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Climate Forecasts (IPCC/CMIP Runs) have

a very coarse ocean gridscale (>100km)
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Climate Forecasts (IPCC/CMIP Runs) have

a very coarse ocean gridscale (>100km)
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Ocean Equations™:
Boussinesq Fluid on Tangent Plane
to a Rotating Sphere

Buoyancy (or S, T): 6tb - - vhb + w@zb —

Vh * u+az.u‘. - 0

Re, Pe for an affordable |-
gridscale are 10° to 10"

Euler

Buovancy

Numerics require O(1)

Reynolds

*From Grooms,
Julien, & F-K, 11
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What is a subgrid model?

® Express the coarse-grain averages of quantities
(including the subgrid effects), e.qg.:

Q’_F_ ou ouT
ot 0x Ox

@ As a function of the resolved coarse-grain fields

oOT oT ou ou ouT ou T

ot Or: oL Ox ox
@ Note that nonlinear terms require special treatment

@ And Couple different scales, small talks fo large!



Different Uses, Different Needs

 MOLES (e.g., the CM2.4 movie before; grid 5-25km)

* Mesoscale Ocean Large Eddy Simulation

* Largest eddies are resolved--need smooth cutoff in mesoscale range

« MORANS (e.g., typical IPCC/CMIP models; grid>50km)

* Mesoscale Ocean Reynolds-Averaged Navier-Stokes

* Nothing resolved, unresolved to be parameterized

« SMORANS (e.g., Fox-Kemper et al., 2011; grid 1-10km)

e Submesoscale Ocean...

* Mesoscale resolved, submesoscale unresolved...

« NOTE: RANS contains all smaller scales that couple!
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Extrapolate for historical perspective:

The Golden Era of Subgrid Modeling is Now!
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Mesoscale
Parameterizations

@ Researchers have already cast much
darkness on this subject and if they
continue their investigations we shall
soon know nothing at all about if.

@ --Mark Twain
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___&NASA GSFC Gallery)

The Character of the % | &%=
Mesoscale Y

(Capet et al., 2008)

@ Boundary
Currents

@ Eddies

@ Ro=0(0.1)
@ Ri=0(1000)
@ Full Depth

@ Eddies strain to [ESSAE " "SNG L =
produce Fronts  |SEEENENERRINT NN

@ 100km, months

Eddy processes mainly . Temp. x-2.Section
. Parameterizations - —— .
of baroclinic instability (GM, Visbeck...).
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A MOLES Closure:
Smagorinsky & Kolmogorov

VS.
Leith & Kraichnan

Idea: Replace Eddy Momentum Fluxes with
Artificially Inflated Viscosity

Relies on:
Energy Source, Dissipation, Flow
& Dimensional Analysis




Truncation of Cascades

forcing range

inertial range

Re-=l dissipation range

> k

Power Spectrum: ! ~ (
Energy/Wavenumber \ .‘— v ~(u-u)dV = n E{k)dk.

1941: Kolmogorov Envisions the Inertial Range
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Truncation of Cascades

forcing range

inertial range

Re=1 dissipation range

1963: Smagorinsky Devises Viscosity Scaling,
So that the Energy Flow is Preserved,
but order-1 gridscale Reynolds #: Re™ = UL /v,
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Except... Ocean Turbulence isnt
3d Turbulence at the Gridscale

@ The ocean is wide (10000km)
@ But not deep (4km)
@ So motions are largely 2d

@ The layer of blue paint on a
globe has roughly the right
aspect ratio!

® MOLES grid aspect is similar
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2d Turbulence Differs
(Kraichnan, 67)

forcing

2 Conserved Quantities: Energy and Enstrophy
(vorticity variance)
Energy Cascades Upscale, Enstrophy Downscale...
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2d Turbulence Differs

forcing

1996: Leith Devises Viscosity Scaling,
So that the Enstrophy Flow is Preserved
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2-d Turbulence is different from
Atmosphere (Ocean*?) macro-turbulence

Wavenumber (radians m™)

‘10" 103 : 104 107 102
Y\ MERIDIONAL
W\ WIND --w\‘
ZONAL : \Ens | Ophy\ POTENTIA
. . L
; WIND Fl + '\ TEMPERATURE
Flgure ol kP . (°K? m rad”) .
adapted - ' SmagorinsKy
from < : Re -l
o g : SQG Closu
astrom & 3 . :
£ 1
Gage (85) g : i
; I
i
Kolmogorov
Re=l

10¢ 100 107 10 10° 107 107
Wavelength (km)

Fi1G. 3. Vanance power spectra of wind and potential temperature near thq tropopause from
GASP aircraft data. The spectra for meridional wind and temperature are shifted one and two
decades to the right, respectively; lines with slopes —3 and —7, are entered at the same relative

coordinates for each variable for comparison.

