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Climate Forecasts (IPCC/CMIP Runs) have 

a very coarse ocean gridscale (>100km)

4m

400km

Th
is 

Ta
lk



Parameterization 
Questions:

How will we use them?


Will the largest features be resolved?


What needs parameterization?


What dynamics dominate the resolved and 
parameterized scales?



Different Uses, Different Needs
• MORANS  (e.g., typical IPCC/CMIP; >50km)

• Mesoscale Ocean Reynolds-Averaged Navier-Stokes


• No instabilities resolved, all instabilities to be parameterized


• MOLES = SMORANS (e.g., grid 5-50km)

• Mesoscale Ocean Large Eddy Simulation


• Submesoscale Ocean Reynolds-Averaged Navier-Stokes


• Same Resolution, Different Parameterizations!


• SMOLES = BLORANS (e.g., grid 100m-1km)

• Submesoscale Ocean Reynolds-Averaged Navier-Stokes


•  Boundary Layer Ocean Reynolds-Averaged Navier-Stokes


• BLOLES  (e.g., grid 1-5m)

• Boundary Layer Ocean Large Eddy Simulation



Sub-Mesoscale 
Parameterizations

Anyone who doesn't take truth 
seriously in small matters 
cannot be trusted in large 
ones either.


--Albert 
Einstein

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. 
Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer eddies. III: 
Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.

http://thinkexist.com/quotation/anyone_who_doesn-t_take_truth_seriously_in_small/255180.html


Fronts

Eddies

Ro=O(1)

Ri=O(1)

near-surface

1-10km, days

The Character of 
the Submesoscale

(NASA GSFC Gallery)
10 
km

(Capet et al., 2008)

Eddy processes often 
baroclinic instability 
(Boccaletti et al ’07, 

Haine & Marshall ’98). 
Parameterizations of 
baroclinic instability?


Surface Temp.

200m Temp.

Temp x-z Section



 Mixed Layer Eddy Restratification

Ψ =
CeH

2µ(z)

|f |
∇b̄ × ẑ

A submeso eddy-induced overturning:

u′b′ ≡ Ψ ×∇b̄

For a consistently restratifying, 

and horizontally downgradient flux.

w′b′ ∝
H2

|f |

∣

∣∇H b̄
∣

∣

2

u
′
Hb′ ∝

−H2 ∂b̄

∂z

|f |
∇H b̄

in ML only:

Estimating eddy buoyancy/density fluxes:

Surface Temp.

200m Temp.

Temp x-z Section

µ(z) = 0 if z < �H



Physical Sensitivity of Ocean Climate to 
Submesoscale Eddy Restratification: 

MLE implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

Deep ML Bias reduced

From Fox-Kemper et al., 2011

NO RETUNING 

NEEDED!!!

Improves CFCs

Passive tracer

Bias with MLE Bias w/o MLE

Bias 
w/o 
MLE



Sensitivity of 
Climate to 
Submeso: 
AMOC 

&  
Cryosphere 

Impacts

Affects sea ice

NO RETUNING 

NEEDED!!!

May Stabilize AMOC

These are impacts:

bias change unknown



Langmuir Turbulence 
Parameterizations

On a list of the 50 most important 
things to fix in the ocean model, 
Langmuir is number 51.


--Bill Large



Near-surface

Langmuir Cells & 
Langmuir Turb.

Ro>>1

Ri<1: Nonhydro

10-100m

mins, hours

w, u=O(10cm/s)

Stokes drift

Eqtns: Craik-Leibovich

unused params exist

image:

Leibovich, 83

The Character of 
the Langmuir Scale

Image: NPR.org, 
Deep Water 
Horizon Spill



An Immature Improvement to 
Air-Sea BL

Mixing by Langmuir Turbulence

Forced by wind and waves 


i.e., Stokes drift & Eulerian Shear

Scalings from LES, Observations disagree


We used a 2-part approximation

1) McWilliams & Sullivan (01) additional 
OBL mixing (within mixed layer)

2) Li & Garrett (98) Langmuir mixing 
depth (entrainment)

Roughly comparable to other schemes, 
but crude & incompletely validated

Needs only u*, us to work 

Image: NPR.org, Deep Water Horizon Spill

Shuga Ice  
Image: aspect.aq



Dong et al. Observations

CCSM3.5 with Langmuir

CCSM3.5 Control without Langmuir

Langmuir Mixing 
Forced by Climatology 

(Generalized Turbulent Langmuir)2

Projection of u*,  us into Langmuir Direction

Webb et al. 2011 (in prep)
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Van Roekel, Fox-Kemper, Sullivan, 
Haney & Hamlington (2011)



Coupling between 
Langmuir and Submeso?

