Eddies, Mixing and all that: Ocean Parameterization Developments from 4m to 400km

Baylor Fox-Kemper, University of Colorado at Boulder

Cooperative Insititute for Research in Environmental Sciences and Dept. of Atmospheric and Oceanic Sciences with

Luke Van Roekel (CIRES), Peter Hamlington (CU), Adrean Webb (CIRES/CU), Scott Bachman (CIRES/ATOC), Andrew Margolin (CU), Ian Grooms, Keith Julien, Raf Ferrari, NCAR Oceanography Section, Peter Sullivan

Balance, Boundaries, and Mixing in the Climate Problem 13:40 – 14:20, September 19, 2011; Montreal, Canada

> Sponsors: NSF 0934737, 0855010, 0825614; NASA NNX09AF38G TeraGRID, IBM, UCAR, CIRES, CU-Boulder

Climate Forecasts (IPCC/CMIP Runs) have a very coarse ocean gridscale (>100km)

Resolution of Ocean Component of Coupled IPCC models

Parameterization Questions:

How will we use them?

- Will the largest features be resolved?
- What needs parameterization?

What dynamics dominate the resolved and parameterized scales?

Different Uses, Different Needs

- MORANS (e.g., typical IPCC/CMIP; >50km)
- Mesoscale Ocean Reynolds-Averaged Navier-Stokes
- No instabilities resolved, all instabilities to be parameterized
- MOLES = SMORANS (e.g., grid 5-50km)
- Mesoscale Ocean Large Eddy Simulation
- Submesoscale Ocean Reynolds-Averaged Navier-Stokes
- Same Resolution, Different Parameterizations!
- SMOLES = BLORANS (e.g., grid 100m-1km)
- Submesoscale Ocean Reynolds-Averaged Navier-Stokes
- Boundary Layer Ocean Reynolds-Averaged Navier-Stokes
- BLOLES (e.g., grid 1–5m)
- Boundary Layer Ocean Large Eddy Simulation

Sub-Mesoscale Parameterizations

Anyone who doesn't take truth seriously in small matters cannot be trusted in large ones either.

AlbertEinstein

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. *Ocean Modelling*, 39:61-78, 2011.

(NASA GSFC Gallery)

The Character of ¹⁰ km the Submesoscale

(Capet et al., 2008)

Temperature on day:0

Fronts

Eddies
 Ro=O(1)
 Ri=O(1)

near-surface

👁 1–10km, days

Eddy processes often
baroclinic instability
(Boccaletti et al '07,
Haine & Marshall '98).
Parameterizations of
baroclinic instability?

Temperature on day:0 Mixed Layer Eddy Restratification Estimating eddy buoyancy/density fluxes: 100 z (m) -150 $\mathbf{u}'b' \equiv \mathbf{\Psi} \times \nabla b$ A submeso eddy-induced overturning: $\Psi = \frac{C_e H^2 \mu(z)}{|f|} \nabla \bar{b} \times \mathbf{\hat{z}}$ y (km) x (km) Surface Temp Day: 900 in ML only: Overturning Streamfunction $\mu(z) = 0 \text{ if } z < -H$ Mixed Layer For a consistently restratify z (m) Eddy $\overline{w'b'} \propto rac{H^2}{|f|} \left|
abla_H \overline{b} \right|^2$ Buoy. Flux ML Base and horizontally downgradient Pycno- $\overline{\mathbf{u'}_H b'} \propto rac{-H^2 rac{\partial \overline{b}}{\partial z}}{|f|}
abla_H$ cline y (km)

Physical Sensitivity of Ocean Climate to Submesoscale Eddy Restratification:

Bias

w/o

MLE

MLE implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

max=2528m, min=-1560m

а

CM2M H_{ml} Control-deBM (m) SEP

Deep ML Bias reduced From Fox-Kemper et al., 2011 NO RETUNING NEEDED!!!

