Diagnosis of Ocean Mesoscale Eddy Tracer Fluxes

Baylor Fox-Kemper U. Colorado-Boulder, with Scott Bachman, Andrew Margolin (students), Frank Bryan \& John Dennis (NCAR)

Walsh Cottage, GFD Seminar, Fr. 7/14/2010 2:30PM

Upper Ocean in Climate Models

- Large-scale ocean circulation $(100-10,000 \mathrm{~km}$, yrs->centuries) $=>$ resolved
- Submesoscale variability $(100 \mathrm{~m}-10 \mathrm{~km}, \mathrm{~d} \mathrm{->} \mathrm{mo})=>$ ignored until recently
- Interhal waves \& Langmuir circulations (10-100m, hr \rightarrow day) \Rightarrow crudely param.
- Turbulent mixing ($10 \mathrm{~cm}-100 \mathrm{~m}, \mathrm{~s}->\mathrm{hr}$) => parameterized

The Future of Resolution

The Character of the ${ }_{\mathrm{km}}^{100}$

Mesoscale

(Capet et al., 2008)

Longitude

- Boundary Currents
- Eddies
- $\mathrm{Ro}=\mathrm{O}(0.1)$
- $\mathrm{Ri}=O(1000)$
- Full Depth
- Eddies strain to produce Fronts
- 100 km , months

Eddy processes mainly baroclinic \& barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

- Ocean climate models are typically horiz.-resolution limited
- Constant horiz. gridscale near 100 km :
- *does not permit even mesoscale instabilities*
- Boussinesq, Hydrostatic, Navier-Stokes equations w/ S, T, tracers.
- Timestep and variable vert. resolution are much finer, relative to structures present
- So, want to close for horiz. coarse-graining, from eddy-resolving to climate model

What is a subgrid parameterization?

- Express the coarse-grain averages of quantities (including the subgrid effects), e.g.:

- As a function of the resolved coarse-grain fields

$$
\frac{\overline{\partial \tau}}{\partial t}=\frac{\partial \bar{\tau}}{\partial t} \quad \frac{\overline{\partial u}}{\partial x}=\frac{\partial \bar{u}}{\partial x} \quad \overline{\frac{\partial u \tau}{\partial x}}=\frac{\partial \bar{u} \bar{\tau}}{\partial x}+\frac{\partial \overline{u^{\prime} \tau^{\prime}}}{\partial x}
$$

- Note that nonlinear terms require special treatment

The Character of 10 km

the Submesoscale

(Capet et al., 2008)

Longitude
Temperature on day:0

- Fronts
- Eddies
- $\mathrm{Ro}=\mathrm{O}(1)$
- $\mathrm{Ri}=\mathrm{O}(1)$
- near-surface

1-10km, days
Eddy processes mainly baroclinic instability (Boccaletti et al '07, Haine \& Marshall '98). Parameterizations of baroclinic instability?

Surface Temp. Day: 900

A Special Treatment of Nonlinear: Mixed Layer Eddy Restratification Estimating eddy buoyancy/density fluxes:

$$
\overline{\mathbf{u}^{\prime} b^{\prime}} \equiv \boldsymbol{\Psi} \times \nabla \bar{b}
$$

A submeso eddy-induced overturning:

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

A Special Treatment of Nonlinear: Mixed Layer Eddy Restratificatior Estimating eddy buoyancy/density fluxes:

$$
\overline{\mathbf{u}^{\prime} b^{\prime}} \equiv \boldsymbol{\Psi} \times \nabla \bar{b}
$$

A submeso eddy-induced overturning:

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

in ML only:

$$
\mu(z)=0 \text { if } z<-H
$$

A Special Treatment of Nonlinear: Mixed Layer Eddy Restratificatior Estimating eddy buoyancy/density fluxes:

$$
\overline{\mathbf{u}^{\prime} b^{\prime}} \equiv \boldsymbol{\Psi} \times \nabla \bar{b}
$$

A submeso eddy-induced overturning:

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

$$
\begin{gathered}
\text { in ML only: } \\
\mu(z)=0 \text { if } z<-H
\end{gathered}
$$