Together?


Separate?



Multiscale

Langmuir & 
Submeso resolving 
LES


20kmx20kmx0.3k
m


Grid 
4096x4096x128


5x5x<1m 
resolution


Compromises--
wind, front, wave, 
size, etc
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Coupling Langmuir to 
Submesoscale?

From Scratch...  No interpolation!

km

km

LES, Near-Surf. Temp.   
No Stokes Drift

MITgcm Near-Surf. Temp.   
Submeso-Only Res.



The Scales, and the Sim

km

km km

Day 6.5 of a Submeso 
Resolving run


Near Surf. Temp

Day 6.5 of a Submeso 
Resolving run


Vert. Velocity=w



The Scales, and the Sim

km

km km

f2 <

����f
�v

�z

���� = M2 < (3f)2

Ro ⇡ 0.1

Ri < 1
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Sub-Grid TKE 

Surf.
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Surf.

Temp (K)

w2 (m2/s2)Low-Pass w2


(Submeso) 

Wind &

Fronts 
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No Stokes
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w2 (m2/s2)Low-Pass w2


(Submeso) 
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Temp (K)

w2 (m2/s2)
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Wind,
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Mid-ML

Temp (K)
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Wind,
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Stokes

Drift



Mid-ML

Temp (K)

u2 (m2/s2)

Low-Pass u2


(Submeso) 

Wind,

Fronts, & 

Stokes

Drift

< (2000m/d)2



Filaments are hard to see!

even at mid-ML depth



Filaments are hard to see!

even at mid-ML depth



Different Scales 

in filaments 


without Stokes



Power Spectral Density 
of w2: No Stokes 

Near Surface Mid Mixed Layer



Near Surface Mid Mixed Layer

Power Spectral Density 
of w2: With Stokes 



Conclusions
Mesoscale, Submesoscale, and Langmuir 
scale phenomena all have a nontrivial 
affect on the global climate, thus need 
accurate parameterizations


Parameterizations are developed by 
comparison to higher-resolution models, 
with careful diagnosis of interesting 
couplings


These high resolution models not only 
reveal loss of balance (if it’s there), but 
also random coupling/mixing of disparate 



Extrapolate for historical perspective: 

The Golden Era of Subgrid Modeling is Now!

<===SG Models===>

IPCC



Mesoscale 
Parameterizations

Researchers have already cast much 
darkness on this subject and if they 
continue their investigations we shall 
soon know nothing at all about it.


--Mark Twain



Boundary 
Currents

Eddies

Ro=O(0.1)

Ri=O(1000)

Full Depth

Eddies strain to 
produce Fronts

100km, months

The Character of the 
Mesoscale

100 
km

(Capet et al., 2008)

Eddy processes mainly baroclinic & 
barotropic instability. Parameterizations 
of baroclinic instability (GM, Visbeck...).


(NASA GSFC Gallery)

Surface Temp.

200m Temp.

Temp x-z Section



Re*=1

2⇡

�x

2008: F-K & Menemenlis Revise Leith Viscosity Scaling,

So that diverging, vorticity-free, modes are also damped

MOLES Turbulence Like Pot’l Enstrophy cascade, but divergent 

(Charney, 71)


-5/3

range



Makes viscosity a bit 
bigger, especially near Eq. 
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if this divergent flow happened to have little or no vertical
vorticity, it would be totally undamped.

A convenient way to fix this problem is to modify the
Leith viscosity to add a damping of the divergent velocity.
With introspection, one expects something similar to

⇥⇥ =
�

�x
⇤

⇥3 ⌥
⇥6|⌥hq2d|2 + ⇥6

d|⌥h(⌥h · u⇥)|2. (39)

A physical rationale for this correction is unclear, but the
numerical consequences are good. The lower panel of Fig. 1
shows that the modified Leith viscosity with ⇥d = ⇥ has
substantially less checkerboard noise, even though the basin
mean viscosity is only larger by about 25%. Even doubling ⇥
with ⇥d = 0 was less e⇤ective in reducing the checkerboard
pattern, even though this doubling increases the viscosity
by a factor of eight.

