline{\tau}$

Does Redi Work? Does GM Work?

What is the spatial/flow dependence?

Can we improve GM/Redi by comparison to eddying simulations a la FFH?

3 equations/tracer 9 unknowns (Mcomponents) BY USING 3 or MORE TRACERS, can determine M!!! (a la Plumb & Mahlman `87, Bratseth `98) Use a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

We Use: Years 16-20 of a Global 0.1 Degree Model (sim to Maltrud & McClean '06)

9 Passive Tracers To Overdetermine ${f M}$

Use a Natural, Mesoscale Eddy Environment to Test Out:

Testing the Diagnosis:

Note: T not used for diagnosis, active tracers are apparently transported as passive ones are!

Ofference: Offusive - Eddy

n

Trace(M)

100 150

100 150

Use a Natural, Mesoscale Eddy Environment to Test Out: $\frac{u'\tau'}{v'\tau'}$ $\frac{w'\tau'}{w'\tau'}$ $-\mathbf{\hat{x}}\cdot\mathbf{K}\cdot\mathbf{\tilde{
abla}}\mathbf{z}$ $\overline{ au}_x$ 0 $-\hat{\mathbf{y}}\cdot\mathbf{K}\cdot\tilde{
abla}\mathbf{z}$ $\overline{\tau}_y$ $\mathbf{\hat{x}} \cdot \mathbf{K} \cdot \mathbf{\tilde{\nabla}} \mathbf{z} \ \mathbf{\hat{y}} \cdot \mathbf{K} \cdot \mathbf{\tilde{\nabla}} \mathbf{z}$ Antisymmetric (GM) Elements scale with corresponding Symmetric (Redi) elements.

> Thus, GM/Redi basic shape of M is roughly correct (some detailed validation remains)

Conclusions

Passive Tracers are used in a global 0.1 model to diagnose Mesoscale Flux-Gradient Relationship

6000 4000

 Resembles with O(2000m²/s) GM ≈ Redi anisotropic (zonal & strong flow), Flow&Depthdependent.

Active vs. Passive tracers apparently not an issue

To come: Dia-(coarse neutral) eddy fluxes? Scaling?

Comparisons with Marshall et al.

Comparisons with Marshall et al.

Comparisons with Marshall et al.

Comparisons with Marshall et al.

500

500

FIG. 12. Inferred horizontal eddy diffusivity κ (m² s⁻¹): (top) zonal mean and (bottom) vertical mean over the thermocline (0–1200 m). The contour intervals are (top) 500 and (bottom) 1000 m² s⁻¹. The thick line indicates the zero contour. Also indicated in the bottom panel are the 10-, 70-, and 130-Sv contours of the barotropic streamfunction.

Re(2nd eigenvalue)

(2nd eigenvalue of symmetric M)

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair)

- Dia-(coarse pycnal) M? (All)
- Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Not: $\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$ is really: $\nabla \cdot \mathbf{u}' \tau' = -\nabla \cdot \mathbf{M} \cdot \nabla \overline{\tau}$

- Seden & Greatbatch, Ferrari & Plumb, and others exploit this indeterminacy heavily.
- In practice, it is diagnostically challenging to compare eddying models to eddy parameterizations
- Consider the following for diagnosed and parameterized '

 $\mathbf{0} = -\nabla \cdot (\mathbf{M} - \mathbf{M}') \cdot \nabla \overline{\tau}$

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

 Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair, Arbic)

- Dia-(coarse pycnal) M? (All)
- Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

$\mathbf{u}' \tau' = -\mathbf{M} \nabla \overline{\tau}$

Fox-Kemper, Ferrari, & Hallberg (2008) form (a mixed layer (submeso) eddy param.): $\begin{bmatrix} \overline{u'\tau'} \\ \overline{v'\tau'} \\ \overline{v'\tau'} \\ \overline{w'\tau'} \end{bmatrix} = -\begin{bmatrix} 0 & 0 & -\Psi_y \\ 0 & 0 & \Psi_x \\ \Psi_y & -\Psi_x & 0 \end{bmatrix} \begin{bmatrix} \overline{\tau}_x \\ \overline{\tau}_y \\ \overline{\tau}_z \end{bmatrix}$

Antisymmetric Elements in Fox-Kemper, Ferrari, & Hallberg (2008) are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid, At a rate validated against eddying simulations! A Global Parameterization of Mixed Layer Eddy Restratification with FLOW DEPENDENT M:

Fox-Kemper, Danabasoglu, Ferrari, & Hallberg (2008)

Overturning Schematic: An Eady-like Problem

Horizontal scale of overturning = scale of front Vertical structure of overturning = ?