For a consistently restratifying,

$$
\overline{w^{\prime} b^{\prime}} \propto \frac{H^{2}}{|f|}\left|\nabla_{H} \bar{b}\right|^{2}
$$

A Special Treatment of Nonlinear: Mixed Layer Eddy Restratificatior Estimating eddy buoyancy/density fluxes:

$$
\overline{\mathbf{u}^{\prime} b^{\prime}} \equiv \boldsymbol{\Psi} \times \nabla \bar{b}
$$

A submeso eddy-induced overturning:

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

in ML only:

$$
\mu(z)=0 \text { if } z<-H
$$

For a consistently restratifying,

$$
\overline{w^{\prime} b^{\prime}} \propto \frac{H^{2}}{|f|}\left|\nabla_{H} \bar{b}\right|^{2}
$$

and horizontally downgradient flux.

$$
\overline{\mathbf{u}_{H}^{\prime} b^{\prime}} \propto \frac{-H^{2} \frac{\partial b}{\partial z}}{|f|} \nabla_{H} \bar{b}
$$

A Special Treatment of Nonlinear: Mixed Layer Eddy Restratificatior Estimating eddy buoyancy/density fluxes:

$$
\overline{\mathbf{u}^{\prime} b^{\prime}} \equiv \mathbf{\Psi} \times \nabla \bar{b}
$$

A submeso eddy-induced overturning:

$$
\Psi=\frac{C_{e} H^{2} \mu(z)}{|f|} \nabla \bar{b} \times \hat{\mathbf{z}}
$$

in ML only:

$$
\mu(z)=0 \text { if } z<-H
$$

For a consistently restratify

$$
\overline{w^{\prime} b^{\prime}} \propto \frac{H^{2}}{|f|}\left|\nabla_{H} \bar{b}\right|^{2}
$$

and horizontally downgradient

$$
\overline{\mathbf{u}_{H}^{\prime} b^{\prime}} \propto \frac{-H^{2} \frac{\partial b}{\partial z}}{|f|} \nabla_{H}
$$

$y(k m)$

What does eddy restratification look like?

Parameterization Prediction
7d01h from 2d parameterization

red=streamfunction

Averaged MLE-resolving Model Solution
7d01h from 3d MITgcm (smoothed)

black=mean density

What does eddy restratification look like?

It works for Prototype front slumping

Red: No Diurnal

>2 orders of magnitude!

Circles: Balanced Initial Cond.
Squares: Unbalanced Initial Cond.

Tracer Flux-Gradient Relationship

$\overline{\mathbf{u}^{\prime} \tau^{\prime}}=-\mathbf{M} \nabla \bar{\tau}$

- Most subgridscale parameterizations have this form: GM*, Redi, FFH** submesoscale
- Relates the eddy flux to the coarse-grain gradients locally
- If we knew the dependence of \mathbf{M} on the coarse-resolution flow, we'd have the optimal local eddy closure
*Gent \& McWilliams (1990) **Fox-Kemper, Ferrari, Hallberg (2008)

An example of what a (submeso) subgrid parameterization looks like

with FLOW DEPENDENT M

Fox-Kemper, Ferrari, \& Hallberg (2008) \& Fox-Kemper, Danabasoglu, Ferrari, \& Hallberg (2008)

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\frac{v^{\prime} \tau^{\prime}}{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\mathbb{I}_{y} \\
0 & 0 & \mathbb{I}_{x} \\
\Psi_{y} & -\Psi_{x} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

$$
\begin{gathered}
\Psi=\left[\frac{\Delta x}{L_{f}}\right] \frac{C_{e} H^{2} \mu(z)}{f^{2}+\tau^{-2}} \nabla \bar{b} \times \hat{\mathbb{Z}} \\
\mu(z)=\left[1-\left(\frac{2 z}{H}+1\right)^{2}\right]\left[1+\frac{5}{21}\left(\frac{2 z}{H}+1\right)^{2}\right]
\end{gathered}
$$

Better than the Competition:

Better than the Competition:

And Agrees Wath Deep Convection Studies:
Jones \& Marshall $(93,97)$, Haine \& Marshall (98)

The Problem is:

The mesoscale equivalent isn't rEady

- Clearly, MLE parameterization is challenged by situations where medium-sized interior PV grads; Big PV grads are equivalent to rigid surfaces and are OK.
(2) Smith (07) shows Phillips-type (interior PV grads) dominate mesoscale energy extraction
(2) Also, submesoscale horizontal stirring is negligible, not so for mesoscale where 3d is a must

The Problem is:

The mesoscale equivalent isn't rEady

- Clearly, MLE parameterization is challenged by situations where medium-sized interior PV grads; Big PV grads are equivalent to rigid surfaces and are OK.
(2) Smith (07) shows Phillips-type (interior PV grads) dominate mesoscale energy extraction
(2) Also, submesoscale horizontal stirring is negligible, not so for mesoscale where 3d is a must

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

F-G General Form

$$
\left[\begin{array}{l}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{l}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

- 3 equations... 9 degrees of freedom
© Choices!

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

Transformed Eulerian Mean Form

$$
\left[\begin{array}{c}
\overline{u^{\prime} \rho^{\prime}} \\
\frac{v^{\prime} \rho^{\prime}}{\overline{w^{\prime} \rho^{\prime}}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\overline{u^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
0 & 0 & -\overline{v^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
0 & 0 & -\overline{w^{\prime} \rho^{\prime}} / \bar{\rho}_{z}
\end{array}\right]\left[\begin{array}{c}
\bar{\rho}_{x} \\
\bar{\rho}_{y} \\
\bar{\rho}_{z}
\end{array}\right]
$$

- 3 equations... 9 degrees of freedom
- Choices!

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

Transformed Eulerian Mean Form

$$
\left.\left.\begin{array}{rl}
\frac{\frac{u^{\prime} \rho^{\prime}}{\overline{v^{\prime} \rho^{\prime}}}}{\overline{w^{\prime} \rho^{\prime}}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\overline{u^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
0 & 0 & -\overline{v^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
\overline{u^{\prime} \rho^{\prime}} / \bar{\rho}_{z} & \overline{v^{\prime} \rho^{\prime}} / \bar{\rho}_{z} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\rho}_{x} \\
\bar{\rho}_{y} \\
\bar{\rho}_{z}
\end{array}\right]\right)
$$

- 3 equations... 9 degrees of freedom
- Choices!
- Excitement in TEM community, as 1st contribution is advective and 2nd contribution vanishes for steady, adiabatic flow! Thus it's 'purely diabatic'

Diffusive vs. Advective:

- Diffusion, to me, must be a symmetric tensor, (real) eigenvalues=rate, eigenvectors=direction
- Skew fluxes can be written with a nondivergent velocity in $F-G$ form is an antisymmetric tensor

$$
-\frac{\mathbf{M}-\mathbf{M}^{\dagger}}{2} \cdot \nabla \tau=\mathbf{\Psi} \times \nabla \tau
$$

- A generic tensor can represent both diffusion and skew fluxes (i.e., arbitrary for nonzero gradient).

Diabatic vs. Adiabatic (and Steady)

- In wave-mean interactions, Andrews \& McIntyre (78, Generalized Lagrangian Mean) show that steady, adiabatic flow results in the same form of the equations (i.e., no diabatic or diffusion terms), but with advection replaced with advection by the Lagrangian mean velocity.
- Thus, since TEM has advection only in adiabatic conditions, nonacceleration theorems, etc. pass on
- However, the GLM velocity may be divergent...

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

Transformed Eulerian Mean Form

$$
\left.\left.\begin{array}{rl}
\overline{\frac{u^{\prime} \rho^{\prime}}{\overline{v^{\prime} \rho^{\prime}}}} \overline{w^{\prime} \rho^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\overline{u^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
0 & 0 & -\overline{v^{\prime} \rho^{\prime}} / \bar{\rho}_{z} \\
\overline{u^{\prime} \rho^{\prime}} / \bar{\rho}_{z} & \overline{v^{\prime} \rho^{\prime}} / \bar{\rho}_{z} & 0
\end{array}\right]\left[\begin{array}{l}
\bar{\rho}_{x} \\
\bar{\rho}_{y} \\
\bar{\rho}_{z}
\end{array}\right]\right)
$$