* My student, Katie McCaffrey, is working on ocean spectra from obs.
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MOLES Turbulence Like Pot’l Enstrophy cascade, but divergent
(Charney, 71)

—2 ¥

forcing

dissipation

-5/3

kp \%

2008: F-K & Menemenlis Revise Leith Viscosity Scaling,
So that diverging, vorticity-free, modes are also damped

AI . - 2 ] 2
T) \/.-‘\"*V,,qu|- T :\§|V;,(V,, ’ U.)l“.
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Makes viscosity a bit
bigger, especially near Eq.

June 13, 2011



But matters a lot for
stability!

y
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Figure 4. Maximum Courant number, wAt/Az, for
vertical advection. Gray line is from the LeithOnly inte-
gration and black line is from the LeithPlus integration.

Fox-Kemper & Menemenlis, 2008
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It works herel!
Even with irregular grid!

ECCO2 (Estimating the Circulation & Climate of the Ocean, Phase 2, www.ecco2.org)
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It works herel!
Even with irregular grid!

ECCO2 (Estimating the Circulation & Climate of the Ocean, Phase 2, www.ecco2.org)



Spectra & Viscosity are good for MOLES,
but... Asymptotics tell us to worry about
scalar transport, not momentum for MORANS!

Equations for Large Scale Ocean Dynamics:

No more momentum fluxes!, i.e., b‘_

Grooms, Julien, & F-K, 2011




TESTING MORANS Closures:
Validation & Spatial

variations of
Gent-McWi.illiams & Redi

Idea: Study the fluxes of passive tracers and
reconstruct the flux-gradient relationship

Relies on:
Unique Lagrangian Transport Operator
for All Tracers




Mesoscale Eddy Parameterizations
all have the form:

u'r’ = —-MV7T

2 s |
ik Mot My Vo 7.,
food P i

W Myt NS | Ly,

With John Dennis & Frank Bryan, we took a
POPO.1° Normal-Year forced model (yrs 16-20)
Added 9 Passive tracers--restored X,y,z @ 3 rates
Kept all the eddy fluxes for passive & active
Coarse-grained to 2°, transient eddies, tracers toM




Does this cover all the
degrees of freedom?

@ More tracers does provide a just-determined or
overdetermined (Moore-Penrose/least squares)
problem for M with a unique answer, but...

@ Different tracers will have different fluxes as
they feel the subgrid 'nooks and crannies’ of the
mesoscale eddies!
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u'r’ = —MV7T

Sym Part=Anisotropic* Redi

UL T Koo Guse, %ie s
viT! | SR R e I O R T

- WTEE K 24 124 et 7,
AntiSym Part=Anisotropic* GM

- Subrtay ’ 124 BT .
v TR 24 T

: w1’ : <K K e T,

Yellow K ‘are’ horizontal stirring & mixing




Are Diffusivity Values

Resonable?
w' ! K | 2¢ K i
- Hor. Diffusivity is
TI”GCQ(M) HIS'l'Onglm roughly Trace(M)/2
Peak of Diffusivity
near
250 m?/s

0
iy
O
=
o
o~
=
g
=
=
7ok

Median Diffusivity
near
1000m?/s

2000 4000 6000 2000 10000 YA nega'l'ive
Trace(M)
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Result: Strong Anisotropy Along/Across Isopycnals
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. ymmetric-Antisym (zero if GM K=Redi K]

Result: —

Redi =GM (mostly)

If so these 2 components
should match in Sym & M

(x,.,1-u.3)/2@z=-31 8m (%,n-%., ) 2@2=-318m
\.) o )
i y ™ “ f’)
pores ‘ ..esci . ¥ = &
S e 2 F
% 3 -
\"".é‘.';”‘v; . ""_ &l I -~ 4
P w‘.:" v““h“ «® \Jn'-.""";—4§ e LS ? “" o “ﬁ‘ — - mr
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5 Symmetric-Antisym (zero if GM K=Redi K,

—_—_— 31

Result: ==
Redi =GM (mosﬂy)

If so these 2 components
should match in Sym & Antisym M

(%, +x1,?)f2(q?z=-31 8m (xg,:,+:c,?3)/2'@ z=-318m
d & WL
e dﬁ . . 4@/’1
S * é’ "
" o 4 .’ A

- s e
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Result: Strong Anisotropy Along/Across PV Grads.