Overturning Schematic: An Eady-like Problem

Fully-Developed Slumping, Big Eddy No bkgnd strat: $M^2L_f = N^2H$ RoRi = 1 Not appropriate for mesoscale

Different Scalings, Ri>>1, Ro

FFH: finite ampl. eddies

Stone, C&D: weak eddies

Griffies05:

 $\overline{v'b'} \propto -\frac{N^2 H^2 M^2}{|f|}$ $\overline{v'b'} \propto -rac{N^2 H^2 M^2}{|f|} rac{1}{\sqrt{\mathrm{Ri}}}$ Green/Visbeck/L&H: $\overline{v'b'} \propto -\frac{N^2 H^2 M^2}{|f|} \frac{1}{\mathrm{Ri}^{3/2} \mathrm{Ro}^2}$ $\overline{v'b'} \propto -\frac{N^2 H^2 M^2}{|f|} \frac{1}{\text{Ri}^{3/2} \text{Ro}^2} \frac{L_0^2 N}{L_f^2 N_0}$ Danabasoglu&Marshall07: $\overline{v'b'} \propto -\frac{N^2H^2M^2}{|f|} \frac{A_{ITDref}f}{N_{ref}^2H^2}$

Param. Vs. Eddy-Resolving:

And Agrees with Deep Convection Studies: Jones & Marshall (93,97), Haine & Marshall (98)

The Problem is: The mesoscale equivalent isn't rEady

FFH param. doesn't do interior stratification/PV gradients

- PV jumps are OK, e.g, surface & mixed layer base
- But, Mesoscale==Full Depth, so PV Varies
- Smith (07) shows interior PV gradients dominate mesoscale energy extraction

The Problem is: The mesoscale equivalent isn't rEady

FFH param. doesn't do interior stratification/ PV gradients

PV jumps are OK, e.g, surface & mixed layer base

But, Mesoscale==Full Depth, so PV Varies

Smith (07) shows interior PV gradients dominate mesoscale energy extraction

Test problem results: Dependence of vertical profiles on resolution in ordinary POP

Test problem results: POP with LANS-alpha is equivalent to ordinary POP with doubled resolution, in these measures

Connecting eddy activity to parameterized energy removal

Energy removal in 1° model

EKE diagnosed from a 1/6° eddying model

Many features identifiable in 1° diagnostics

Barclinic zones
 Equatorial shear zones
 Coastal currents
 Units: m s⁻¹

Eden & Greatbatch, OM 2008 introduce prognostic EKE eqⁿ to calculate eddy diffusivity, K_h

Units: W m⁻²

Reynolds averaging II Mean momentum equation $\partial_t \overline{v} + \left(f\hat{k} + \overline{\zeta}\right) \wedge \overline{v} + \nabla \frac{1}{2} \left|\overline{v}\right|^2 + \frac{1}{\rho_0} \nabla \overline{p} - \overline{b}\hat{k} = \nabla \cdot \overline{\tau} - \overline{\zeta'} \wedge \overline{v'}$ Perturbation momentum equation $\partial_{t}\left(v+v'\right)+\left(f\hat{k}+\overline{\xi}+\xi'\right)\wedge\left(v+v'\right)+\nabla\left(\overline{B}+B'\right)-\left(\overline{b}+b'\right)\hat{k}=\nabla\cdot\left(\overline{\tau}+\tau'\right)$ $\partial_{v}v' + (f\hat{k} + \overline{\xi}) \wedge v' + \xi' \wedge \overline{v} + \xi' \wedge v' + \nabla B' - b'\hat{k} = \nabla \cdot \tau' + \overline{\xi' \wedge v'}$ Eddy Kinetic Energy (EKE) equation $\partial_{t} \frac{1}{2} |v'|^{2} - \overline{v} \cdot \overline{(\zeta' \wedge v')} - \overline{w'b'} + \nabla \cdot \overline{(B'v')} = \overline{v' \cdot \nabla \cdot \tau'}$ Rate of change of Conversion from Direct input to EKE from (wind) stress + Dissipation Mean PE EKE Advection of EKE + triple Conversion from Mean KE correlation terms