- 3 equations... 9 degrees of freedom
- Choices!
- Excitement in TEM community, as 1st contribution is advective and 2 nd contribution vanishes for steady, adiabatic flow! Thus it's 'purely diabatic'

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathrm{M} \nabla \bar{\tau}$

Veronis Effect Form

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
-\overline{u^{\prime} \tau^{\prime}} / \bar{\tau}_{x} & 0 & 0 \\
0 & -\overline{v^{\prime} \tau^{\prime}} / \bar{\tau}_{y} & 0 \\
0 & 0 & -\overline{w^{\prime} \tau^{\prime}} / \bar{\tau}_{z}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

- 3 equations... 9 degrees of freedom
- Choices!
- What about for a different tracer? fails.
- In principle, same is true for TEM...fails for different tracer.

A bit of stochastics...

- Dukowicz \& Smith (97) and Smith (99) lay out the form of a stochastic, adiabatic relocation of particles
- The resulting Fokker-Planck Equation for the probablility density of the particles gives a K and a nondivergent v, which are closely related to the Lagrangian mean transport and the diffusion of probability.

Volume dy
(a) Time $\mathrm{t}_{\mathbf{0}}$

$$
\begin{align*}
& \partial_{t} p\left(\mathbf{x}, t \mid \mathbf{y}, t_{o}\right)+\boldsymbol{\nabla} \cdot \mathbf{U} p\left(\mathbf{x}, t \mid \mathbf{y}, t_{o}\right) \\
& \quad=\boldsymbol{\nabla} \cdot \mathbf{K} \cdot \boldsymbol{\nabla} p\left(\mathbf{x}, t \mid \mathbf{y}, t_{o}\right) \tag{50}\\
& \quad \mathbf{U}=\mathbf{v}-\mathbf{\nabla} \cdot \mathbf{K} \tag{51}\\
& \mathbf{v}(\mathbf{x}, t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int d \mathbf{x}^{\prime}\left(\mathbf{x}^{\prime}-\mathbf{x}\right) p\left(\mathbf{x}^{\prime}, t+\Delta t \mid \mathbf{x}, t\right) \tag{52}\\
& \mathbf{K}(\mathbf{x}, t)=\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int d \mathbf{x}^{\prime} \frac{1}{2}\left(\mathbf{x}^{\prime}-\mathbf{x}\right)\left(\mathbf{x}^{\prime}-\mathbf{x}\right) p\left(\mathbf{x}^{\prime}, t+\Delta t \mid \mathbf{x}, t\right) \tag{53}
\end{align*}
$$

Since the pdf is positive, it is clear from (53) that \mathbf{K} is a 2×2 symmetric positive-definite tensor. We will refer to \mathbf{v} as the Lagrangian mean velocity, although this identification is not exact (see Bennett 1996, p. 7). In (52)

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

Sym Part=Anisotropic* Redi

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\hline \overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
K_{x x} & K_{x y} & \hat{x} \cdot \mathbf{K} \cdot \hat{\nabla}_{\mathbb{z}} \\
K_{y x} & K_{y y} & \mathbf{K} \cdot \nabla_{\mathbb{z}} \\
\hat{x} \cdot \mathbf{K} \cdot \nabla_{x} & \mathbf{K} & \mathbf{K} \cdot \bar{\nabla}_{z}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Yellow K 'are' horizontal stirring \& mixing Blue factors in Redi (82), Solomon (71) are symmetric and scaled to make eddy mixing along neutral surfaces--No Veronis

[^0]
$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

AntiSym Part=Anisotropic* GM

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
0 & 0 & -\hat{\mathrm{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
\hat{\mathrm{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{z}} \hat{\mathrm{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} & 0
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Antisymmetric Elements in GM (1990)
are scaled to overturn fronts, make vertical fluxes extract PE, and restratify the fluid equivalent to eddy-induced advection--no Veronis

Q: Same horiz. mixing (K) as Redi?
*Anistropic form due to Smith \& Gent 04 *Tensor Form (Griffies, 98)