Improves CFCs Passive tracer Bias with MLE Bias w/o MLE

May Stabilize AMOC

Figure 10: Wintertime sea ice sensitivity to introduction of MLE parameterization (CCSM⁺ minus CCSM⁻): January to March Northern Hemisphere a) ice area and b) thickness and July to September Southern Hemisphere c) ice area and d) thickness.

Affects sea ice

NO RETUNING NEEDED!!!

These are impacts: bias change unknown

Langmuir Turbulence Parameterizations

 On a list of the 50 most important things to fix in the ocean model, <u>Langmuir is number 51.</u>

Image --Bill Large

The Character of the Langmuir Scale

- Near-surface
- Langmuir Cells & Langmuir Turb.
- @ Ro>>1
- Ri<1: Nonhydro</p>
- mins, hours
- w, u=O(10cm/s)
- Stokes drift
- Seqtns: Craik-Leibovich
- o unused params exist

Image: NPR.org, Deep Water Horizon Spill

image: Leibovich, 83

Figure 1a Illustration of Langmuir circulations showing notation used in this review and surface and subsurface motions.

An Immature Improvement to Air-Sea BL

Shuga Ice Image: aspect.aq

Mixing by Langmuir Turbulence
 Forced by wind and waves
 i.e., Stokes drift & Eulerian Shear
 Scalings from LES, Observations disagree

We used a 2-part approximation
McWilliams & Sullivan (01) additional OBL mixing (within mixed layer)
Li & Garrett (98) Langmuir mixing depth (entrainment)
Roughly comparable to other schemes, but crude & incompletely validated
Needs only u^{*}, u_s to work

Langmuir Mixing Forced by Climatology

(Generalized Turbulent Langmuir)² Projection of u^{*}, u_s into Langmuir Direction

 $\cos heta$

 La_{\star}^{2}

Van Roekel, Fox-Kemper, Sullivan, Haney & Hamlington (2011)

$$\frac{\left\langle \overline{w'^2} \right\rangle_{ML}}{u_*^2} = 0.6 \cos^2 \left(\alpha_{LOW} \right) \left[1.0 + (3.1La_{proj})^{-2} + (5.4La_{proj})^{-4} \right],$$

$$La_{proj}^2 = \frac{\left| u_* \right| \cos(\alpha_{LOW})}{\left| u_s \right| \cos(\theta_{ww} - \alpha_{LOW})},$$

$$\alpha_{LOW} \approx \tan^{-1} \left(\frac{\sin(\theta_{ww})}{\frac{u_*}{u_s(0)\kappa} \ln\left(\left| \frac{H_{ML}}{z_1} \right| \right) + \cos(\theta_{ww})} \right)$$

Coupling between Langmuir and Submeso?

Together?

Separate?

Multiscale

Langmuir &
 Submeso resolving
 LES

20kmx20kmx0.3km

Grid
 4096x4096x128

5x5x<1m
 resolution
</pre>

Compromises- wind, front, wave,
 size, etc

y

Coupling Langmuir to
Submesoscale?From Scratch...Ko Stokes DriftKo Stokes DriftCoupling Langmuir to
Submeso-Only Res.

The Scales, and the Sim Day 6.5 of a Submeso Resolving run Vert. Velocity=w

Day 6.5 of a Submeso Resolving run Near Surf. Temp

The Scales, and the Sim $f^2 < \left| f \frac{\partial \overline{v}}{\partial z} \right| = M^2 < (3f)^2$

 $Ro \approx 0.1$

Ri < 1

km

No Stokes Drift

-0.015

Surf.