Energetics of Reynolds Averaged Eqns ■ Model (mean) equations $\nabla \cdot v = 0$ $\partial_t \overline{v} + \left(f\hat{k} + \overline{\zeta}\right) \wedge \overline{v} + \nabla \left(\frac{1}{\rho_o} \overline{p} + \frac{1}{2} \left|\overline{v}\right|^2 + \frac{1}{2} \left|\overline{v'}\right|^2\right) - \overline{b}\hat{k} = \nabla \cdot \overline{\tau} - \overline{\zeta' \wedge v'}$ $\partial_t \overline{b} + \nabla \cdot \left(\overline{b} \overline{v} \right) = \nabla \cdot \overline{Q} - \nabla \cdot \left(\overline{b'} \overline{v'} \right)$ Resolved KE eqⁿ $\partial_t \frac{1}{2} \overline{v} \cdot \overline{v} - \overline{w}\overline{b} + \nabla \cdot \left(\overline{v}\overline{B}\right) = \overline{v} \cdot \nabla \cdot \overline{\tau} - \overline{v} \cdot \overline{\zeta'} \wedge v'$ Resolved PE eqⁿ $\partial_t \left(-z\overline{b} \right) + \nabla \cdot \left(-z\overline{b}\overline{v} \right) + \overline{wb} = z\nabla \cdot \overline{Q} - \nabla \cdot \left(-z\overline{b}\overline{v}' \right) - \overline{w}\overline{b}\overline{v}$ Eddy Kinetic Energy (EKE) eqⁿ $\partial_t \mathcal{E} + \nabla \cdot \left(\overline{B'v'} \right) = \overline{v' \cdot \nabla \cdot \tau'} + \overline{v} \cdot \overline{(\zeta' \wedge v')} + \overline{w'b'}$ $\boldsymbol{\mathcal{E}} = \frac{1}{2} \left| \boldsymbol{v}' \right|^2$

Eden & Greatbatch results

- EKE eqⁿ correctly recovers map of EKE
- Resulting K_h not very different from closed form approaches, e.g. Visbeck et al.
- EG08 approach is 3D
 Get as good results with 2D equation See Bob's results
 - Avoids problems of vertical structure
 - More likely to be relevant to mesoscale eddies!

From Eden & Greatbatch, OM 2008 Log(EKE) at 300m for coarse resolution and eddy resolving models

Adding extra degree of freedom

Idealized models exhibit "delayed action" during spin up
Possible coupled modes?
Delayed ocean EKE response to wind changes

Maps (mW m⁻²) and global integrals (TW) of time-averaged dissipation of eddying general circulation

(a) Data-assimilative NLOM,
(b) Non-assimilative NLOM,
(c) POP, (d) Sen et al. (2008)
inference from altimetry +

- • $[\overline{D}] = \int \rho c_d \overline{|\mathbf{u}_b|^3} \, dA$
- Native

 c_d =0.003/0.002/0.001225 for DANLOM/NANLOM/POP

• Common $c_d = 0.0025$ (used in maps to left)

Model	Cd	$[\overline{D}]$
DANLOM	Native	0.65
NANLOM	Native	0.16
POP	Native	0.14
DANLOM	Common	0.54
NANLOM	Common	0.20
POP	Common	0.29

 $\checkmark Q ()$

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair, Arbic)

- Dia-(coarse pycnal) M2? (All)
- Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Dia-(coarse neutral) fluxes

Featured in:

ø Eden & Greatbatch (08) Canuto & Dubovikov (05) FFH (time-dependent) O Different from: Griffies et al (00) Ø Veronis Effect

Bachman (student)

$$\frac{\partial \overline{\tau'^2}}{\partial t} = 2\left(\overline{\tau' \cdot (\nabla \cdot \kappa \nabla)\tau'} - \overline{\tau' u'} \cdot \nabla \overline{\tau} - \overline{u} \cdot \nabla \frac{1}{2}\overline{\tau'^2}\right)$$

McDougall & McIntosh 01

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair, Arbic)

- Dia-(coarse pycnal) M2? (All)
- \odot Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Topics for discussion: I
Diagnosis: Spatial Variation of M (Ross, Shafer, Baylor)
Indeterminacy? (Baylor)

Prognosis: Spatiotemporal & Flow-Dependent M (Baylor, Matt, Alistair, Arbic)

- Dia-(coarse pycnal) M2? (All)
- ${\circ}$ Beyond M:
 - Momentum Fluxes (Via PV, alpha-model, other) (Matt, Peter)
 - Stochastics, nonlocal closures, superparam, what have you got? (Any)
 - Too many scientists, not enough engineers: How can we go from theory to implementation?
 - Non-eddy subgridscale effects? Fronts, Wind, A-O Feedbacks, Bndy Currents?

Topics for discussion: II

- Scaling for MOLES (Bob)
- What can linear theory tell us? (Shafer)
- What can other theory tell us?
 - GLM? TEM? Stat Mech?
- Anisotropy, tracer type dependence, biogeochem tracers, etc.? (Baylor, others?)

Scaling Eddy Parameterizations with Locally Eddy Resolving Models

Robert Hallberg and Alistair Adcroft NOAA/GFDL & Princeton University

Typical (1°) ocean climate models resolve the equatorial deformation radius.