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

$$
\begin{gathered}
\text { Sym Part=Anisotropic* Redi } \\
{\left[\begin{array}{c}
\frac{u^{\prime} \tau^{\prime}}{v^{\prime} \tau^{\prime}} \\
\frac{w^{\prime} \tau^{\prime}}{}
\end{array}\right]=-\left[\begin{array}{lll}
K_{x x} & K_{x y} & \mathrm{~K} \\
K_{y x} & K_{y y} & \mathrm{~K} \\
\mathrm{~K} & \mathrm{~K} & \mathrm{~K}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]}
\end{gathered}
$$

AntiSym Part=Anisotropic* GM

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\hline \frac{v^{\prime} \tau^{\prime}}{\overline{w^{\prime} \tau^{\prime}}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
0 & 0 & -\hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
\hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbf{z}} \hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} & 0
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Yellow K 'are' horizontal stirring \& mixing

Need a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}^{\prime} \tau^{\prime}=-\mathbb{M} \nabla \bar{\tau}$
$\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \overline{v^{\prime} \tau^{\prime}} \\ \overline{w^{\prime} \tau^{\prime}}\end{array}\right]=-\left[\begin{array}{lll}M_{x x} & M_{x y} & M_{x z} \\ M_{y x} & M_{y y} & M_{y z} \\ M_{z x} & M_{z y} & M_{z z}\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$
3 equations/tracer
9 unknowns (Mcomponents)
BY USING 3 or MORE TRACERS, can determine M!!! (a la Plumb \& Mahlman '87, Bratseth '98)
No assumptions about symmetry required.

Need a Natural, Mesoscale Eddy Environment to Test Out: $\mathbf{u}^{\prime} \tau^{\prime}$ $=-\mathbb{M} \nabla \bar{\tau}$

$$
\left[\begin{array}{c}
\overline{\overline{u^{\prime} \tau^{\prime}}} \overline{\overline{v^{\prime} \tau^{\prime}}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{l}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

With John Dennis \& Frank Bryan, we took a POPO.1 Normal-Year forced model (yrs 16-20 for anal.) Added 9 Passive tracers--restored to x, y, z @ 3 rates Kept all the eddy fluxes for passive \& active tracers Coarse-grained to 2°, transient eddies, tracers to \mathbf{M}

Use a Natural, Mesoscale Eddy Environment to Test Out:

Testing the Diagnosis:

Note: T not used for diagnosis, active tracers are apparently transported as passive are!

Use a Natural, Mesoscale Eddy

 Environment to Test Out:$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
K_{x x} & K_{x y} & \hat{k} \cdot \mathbb{K} \cdot \vec{\nabla}_{\mathbb{Z}} \\
K_{y x} & K_{y y} & \hat{\mathrm{y}} \cdot \mathbb{K} \cdot \vec{\nabla}_{\mathbb{Z}} \\
\hat{\mathrm{x}} \cdot \mathrm{~K} \cdot \nabla_{\mathbb{Z}} \hat{\hat{y}} \cdot \mathrm{~K} \cdot \vec{\nabla}_{\mathbb{Z}} & \vec{\nabla} z \cdot \mathbb{K} \cdot \nabla_{\mathbb{Z}}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Hor. Diffusivity is roughly Trace(M)/2

Peak of Diffusivity near 250 m^2/s

Median Diffusivity near $1000 \mathrm{~m}^{\wedge} 2 / \mathrm{s}$ <6\% negative

Interpretation?

- Isoneutral diffusion or 'mixing': symmetric K with real, positive eigenvalues (neg->nonlocal)
- The eigenvalues of M are related, except there is one more involving the neutral to z coordinate conversion (in S\&G theory, at least)
- The eigenvectors give the direction of the mixing associated with each eigenvalue
- Antisymmetric K \& M are stirring/ overturning by an eddy-induced (quasi-stokes) streamfunction--non-orthogonal eigenvects and imaginary eigenvalues possible!

Result: Strong Anisotropy Along/Across Isopycnals

Result:

Redi K =GM I (mostly)

If so these 2 components

 should match in Sym \& Antisym M

$$
\left(x_{31}+x_{13}\right) / 2 @ z=-318 \mathrm{~m}
$$

Result: Strong Anisotropy Along/Across PV Grads.