Temp (K)

+0.015

Temp (K)

No Stokes Drift

Surf. Temp (K)

 $w^2 (m^2/s^2)$ < $(400m/d)^2$

No Stokes Drift

Surf. Temp (K)

 w^{2} (m²/s²)

No Stokes Drift

Surf. Temp (K)

 $w^2 (m^2/s^2) < (300m/d)^2$

No Stokes Drift

Surf. Temp (K)

 w^2 (m²/s²) < $(200m/d)^2$

No Stokes Drift

Mid-ML Temp (K)

 $w^2 (m^2/s^2)$ < $(200m/d)^2$

No Stokes Drift

Mid-ML Temp (K)

 v^2 (m²/s²) < $(2cm/s)^2$ < $(2000m/d)^2$

-0.01

Surf. Temp (K)

+0.01

x-Avg. Temp Temp (K)

Surf. Temp (K)

 w^2 (m²/s²) < $(600m/d)^2$

Surf. Temp (K)

 $w^2 (m^2/s^2) < (600m/d)^2$

Surf. Temp (K)

Low-Pass w² (Submeso) w² (m²/s²)

 $< (400m/d)^2$

Mid-ML Temp (K)

Low-Pass w² (Submeso)

 w^{2} (m²/s²)

Mid-ML Temp (K)

Low-Pass u^2 (Submeso) $u^2 (m^2/s^2)$ $< (2000m/d)^2$

Filaments are hard to see (km) even at mid-ML depth

 $\boldsymbol{\nabla}$

\mathbf{v}

Different Scales in filaments without Stokes

Power Spectral Density of w²: No Stokes

Near Surface

Mid Mixed Layer

Power Spectral Density of w²: With Stokes

Near Surface

Mid Mixed Layer

Conclusions

Mesoscale, Submesoscale, and Langmuir scale phenomena all have a nontrivial affect on the global climate, thus need accurate parameterizations

Parameterizations are developed by comparison to higher-resolution models, with careful diagnosis of interesting couplings

These high resolution models not only reveal loss of balance (if it's there), but also random coupling/mixing of disparate

Extrapolate for historical perspective: The Golden Era of Subgrid Modeling is Now!

Mesoscale Parameterizations

Researchers have already cast much darkness on this subject and if they continue their investigations we shall soon know nothing at all about it.

Image: Image:

NASA GSFC Gallery)

100 The Character of the km Mesoscale

(Capet et al., 2008)

Longitude

Fig. 16. Sea surface temperature measured at 1832 UTC 3 Jan 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently ipwelled water (i.e., 15°-16°C) and offshore water (≥17°C) show submesioscale instabilities with waveengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show tence of the instability events

a 100km, months Eddy processes mainly baroclinic & barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

Boundary Currents Seddies Ro=O(0.1) Ri=O(1000) Full Depth Eddies strain to 0 produce Fronts

MOLES Turbulence Like Pot'l Enstrophy cascade, but divergent

2008: F-K & Menemenlis Revise Leith Viscosity Scaling, So that diverging, vorticity-free, modes are also damped

$$\nu_* = \left(\frac{\Delta x}{\pi}\right)^3 \sqrt{\Lambda^6 |\nabla_h q_{2d}|^2 + \Lambda^6_d |\nabla_h (\nabla_h \cdot \mathbf{u}_*)|^2}.$$

Makes viscosity a bit bigger, especially near Eq.

Leith

Figure 4. Maximum Courant number, $w\Delta t/\Delta z$, for vertical advection. Gray line is from the *LeithOnly* integration and black line is from the *LeithPlus* integration.

Fox-Kemper & Menemenlis, 2008

0.8

0.0

It works here! Even with irregular grid!

lvl@15m m/s

1993

ECCO2 (Estimating the Circulation & Climate of the Ocean, Phase 2, www.ecco2.org)

With John Dennis & Frank Bryan, we took a POP0.1° Normal-Year forced model (yrs 16-20) Added 9 Passive tracers--restored x,y,z @ 3 rates Kept all the eddy fluxes for passive & active Coarse-grained to 2°, transient eddies, tracers to M

Yellow \mathbf{K} `are` horizontal stirring & mixing

Result: Strong Anisotropy Along/Across Isopycnals

Result: Strong Anisotropy Along/Across PV Grads.

Mixing Either along PV direction contours or across

2nd Eigenvector Across PV contours

