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What is Climate?

@ How does climate differ from weather?

@ Timescale: Climate slower than lyr
@ Why does climate vary regionally?

@ Different components, different forcing
@ Why does climate vary temporally?

@ Changing forcing, slow oscillations, chaotic
nonlinear interactions

@ Does climate variability affect the systems
and our response to climate change?

® Yes!
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The Forcing of Climate

(image: IPCC AR4 FAQ, 2007)

Without
Solar radiation powers '
the climate system. A ‘ A‘I‘ mOSP here
Ocean & Ice and
GHG,
Some solar radiation | | /
is reflected by ' the Earths Temp

the Earth and the

atmosphere. WOU ld be

| -184C to 100C

(as on moon)
is absorbed by the

Earth’s surface and warms it. Infrared radiation is
emitted from the Earth’s

surface.

FAQ 1.3, Figure 1. An idealised model of the natural greenhouse effect. See text for explanation.
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Who? Before the IPCC

@ The Charney et al. 1979 National Academy Assessment warned of a
1.5K to 4.5K warming with doubled CO,

@ This range essentially came from two modeling groups
& Jim Hansen's group at NASA Goddard
@ Suki Manabes group at Princeton

@ One group estimated 1.5K, the other 4.5K

@ Charney worked on the first numerical weather models (1952)

@ In 1906, Svante Arrhenius estimated that doubling CO, would raise
temps by 5-6K, and halving would decrease by 4-5K

@ These estimates are similar to present estimates,

& But a lot more is known now about uncertainties, consequences, and
regional effects

Images from Wikipedia, unescso.org | ‘.,
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IPCC: Why do we know more now?

The basic climate has been clear for 100yr,
the deftails are being worked out now

. Mid-1970s Mid-1980s

Clouds

images IPCC, AR4 2007

Figure 1.4. Geographic resolution characteristic of the generations of chimate
models used in the IPCC Assessment Reports: FAR (WPCC, 1990), SAR (WPCC, 1996),
TAR (PCC, 2001a), and AR4 (2007). The figures above show how SUCCEsSIve Qenera-
AR 5 . tions of these giobal models increasingly resalved northem Europe. These illustra-
tions are represevitative of the most defaled horizontal resolution used for short-term
o l chirmate simulabions. The century-long simwiabions oited in IPCC Assessment Reports
S u b mesoSsca l e Ed d 1es! after e FAR wese fypically run with the previous ganeration’s resakution, Vertcal
resolution in both atmasphere and ocean models is not shown, but it has increased
comparatyy with the honzontal resolution, beginning Gypically with a single-layer slab
Figure 1.2. The complenty of cloate models has iocreased over $he (ast few docades. The asitiona! poysics incomaorated i the madels ane shown pctovially by the (Fox—Kem P er ell- a Io) ocean and fen atmosphenic layers in the FAR and progressing fo about thirly levels in
et Aadures of % ool ekt both élm’(l%v\t'fc and ocean
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Maritime vs. Continental Climate

@Key Idea: Large Heat Capacity of Water & the Ocean

& Maritime vs. Continental
S Related:

&Land-Sea Breezes

@Monsoon

@Heat Capacity==Change of Temperature with Energy

&Liquid Water (1 cal/g/°C) vs. Dry Air (0.24 cal/g/°C)
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Day - night air temperature change
Land: up to 30°C Ocean: "1°C
slide credit: Tom Marchitto
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Seasonal Temperature
Variability

b increasing Variability -->

| - . .
N
'
-
L.
-

increasing Variability -->

Longtude

@ Similar patterns show the degree of Summer
to Winter Temperature difference.
(Huybers & Curry, 2006)
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Temperature ( F)
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Thermal inertia—Ocean Heat Capacity

80 ® 2002 Brooks/Cole 26.7
a divsion of Thomson Learnlng, Inc.

75 - 23.9

70 = - 21.1

65 - - 18.3
__ 60+ = 16.6 __
w @
(ob] . @
5 55. ®San Francisco Norfolk @ 408 §
o o
) o
: :

50 - 10.0
o ( ) =

&
1
~
N

== Norfolk
4OE - 4.4 =O= San Francis co
35 - 1.7
30 1 1 ] 1 | | I 1 1 1 21'1

1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monday, June 7, 2010




Thermal inertia—Ocean Heat Capacity
e tfendency to remain at same temperature

80 ® 2002 Brooks/Cole 26.7
a divsion of Thomson Learnlng, Inc.
75 - 23.9
70 - - 21.1
65 - - 18.3
__ 60+ = 16.6 __
w @
(ob] . @
5 55. ®San Francisco Norfolk @ 408 §
o o
2 2
S 50+ L 10.0 €
o ( ) =
45 - a0
== Norfolk
4OE - 4.4 =O= San Francis co
35 - - 1.7
30 1 1 I 1 1 I 1 1 1 211

1
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Monday, June 7, 2010




Thermal inertia—Ocean Heat Capacity
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e San Francisco: high inertia (marine climate)
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Thermal inertia—Ocean Heat Capacity
e tfendency to remain at same temperature

e San Francisco: high inertia (marine climate)
o Norfolk: low inertia (continental climate)
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Question: Thermal inertia

o tendency to remain at same temperature
o San Francisco: high inertia (marine climate)
o Norfolk: low inertia (continental climate)

© 2002 Brook e/ Cole
a dvision of Thomson Leaming, Inc

@5an Francisco

Temperature ( C)
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Question: Thermal inertia

o tendency to remain at same temperature
o San Francisco: high inertia (marine climate)
o Norfolk: low inertia (continental climate)

e WHICH WAY DOES THE WIND OVER THE US TEND TO
0 BLOW?
o A) West to East B) East to West
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Earths Solar Heating is uneven... and SEASONAL

The why? of climate variation is redistributing
this heating. The how? are climate processes.
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Other Regional Variations:

® Monsoons--Seasonal reversal of winds due to
interhemispheric heating, changes precip.

