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How Small Before Irrelevant for Climate?

Resolution of Ocean Component of Coupled IPCC models
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What's Smaller than
First Rossby?

@ I: Higher Modes/Advanced Mesoscale Eddies
@ II: Submesoscale Eddies
@ III: Langmuir Turbulence

@ Not Today: Finestructure, IGW, SI, ..
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What Makes Small Important
for Climate?

@ Nonlinear Terms Couple Across Scales
@ Eddy Fluxes
@ The Ocean is Forced at the Surface
o
@ Langmuir Mixing
@ Ubiquitous/Dynamical Import (not this talk)

D
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I: Mesoscale

(Capet et al., 2008) % Boundary
- | Currents

@ Eddies

& Ro=0(0.1)
@ Ri=0(1000)
@ Full Depth

@ Eddies strain fo
produce Fronts

@ 100km, months
Eddy processes

Parameterizations (GM, Visbeck, Eden & GB).
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I: Mesoscale Variability

@ Basics of Mesoscale:
@ Nearly Adiabatic
@ APE-Extracting
@ BC & BT Instab.
@ Advanced Mesoscale

@ Higher Modes/
Vertical Variability

@ Horiz. Variability

@ Flow Dependence

Rossby Modes via
WKB: Chelton et al 98

Co ™= Ci 8 = L J N(2) dz, m=1. (22
mw |,

Physically, the parameter c,, 1s the phase speed of long,

mode-m gravity waves 1In a nonrotating, continuously

stratified flmd (Gill 1982; LeBlond and Mysak 1978).

Outside of the Tropics, the Rossby radius of deformation

for mode m at latitude ¥ 1s determined from c¢_ by

c
A, = — if |3 = 5°. 23
" If () .
Within the equatonial band, the Rossby radius of de-
formation can be defined (see Gill 1982) as

CR \ 12 . ‘ .
Aw = (ZB(U)) if |9 = 5°, (2.3b)
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My Approach: Tracer
Flux-Gradient Relationship

U s = INMN'T
@ Most subgridscale closures have this form: GM*, Redi,

FFH** submesoscale, part of KPP & Langmuir mixing

@ Relates the eddy flux to the coarse-grain gradients
locally

@ If we knew the dependence of M on the coarse-
resolution flow, wed have the optimal local closure

*Gent & McWilliams (1990) **Fox-Kemper, Ferrari, Hallberg (2008)
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u'r’ = —MV7T

General Form

) —/ R e )
Uss il R V] o i
[ Lo o

v T = Myx Myy ]\43/,Z 7y

w!' ! : M... sz iz T

Assume same VI for all tracers
3 equations per tracer
9 unknowns (components)+rot-parts (2/tracer)

BY USING 3 or MORE TRACER FLUXES, deftermine it!!!
(a la Plumb & Mahlman '87 Bratseth '98)
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u'r’ = —MV7T

Sym Part=Anisotropic™ Redi

Lt i it
WaE 124 K 124 P

Yellow K ‘are’ horizontal stirring & mixing

Blue factors in Redi (1982) are symmetric
and scaled to make

eddy mixing along neutral surfaces

*Anistropic form due to Smith & Gent 04




u'r’ = —MV7T

AntiSym Part=Anisotropic* GM

w' ! K g
ol | 24 | 24 A

Elements in GM (1950)
are scaled to overturn fronts, make vertical fluxes
and

Same horiz. mixing (K) as Redi?

*Anistropic form due to Smith & Gent 04 *Tensor Form (Griffies, 98)




Use a Natural, Mesoscale Eddy
Environment to Test Out:

u'r’ = —MV7T

) —/ R e )
Uss il R V] o i
[ Lo o

v T = Myw Myy AMy,Z 7y

w!' ! : M... sz iz T

With John Dennis & Frank Bryan, we took a POPO.1°
Normal-Year forced model (yrs 16-20 for anal.)
Added 9 Passive tracers--restored to X,y,z @ 3 rates
Kept all the eddy fluxes for passive & active tracers

Coarse-grained to 2°, transient eddies, tracers to M
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Interpretation?

@ Isoneutral diffusion or ‘mixing': symmetric KK
with real, positive eigenvalues (neg->nonlocal)

@ The eigenvalues of [V are related, except
there is one more involving the neutral fo z
coordinate conversion (in S&G theory, at least)

@ The eigenvectors give the direction of the
mixing associated with each eigenvalue

& Antisymmetric KK & [V] are stirring/
overturning by an eddy-induced (quasi-stokes)
streamfunction--
and imaginary eigenvalues possible!
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Basics Validated

@ Mesoscale Eddy Fluxes are Largely Adiabatic

@ Mesoscale Eddy 'Diffusivities’ are usually
positive
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Use a Natural, Mesoscale Eddy