Even high resolution global models do not resolve the eddy scales in coastal regions and weakly stratified high latitude regions.

$$\widetilde{\Delta} = \sqrt{\Delta x^{2} + \Delta y^{2}}$$

$$\lambda_{Def} = \sqrt{\frac{c_{g1}^{2}}{f^{2} + \beta c_{g1}}}$$

$$R = \lambda_{Def} / \widetilde{\Delta}$$

Resolution Compared with Deformation Radius

- Eddy parameterizations tend to suppress resolved eddies.
- The parameterizations should be scaled away where the eddy scales (1st baroclinic deformation radius?) are well resolved. A reasonable function to do this is:

 $F(R) = \frac{1}{1+R^4}$ 60° 0.7 80*2 $R = \lambda_{Def} \ / \ \widetilde{\Delta}$ 100°E 1/(1+R⁴) ð 0.001 0.01 0.3 0.2 0.1 40% 20* 1 / (1 + R⁴) 20*5 40°S 60°S 80°S 100°E Ō 0.001 0.01

Scaling Function for Diffusivities

Scaled MEKE-Derived Diffusivity in a 1° Model

This scaling works very naturally with MEKE (see Alistair's slides), but could apply to any scheme.

$$\frac{\partial E}{\partial t} = Src - \gamma E - \frac{c_d \|u_{bot}\|}{H} E + \frac{1}{H} \nabla \times (H\kappa_E \nabla E)$$

$$Src = \frac{1}{H} \sum_{k=1}^{K} g'_k \kappa_{Int} \|\nabla \eta_k\|^2 - \frac{0.001}{H} \sum_{k=1}^{K} h_k u_k \times \nabla \tau_{Visc}$$

$$\kappa_{Int} = F(R) (\kappa_{MEKE} + \kappa_{Background})$$

At 1 ° resolution, eddy parameterizations are suppressed only in the tropics.

Diagnosed Unresolved Mesoscale Eddy Kinetic Energy

1° Resolution

1° Resolution

Scaled MEKE-Derived Diffusivity in a 1/8° Model Diagnosed Unresolved Mesoscale Eddy Kinetic Energy

At high resolution, diffusivities are very small except in coastal regions and high-latitudes.

This 1/8° resolution model uses *identical* (nondimensional) eddy parameters as the previous 1 ° resolution model!

1/8° Resolution

December Speed at 25 to 50 m Depth 1/8° Resolution 805 50°N 40°N 30°N 20*3 1007 10** 0.01 50.0 0.3 0.4 0.5 0.8 0.001 0.05 0.1 0.7 0.6 0.9 0.2 Speed $(m \ s^{-1})$

Topics for discussion: II

- Scaling for MOLES (Bob)
- What can linear theory tell us? (Shafer)
- What can other theory tell us? (Isaac?)
 - GLM? TEM? Stat Mech?

Anisotropy, tracer type dependence, biogeochem tracers, etc.? (Baylor, others?)

Extra Slides!!

FFH Comparison Slides

What would AR6 Success look like (IMHO)

Ferrari et al (2010) vs Ferrari et al (2009) vs Danabasoglu et al (2008)... Vicissitudes of boundary conditions!

FFH As Implemented in CCSM, CM/MOM, CM/GOLD: A Comparison:

Thanks to Samuels, Griffies, Danabasoglu for these! MLE-Control:Climatologies at end of > 100yr simulation
Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

CM2/MOM H_{bl} Control-Submeso (m) FEB CCSM H_{bl} Control-Submeso (m) FEB 200 150 100 50 0 -50 -100 -150 -200

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

CM2/MOM H_{ml} Control-deBM (m) FEB

CCSM H_{ml} Control-deBM (m) FEB

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

CM2/MOM H_{ml} Submeso-deBM (m) FEB

CCSM H_{ml} Submeso-deBM (m) FEB

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

CM2/MOM H_{ml} Control-deBM (m) SEP

CCSM H_{ml} Control-deBM (m) SEP

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

CM2/MOM H_{ml} Submeso-deBM (m) SEP

CCSM H_{ml} Submeso-deBM (m) SEP

Note: param. reproduces Haine&Marshall (98) and Jones&Marshall (93,97)

& generally shallower boundary layers

Changes other variables we care about... CCSM

FIGURE 5: Figures demonstrating the change in wintertime sea ice from CCSM⁺ to CCSM⁻.

Thanks to Marika Holland for these!

Coupled MOM Shows

Submeso increases MOC stability

Recent Submeso Results:

Scapet, X., E. J. Campos, and A. M. Paiva: 2008

«wb» scaling OK, differs maybe due to other effects or resolution

Mahadevan, Tandon, Ferrari (in press, JGR)

«wb> scaling diminished somewhat by downfront winds, but eddy-driven frontal meandering eventually reduces how downfront the winds are! What would AR6 Success look like? (IMHO)

- Distinguish MOLES from MORANS
- Distinguish MO, SO, FO
- No Arbitrary Dimensional Constants
- Process model/Fluctuation equation basis for all balances; including energetics, PV, Pot'l enstrophy
- Tracer (active & passive) and momentum handled sensibly and respecting tensor order
- Science->Engineering transfer