Eigenvectors@z=-318m

Result: Strong Anisotropy Along/Across PV Grads.

Either along

Mixing direction PV contours
or across
cosine between 1 rst eigenvector and PV gradient

2nd
Eigenvector
Across PV
contours

Comparisons with Marshall et al.

Ferreira, Marshall, Heimbach 05

Fig. 12. Inferred horizontal eddy diffusivity $\kappa\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$: (top) zonal mean and (bottom) vertical mean over the thermocline $(0-1200 \mathrm{~m})$. The contour intervals are (top) 500 and (bottom) $1000 \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The thick line indicates the zero contour. Also indicated in the bottom panel are the $10-, 70$-, and $130-\mathrm{Sv}$ contours of the barotropic streamfunction.

$\operatorname{Re}(2 n d$ eigenvalue)

(2nd eigenvalue of symmetric M)

Comparisons with Marshall et al.
 Zonal Mean M, Real Part of Eig. \#2

Ferreira, Marshall, Heimbach 05
Zonal mean (scalar) diffusivity vs.
Eigenvalues of M

Same shape--few negatives!

How do we explain the Horizontal Variations of K?

$$
\begin{aligned}
& \text { Locations of } \\
& \text { large eigs of } \\
& \text { K }
\end{aligned}
$$

Compare with Eden, Jochum, Danabasoglu compilation of present parameterizations

g. 1. Annual mean thickness diffusivity (K) in $\mathrm{m}^{2} / \mathrm{s}$ at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Compare with Eden, Jochum, Danabasoglu compilation of present parameterizations

g. 1. Annual mean thickness diffusivity (K) in $\mathrm{m}^{2} / \mathrm{s}$ at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The nd mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

How do we explain the Vertical Variations of K?

Result:

coarse KE-> vertical structure of Mixing

Histogram of $\log _{10}(\mathrm{KE})$ vs. $\log _{10}(\mathrm{M}$ eig. \#2) Slope

Even better with EKE!

Note--barotropic mode is in there!

Comparisons with Marshall et al.

Comparisons with Marshall et al.

Abernathy et al 09

Conclusions

- A method for diagnosing the eddy stirring associated with fluxes represented in a 0.1° model but not a 2° model is presented
- It estimates the tracer-type-independent transport of tracer uniquely
- The shape and structure agrees roughly with Griffies (98) and Gent \& Smith (04) analyses of GM \& Redi isoneutral fluxes with *equal* anisotropic mixing \& stirring.
- No gauge/rot. fluxes are needed to eliminate negative spurious eigenvalues

Use a Natural, Mesoscale Eddy
Environment to Test Out:

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\hat{\mathrm{x}} \cdot \mathrm{~K} \cdot \bar{\nabla}_{\mathbb{Z}} \\
0 & 0 & -\hat{\mathrm{y}} \cdot \mathrm{~K} \cdot \bar{\nabla}_{\mathbb{Z}} \\
\hat{\mathrm{x}} \cdot \mathrm{~K} \cdot \bar{\nabla}_{\mathbb{Z}} \hat{\mathrm{y}} \cdot \mathrm{~K} \cdot \bar{\nabla}_{\mathbb{Z}} & 0
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Result 1: Antisymmetric (GM) Elements scale with
corresponding Symmetric (Redi) elements in extratropics.

Thus, GM/Redi basic shape of M is roughly correct
(some detailed validation remains)

Use a Natural, Mesoscale Eddy

Use a Natural, Mesoscale Eddy

 Environment to Test Out:

Use a Natural, Mesoscale Eddy

 $\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \frac{v^{\prime} \tau^{\prime}}{\overline{w^{\prime} \tau^{\prime}}}\end{array}\right]=-\left[\begin{array}{ccc}\text { Environment to Test Out: } \\ 0 & 0 & -\hat{x} \cdot \mathrm{~K} \cdot \vec{\nabla}_{\mathbb{z}} \\ 0 & 0 & -\hat{y} \cdot \mathrm{~K} \cdot \bar{\nabla}_{\mathbb{z}} \\ \hat{\mathrm{x}} \cdot \mathrm{K} \cdot \tilde{\nabla}_{\mathbb{z}} \hat{\mathrm{y}} \cdot \mathrm{K} \cdot \tilde{\nabla}_{\mathbb{z}} & 0\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$Asym 3,1: GM@lon=345E