The divergence in MOLES is typically much smaller than
the vorticity, so setting ⇥d = ⇥ only slightly increases the
viscosity. QG scaling indicates [Pedlosky , 1987]
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So, the added divergence-sensing term will have very lit-
tle e⇤ect on the regions where quasi-geostrophic flow dom-
inates. It will have an impact on high-frequency internal
waves, but these are typically not well-resolved in MOLES
in any case. The near-inertial gravity waves will be a⇤ected,
but only as strongly as the QG flow. Fronts may have large
Rossby number, but the expected increase will only be a
factor of

⌃
2 in (39) as the divergence and vorticity con-

tributions should match if gradients in only the cross-front
direction dominate.

This scaling seems to indicate that one should expect few
physical changes due to the added term, yet when this vis-
cosity acts, it acts where the largest values of vertical veloc-
ity are. Since the Courant condition on vertical advection
(�t < �z/w) is often the numerical constraint that sets the
maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the
simulation. Tests have shown that in some calculations, a
timestep three times larger was allowed when ⇥ = ⇥d was
used instead of ⇥d = 0.

2.6. High-Resolution Global Ocean Simulations

The modified Leith viscosity scheme has also been tested
in a high-resolution global-ocean MITgcm configuration de-
scribed in Menemenlis et al. [2005]. This particular configu-
ration employs a cubed-sphere grid projection [Adcroft et al.,
2004], which permits relatively even grid-spacing throughout
the domain. Each face of the cube comprises 510 by 510 grid
cells for a mean horizontal grid spacing of 18 km. There are
50 vertical levels ranging in thicknesses from 10 m near the
ocean surface to 450 m near the ocean bottom. Initial tem-
perature and salinity conditions are from the World Ocean
Atlas 2001 [Conkright et al., 2002]. Surface boundary condi-
tions are from the National Centers for Environmental Pre-
diction and the National Center for Atmospheric Research
(NCEP/NCAR) atmospheric reanalysis [Kistler et al., 2001]
and are converted to heat, freshwater, and wind stress fluxes
using the Large and Pond [1981, 1982] bulk formulae. Short-
wave radiation decays exponentially as per Paulson and
Simpson [1977]. Vertical mixing follows Large et al. [1994b]
with background vertical di⇤usivity of 1.5⇤10�5 m2 s�1 and

viscosity of 10�3 m2 s�1. A third-order, direct-space-time
advection scheme with flux limiter is employed and there is
no explicit horizontal di⇤usivity.

Following a 38-year model spin-up, several additional one-
year (2001) integrations were conducted to test the stability
and quality of the modified Leith scheme. Figure 1 displays
surface kinetic energy from two such integrations. The first
integration uses biharmonic Leith viscosity (LeithOnly, top
panel) and the second integration uses biharmonic Leith vis-
cosity modified to sense the divergent flow (LeithPlus, bot-
tom panel). Both test integrations use a time step of 600 s in
order to stabilize the LeithOnly test case and for more direct
comparison with the LeithPlus test case. The LeithOnly in-
tegration has sligthly more volume-averaged kinetic energy,
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Figure 3. Monthly mean biharmonic viscosity, ⇥4, in
the model’s surface level for December 2001. Units are
m4 s�1 and color scale displays log10(⇥4). Top panel is
from the LeithOnly integration. Middle panel is from the
LeithPlus integration. Bottom panel shows the divergent
modification of the LeithPlus integration.
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Figure 4. Maximum Courant number, w�t/�z, for
vertical advection. Gray line is from the LeithOnly inte-
gration and black line is from the LeithPlus integration.
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But matters a lot for 
stability!
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if this divergent flow happened to have little or no vertical
vorticity, it would be totally undamped.

A convenient way to fix this problem is to modify the
Leith viscosity to add a damping of the divergent velocity.
With introspection, one expects something similar to
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⇥3 ⌥
⇥6|⌥hq2d|2 + ⇥6

d|⌥h(⌥h · u⇥)|2. (39)

A physical rationale for this correction is unclear, but the
numerical consequences are good. The lower panel of Fig. 1
shows that the modified Leith viscosity with ⇥d = ⇥ has
substantially less checkerboard noise, even though the basin
mean viscosity is only larger by about 25%. Even doubling ⇥
with ⇥d = 0 was less e⇤ective in reducing the checkerboard
pattern, even though this doubling increases the viscosity
by a factor of eight.