: _Environment to Test Out:
UG Koz S e
(ULl = W T T
Wi ot

= Hor. Diffusivity is
Trace(M) Histogram roughly Trace(M)/2

Peak of Diffusivity
near
250 m”~2/s

0
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Median Diffusivity
near
1000m”~2/s

2000 4000 6000 8000 <6% nega‘l'ive
Trace(M)
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Result: Strong Anisotropy Along/Across Isopycnals
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Advanced Mesoscale

® GM=Redi
® Horizontal Variations
@ Horizontal Direction (Anisotropy)

® Vertical Variations
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Result:

. ymmetric-Antisym (zero if GM K=Redi K]

_—

Redi =GM (mostly) g
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5 Symmetric-Antisym (zero if GM K=Redi K,

—_—_— 31

Result: ==
Redi =GM (mosﬂy)

If so these 2 components
should match in Sym & Antisym M
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How do we explain the
Horizontal Variations and
direction of K?




Yertical Eddy Potential Densﬂy Flux at 300m ¥ 10

foammn =y NNl Compare fo

ol o tical eddy
)~ density flux
I (PE Extraction)

Yertical Eddy Potential Density Flux at 300m
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magnitude o
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Locations of
E extraction

100 150 200 250 300 350

Locations of
large eigs of

100 150 200 250 300 350
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Result: Strong Anisotropy Along/Across PV Grads.
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Result: Strong Anisotropy Along/Across PV Grads.

Either along

Mixing PV contours 2nd
direction Or across Eigenvector
6000 cosine between 1rst eigenvector and PV gradient
| | | | ' Across PV
| rst
. contours
5000 Eigenvector
x 10[ cosine between 2nd eigenvector and PV gradient
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How do we explain the
Vertical Variations of K?




Result: eddy KE-> vertical
power law w/ M eigs?

We expect: K ¢ \/EKE

But what about: K ox \/ (KE)




Result:
coarse KE-> vertical structure of Mixing

K x v/ (KE)

Histogram of Iogl 0(KE) VS. Iogw(M eig. #1) Slope Histogram of Iogl 0(KE) VSs. Iog1 0(M eig. #2) Slope
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Even better with EKE!

Note--barotropic mode is in there!



Result:
power law not ‘random

Slope of log : 0(KE) VS. Iog1 0(M eig. #1) Slope of log 10(KE) vs. log 10(M eig. #2)

120 Y T 120 s e i@ A, By
: W fp Bty e

However, can probably do better!
Slopes not random.
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Conclusions

@ A method for diagnosing the eddy stirring
associated with fluxes represented in a 0.1°
model but not a 2° model is presented

@ It estimates the tracer-type-independent
transport of tracer uniquely

@ The shape and structure agrees roughly with
Griffies (98) and Gent & Smith (04) analyses
of GM & Redi isoneutral fluxes with *equal®
anisotropic mixing & stirring.

@ No gauge/rot. fluxes are needed to eliminate
negative spurious eigenvalues
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< g (NASA GSFE Gallery)

10 | s

k r'% : 7 ’:ﬂ* ] k. a
2. Submesoscale ™ 7%

(Capet et al., 2008) @ Fronts
e X ¥ o Eddies
@ Ro=0(1)
@ Ri=0(1)

@ near-surface

® 1-10km, days

Eddy processes mainly [

(Boccaletti et al ‘07,
Haine & Marshall ‘98).
Parameterizations of
baroclinic instability

apply?

L (GM, Visbeck, FFH). K&




A Global Parameterization of Mixed Layer Eddy

Restratification
with FLOW DEPENDENT M

Fox-Kemper, Ferrari, & Hallberg (2008) &
Fox-Kemper et al (2011, in press)

Wl i
ZU/T/ ?Z
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Physical Sensitivity of Ocean Climate to

FFH implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

CM2Ma H”' Control-deBM (m) FEB

CM2M: H”‘ Comtrol-deBM (m) SEP

NO RETUNING
Ly NEEDED!!

denh hemcasss sstensssbonnsdssnnens wnefl ?

.....................

CM2N H"‘ Submes

Improves CFCs

% B Ml Bias with FFH

.
o AT T AP R S

Control Bias

DR L IO I

p g a9 Secccnagstiuny, |

Bias with FFH Conftrol Bias

........

Deep ML Bias reduced

From Fox-Kemper et al., in prep
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Sensitivity of

AMOC

&

Cryosphere
Impacts
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Maximum AMOC at 45n in coupled MOM

Figure 10: Wintertime sea ice sensitivity to introduction of MLE parameterization
(CCSM™ minus CCSM™): January to March Northern Hemisphere a) ice area and b)

thickness and July to September Southern Hemisphere ¢) ice area and d) thickness,

Affects sea ice

NO RETUNING
NEEDED!!!

0 100
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Conclusions:
2. Submesoscale

® FFH is used in at least 3 IPCC AR5 models

@ Parameterization reduces bias in CFCs & Mixed Layer
Depth

@ Parameterization also affects ice, CFCs/Biology, &
AMOC variability--need truth?