@ Orographic Effects--Upslope vs. Downslope
winds strongly affect precipitation

@ Ice Albedo--Sea ice is much more reflective
of sun than open ocean--Same for snow vs.
grassland
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@Why does climate vary regionally?

@ Different components
@ Ocean
@ Ice

@ Mountains

@ Different forcing
@ By latitude

@ By season
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@ Why does climate vary temporally?
@ Changes in forcing
@ Slow oscillations of components

® Chaotic nonlinear interactions
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Changing Forcing not enough:
Underlying Resonant Oscillators?

Resonance: Strong response to forcing results from
matching forcing timescales to natural system timescales

@ Atmosphere is fast (<2 weeks)--No Climate Resonance
@ Ocean has many climate-period oscillations

o

@ Gyres (10s of yrs): NAO, PDO

@ Meridional Overturning (1000s of yrs): D-0O, Ice Ages?

@ Cryosphere has many climate-period oscillations
(100s-10,000yr): Ice Ages




ENSO Phases (Tropical Pacific)

Warm Pool
energizes
convection

La Nlina Condlitlons Normnal Condltlons El Nino Condltlons

______ +______

F
@:t:"" Conveckor

o Bjerknes
NOAA/PMEL Warm
bl Cold Feedback:
Tongue Wind->Tilt,

ENSO=El Nino/Southern Oscillation Tilt->Wind
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The “delayed oscillator” paradigm
The role of off-equatorial waves

-\ A . u.«
> ! » Y\

\

Rossby Reflection
! 2

o) 8°-12°N b)
YT"‘y! o Immvv
oia] = \}/ r‘_;;‘/\/ 1 =0,
N 270
[ . ‘\/ e

o\ s

|
}
| 2

ENSO = 4-6yr oscillation

Rossby wave transit=3yr
Reflection=0yr
Kelvin wave transit=lyr

Longitude

Image: Capotondi

Monday, June 7, 2010



Credit: NASA/JPL Air-Sea Connections

Satellites: the 1997-1998 El Nino

Winds

Sea
Surface
Height
(Anomaly)

Sea
Surface
Temp.




Credit: NASA/JPL Air-Sea Connections

Satellites: the 1997-1998 El Nino

winds

Sea
Surface

%  Height
*‘* (Anomaly)

Sea
B Surface
Temp.

Monday, June 7, 2010



Credit: NASA/JPL Air-Sea Connections

Satellites: the 1997-1998 El Nino

Winds

Sea
Surface
Height
(Anomaly)

Sea
Surface
Temp.




ENSO Teleconnections

http://www.seas.harvard.edu/climate/eli

' Tziperman
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Colorado Snow and El Nino?
Depends! (www.snowforecast.com)

EL NINO YEAR SNOWFALL COMPARISON
FOR CLIMAX, CO, near Leadville at 11,500'*(PLEASE READ COMMENTS)

The averages above are from Climax, and are not representative of any certain resort. This is for comparative purposes only, as we also have provided a percentage of
normal”.

b 3

Based on the above, El Nino seasons do not seem to help with snowfall any, however the most recent 2 were nice, especially 1994-1995 with 333" of snow (137% of
normal). Lets hope the 2002-2003" El Nino episode is similar to 1994-1995!

See alSo http://www.esrl.noaa.gov/psd/boulder/boulder.elnino.html

For example, for January Boulder precipitation, the average during El Nino is .45 inches;
during La Nina years it is .72 inches and the fotal mean is .68 inches. Of the 11 El Nifio years, 8 had below normal
precipitation and 3 had above normal. For La Nifna, 5 were below normal and 6 were above.
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2010-2011 Forecast
CLIMATE PREDICTION CENTER/
NCEP/NWS 3 June 2010

SST Anomalies (*C)
31 MAR 2010

@ ENSO Alert System
Status: La Nina Watch /
Final El Nino Advisory

SST Anomalies (°C)

@ Synopsis: Conditions are .. 15 wav 2010
favorable for a transition | |
to La Nina conditions
during June - August
2010.

-3 -2 -1 =05 0 Q.5 1 2 J
Figure 1. Average sea surface temperature (SST) anomalies (°C) for the week centered on 19 May 2010.

Anomalies are computed with respect to the 1971-2000 base period weekly means (Xue et al
2003, J Climate, 16, 1601-1612)
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Chaos & Nonlinearity

@ Unlike most linear systems, nonlinear systems can
share energy among different frequencies

@ Chaos is complex behavior arising from simple
(nonlinear) governing equations

@ Thus, the forcing frequency and response frequency
can be non-trivially related in a chaotic system

@ For example, ENSO models are usually chaotic

D
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Conclusions

@ Basic forcing of the climate is well understood, but
spatiotemporal detail not so much

@ Waters heat capacity plays a large role--as
humidity and oceans tend to stabilize temps.

@ This, and other variations in the relative roles of
different climate system components, lead to large
regional and temporal variability of climate

@ The complexity of the system is enormous, but we
are gaining understanding as observations and
modeling begin to ‘resolve’ regional effects
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PrOJected changes in extremes
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