The divergence in MOLES is typically much smaller than
the vorticity, so setting ⇥d = ⇥ only slightly increases the
viscosity. QG scaling indicates [Pedlosky , 1987]
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So, the added divergence-sensing term will have very lit-
tle e⇤ect on the regions where quasi-geostrophic flow dom-
inates. It will have an impact on high-frequency internal
waves, but these are typically not well-resolved in MOLES
in any case. The near-inertial gravity waves will be a⇤ected,
but only as strongly as the QG flow. Fronts may have large
Rossby number, but the expected increase will only be a
factor of

⌃
2 in (39) as the divergence and vorticity con-

tributions should match if gradients in only the cross-front
direction dominate.

This scaling seems to indicate that one should expect few
physical changes due to the added term, yet when this vis-
cosity acts, it acts where the largest values of vertical veloc-
ity are. Since the Courant condition on vertical advection
(�t < �z/w) is often the numerical constraint that sets the
maximum timestep, this viscosity may substantially increase
the allowable timestep without severely compromising the
simulation. Tests have shown that in some calculations, a
timestep three times larger was allowed when ⇥ = ⇥d was
used instead of ⇥d = 0.

2.6. High-Resolution Global Ocean Simulations

The modified Leith viscosity scheme has also been tested
in a high-resolution global-ocean MITgcm configuration de-
scribed in Menemenlis et al. [2005]. This particular configu-
ration employs a cubed-sphere grid projection [Adcroft et al.,
2004], which permits relatively even grid-spacing throughout
the domain. Each face of the cube comprises 510 by 510 grid
cells for a mean horizontal grid spacing of 18 km. There are
50 vertical levels ranging in thicknesses from 10 m near the
ocean surface to 450 m near the ocean bottom. Initial tem-
perature and salinity conditions are from the World Ocean
Atlas 2001 [Conkright et al., 2002]. Surface boundary condi-
tions are from the National Centers for Environmental Pre-
diction and the National Center for Atmospheric Research
(NCEP/NCAR) atmospheric reanalysis [Kistler et al., 2001]
and are converted to heat, freshwater, and wind stress fluxes
using the Large and Pond [1981, 1982] bulk formulae. Short-
wave radiation decays exponentially as per Paulson and
Simpson [1977]. Vertical mixing follows Large et al. [1994b]
with background vertical di⇤usivity of 1.5⇤10�5 m2 s�1 and

viscosity of 10�3 m2 s�1. A third-order, direct-space-time
advection scheme with flux limiter is employed and there is
no explicit horizontal di⇤usivity.

Following a 38-year model spin-up, several additional one-
year (2001) integrations were conducted to test the stability
and quality of the modified Leith scheme. Figure 1 displays
surface kinetic energy from two such integrations. The first
integration uses biharmonic Leith viscosity (LeithOnly, top
panel) and the second integration uses biharmonic Leith vis-
cosity modified to sense the divergent flow (LeithPlus, bot-
tom panel). Both test integrations use a time step of 600 s in
order to stabilize the LeithOnly test case and for more direct
comparison with the LeithPlus test case. The LeithOnly in-
tegration has sligthly more volume-averaged kinetic energy,
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Figure 3. Monthly mean biharmonic viscosity, ⇥4, in
the model’s surface level for December 2001. Units are
m4 s�1 and color scale displays log10(⇥4). Top panel is
from the LeithOnly integration. Middle panel is from the
LeithPlus integration. Bottom panel shows the divergent
modification of the LeithPlus integration.
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Figure 4. Maximum Courant number, w�t/�z, for
vertical advection. Gray line is from the LeithOnly inte-
gration and black line is from the LeithPlus integration.

Fox-Kemper & Menemenlis, 2008



ECCO2 (Estimating the Circulation & Climate of the Ocean, Phase 2, www.ecco2.org)

It works here!

Even with irregular grid!



Mesoscale Eddy Parameterizations 
all have the form:
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With John Dennis & Frank Bryan, we took a 
POP0.1° Normal-Year forced model (yrs 16-20)


Added 9 Passive tracers--restored x,y,z @ 3 rates

Kept all the eddy fluxes for passive & active


Coarse-grained to 2°, transient eddies, tracers to         u�� � = �M⇥�
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Could you have guessed it?
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Result:  Strong Anisotropy Along/Across Isopycnals

Mixing:

Stirring:

Mixing

direction



Result:  Strong Anisotropy Along/Across PV Grads.

Mixing

direction
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