@ Flow-dependent, nondimensional scalings validated
against simulations *did not require retuning®

Review: Parameterization of Mixed Layer Eddies. III: Implementation and Impact in
Global Ocean Climate Simulations, Fox-Kemper et al. 2011 Ocean Modelling in press for
special issue
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3: Langmuir Scale

Near-surface

e

: image:
_Langmuir Cells & Leibovich, 83

_Langmuir Turb.

@

R0o>>1
Ri<1l: Nonhydro | I
10-100m S NI | S

ahon of Langmur circulations showing notation used in this review and
rface motons

mins, hours
w, u=0(20cm/s)
Stokes drift

Eqtns: Craik-
Leibovich

......
v v v T T ) [T p—————

@ 0 0 @ @ O O

@

unused params
exist (M&S,01 etc
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Impacf; ~ Observations

@ With reasonable
parameters, Langmuir
mixing parameterization
produces deeper mixed
layers in fully-coupled
global climate models

® Often reduces bias in
some regions, e.g., ACC

August mixed layer depths.
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Conclusions: 3. Langmuir

@ Like Mesoscale Variability and Submesoscale
Restratification--Langmuir mixing has a
nontrival impact on climate models

® However, we need better wave information,

e.g., prognostic wave models as component of
ESMs

® And results are sensitive to details--need
better theory, too!
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Parameterization is Here to Stay!

Resolution of Ocean Component of Coupled IPCC models
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A Crude Scaling for Langmuir

Depth/Entrainment:
(Li & Garrett, 1997)

The Algorithm
Use Fr to determine H
If H is deeper than KPP Boundary Layer depth, use H

Large came up with clever choices for N, H that
lead to a robust implementation in KPP

With these choices, H and BLD converge over time.
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u'r’ = —MV7T

Sym Part=Anisotropic* Redi

UL T Koo Guse, %ie s
viT! | SR R e I O R T
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- Subrtay ’ 124 BT .
v TR 24 T

: w1’ : <K K e T,

Yellow K ‘are’ horizontal stirring & mixing




0. Clima

Gyres, MOC,
ENSO

Ro=0(0.01):
geostropic

Ri=0(1000):
hydrostatic

near-surface flux
control

full-depth
transport

10,000km,
decades

Eqtns: PG, GCMs,
Box Models
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FIG. 5. Implied zonal annual mean ocean heat transports based upon the surface fluxes for Feb
1985—Apr 1989 for the total, Atlantic, Indian, and Pacific basins for NCEP and ECMWF atmo-

spheric fields (PW). The 1 std err bars are indicated by the dashed curves.
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Figure 2.19: Estimate of the Earth’s annual and global mean energy balance for the
March 2000 to May 2004 period in W m”. Figure from Trenberth et al. (2009).
Copyright 2009 American Meteorological Society (AMS).
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Comparisons with Marshall et al.
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Comparisons with Marshall et al.

zohal » value #2

horizontal isopycnal ’
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™ Critical Layer?
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Compare with Eden, Jochum, Danabasoglu
compilation of present parameterizations

g. 1. Annual mean thickness diffusivity (K) in m?/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are
own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour

ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The
d mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.
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Use a Natural, Mesoscale Eddy
Environment to Test Out:

u/,]-/

U/T/

/

w’'T

Asym 3,1: GM@lon=345E Asym 3,2: GM@lon=345E
T T - T T~ o et T T -

-2000

-2500

-3000

-| -3500 -

- -4000 -

+ -4500

| | | y -5000
Atlantic

EENND

Seéﬁbn




Use a Natural, Mesoscale Eddy

Environment to Test Out:
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Use a Natural, Mesoscale Eddy
Environment to Test Out:

L Pacific Section §180E) g |
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Use a Natural, Mesoscale Eddy

Environment to Test Out:
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@ With reasonable
paramefters,
Langmuir affects

0! ‘ .
30°S 20°S 10°S Eaq. 70°S60°S 50°S40°S 20°S 20°S10°S Eq

@ Langmuir | | v
reduces bias in o J :
some regions,

e.g.,
60°S 50°S 40°S 20°S 20"S 10°S Eq 60°S 50°S 40°S 30°'S 20°S 10°S Eq.

@ Potentially large
impac’r, change CFC in CCSM & P14S WOCE observations.

as large as bias
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Nuance--CCSM3.5 and CCSM4.0

CFC11 OBS P14S

Sensitive

. . . : : . fo detail
80°S 60°S 40°S 20°S 2. 20°N 40°N 60°N 80°N
itude

CCSEM4.0 CONTROL CFC MINUS OBS P14S CCSM4.0 LANGMUJR.006 CFC MINUS OBS P14S
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Nuance--CCSM3.5 and CCSM4.0

CFC11 OBS P14S
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