Asym 3,2: GM@lon=345E

Atlantics sec tion

Use a Natural, Mesoscale Eddy

 $\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \frac{v^{\prime} \tau^{\prime}}{w^{\prime} \tau^{\prime}}\end{array}\right]=-\left[\begin{array}{ccc}K_{x x} & K_{x y} & \text { Environment to Test Out: } \\ K_{y x} & K_{y y} & \hat{y} \cdot \mathrm{~K} \cdot \overrightarrow{\nabla_{z}} \\ \cdot & \nabla_{z} & K_{z}\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$Sym 3,1: Redi@lon=345E

Use a Natural, Mesoscale Eddy

 $\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \frac{v^{\prime} \tau^{\prime}}{w^{\prime} \tau^{\prime}}\end{array}\right]=-\left[\begin{array}{ccc}\text { Environment to Test Out: } \\ 0 & 0 & -\hat{\mathrm{x}} \cdot \mathrm{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\ 0 & 0 & -\hat{y} \cdot K \cdot \tilde{\nabla}_{\mathbb{Z}} \\ \hat{\mathrm{x}} \cdot \mathrm{K} \cdot \bar{\nabla}_{\mathbb{Z}} \hat{\mathrm{y}} \cdot \mathrm{K}_{2} \cdot \tilde{\nabla}_{\mathbb{Z}} & 0\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$Asym 3,1: GM@lon=180E
Asym 3,2: GM@lon=180E

Use a Natural, Mesoscale Eddy

 $\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \frac{v^{\prime} \tau^{\prime}}{\overline{w^{\prime} \tau^{\prime}}}\end{array}\right]=-\left[\begin{array}{ccc}K_{x x} & K_{x y} & \text { Environment to Test Out: } \\ K_{y x} & K_{y y} & \hat{y} \cdot k \cdot \nabla_{z} \\ \hat{x} \cdot \nabla_{z} & K_{2} & \nabla z \cdot k \cdot \nabla z\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$Sym 3,1: Redi@lon=180E
Sym 3,2: Redi@lon=180E

NSEF \& Diabatic/

 Transition Layer

 Transition Layer}

- Danabasoglu \& Marshall
- Danabasoglu, Ferrari \& McWilliams
- Ferrari, McWilliams, Canuto, Dubovikov
- Surface-intensified GM, no boundary condition issues, no overrestratificiation of Mixed Layer by Eddies

Fig. 2. A conceptual model of eddy fluxes in the upper oce Mesoscale eddy fluxes (blue arrows) act to both move isopycı surfaces and stir materials along them in the oceanic interior, b the fluxes become parallel to the boundary and cross density st faces within the $B L$. Microscale turbulent fluxes (red arrows) n

Near-surface eddy flux scheme (Ferrari, McWilliams, Canuto, Dubovikov)

EDDY-INDUCED MERIDIONAL OVERTURNING (GLOBAL)

A new eddy parameterization (Ferrari, Griffies, Nurser \& Vallis)

- The eddy streamfunction is given by the elliptic problem

$$
\begin{aligned}
& \left(c^{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} z^{2}}-N^{2}\right) \widetilde{\Psi}=-\kappa \nabla \bar{b} \\
& \widetilde{\boldsymbol{\Psi}}=0, \quad z=0,-H
\end{aligned}
$$

Properties of the new parameterization

- releases mean available potential energy
- the eddy transport vanishes at the ocean boundaries
- the eddy transport is dominated by the first baroclinic mode (if c is set to speed of first baroclinic mode)
- does not require any tapering function
- reduces to GM for $\mathrm{c}=0$

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Parameterization of Finite Amp. Eddies: Ingredients

Better than the Competition:

Better than the Competition:

And Agrees with Deep Convection Studies:
Jones \& Marshall $(93,97)$, Haine \& Marshall (98)

[^0]: *Anistropic form due to Smith \& Gent (04)