Mixing Either along PV 2nd
direction contours or across Eigenvector

cosine between 1rst eigenvector and PV gradient
| ! | | ' Across PV
contours

cosine between 2nd eigenvector and PV gradient

lrst
Eigenvector
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Compare with Eden, Jochum, Danabasoglu
compilation of present parameterizations

g. 1. Annual mean thickness diffusivity (K) in m?/s at 300 m depth in experiment CONST (a), VMHS (b), NSQR (c) and EG (d) after 500 years integration. Values of K are
own for the interior region only, i.e. values of K in the (seasonal maximum) diabatic surface and transition layer are not shown and shaded black. Note the non-linear colour

ale for the thickness diffusity. Note also that the data have been interpolated from the model grid to a regular rectangular grid of similar resolution prior to plotting. The
d mask in the figure (taken from Smith and Sandwell (1997)) differs therefore slightly from the model's land mask.

Monday, June 13, 2011




But, how well does it work? Suppose

we only plot values where different
tracer sefs agree..

Not so many trustworthy values!

Cant reject params!

ST i HE—— |
-1 -0.5 0 0.5 g‘I
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Does this cover all the
degrees of freedom?

@ More tracers does provide a just-determined or
overdetermined (Moore-Penrose/least squares)
problem for M with a unique answer, but...

@ Different tracers will have different fluxes as
they feel the subgrid 'nooks and crannies’ of the
mesoscale eddies!

Monday, June 13, 2011



dt '
— =M1t -1T AN S _‘\/I — Vb’
dt ( O) . U b rec Vb — No restoring
. X 10 100 * LTS
1 | | 1 1 _ 200 * -__S
35| | —500 * LTS
— 1000 * LTS
3t -

0.5 | | Sieoeom=ert GRS
o o0 20 40 i gu 00 120 .
In idealized runs, can see the effect of restoring.

Whatever we do, we need to get buoyancy right!
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In idealized setting, can do better
Reconstruction of eddy Original fluxes
buoyancy fluxes

Reconstructed fluxes

Using specially-tailored non-restored tracers
improves estimate (error is now < 10%)... but
not feasible 1n realistic diagnosis.

In realistic diagnosis, we can 1mprove the estimate a
bit by approximating restoring effect
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Sub-Mesoscale
Parameterizations

@ Anyone who doesn't take truth
seriously in small matters cannot
be trusted in large ones either.

® --Albert Einstein

Monday, June 13, 2011
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The Character of
the Submesoscale

Capet et a, 2008 @ Fronfts
9 ¥ 5 Eddies
@ Ro=0(1)
@ Ri=0(1)

® near-surface B Surface Temp.

@ 1-10km, days

jl Eddy processes mainly R&

(Boccaletti et al ‘07,
Haine & Marshall '98). Y T
Parameterizations of & @@« 0 = ——
baroclinic instability?

R 0 ’ oo
. - C c 2§00 :
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Temperature on day .0

Mixed Layer Eddy Restratification
Estimating eddy buoyancy/density fluxes:

u't =¥ x Vb

A submeso eddy-induced overturning:

C.H?u(z)
/]

U = Vb X Z

cross—channel (km)
N

cross—channel (km)
3

Q 00 200 300 ) 500 600
along—channel (km)
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Temperature on day .0

Mixed Layer Eddy Restratification
Estimating eddy buoyancy/density fluxes:

u't =¥ x Vb
A submeso eddy-induced overturning:
C.H?u(z)
/]

in ML only:
u(z)= 0t 2 <=

U = Vb X Z

Q 00 200 S00 500
along—channel (km)
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Temperature on day .0

Mixed Layer Eddy Restratification
Estimating eddy buoyancy/density fluxes:

u't =¥ x Vb
A submeso eddy-induced overturning:
C.H?u(z)
/]

in ML only:
u(z)= 0t 2 <=

U = Vb X Z

W'l o % Vbl

Q 00 200 S00 500
along—channel (km)
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Temperature on day .0

Mixed Layer Eddy Restratification
Estimating eddy buoyancy/density fluxes:

u't =¥ x Vb
A submeso eddy-induced overturning:
C.H?u(z)
/]

in ML only:
u(z)= 0t 2 <=

U = Vb X Z

H? g 5
w'b x — va
ke

T2 08 (e

u' gb x S e

f

Q 00 200 300 00 S00 50¢
glong—channe (;L; m)
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Mixed Layer Eddy Restratification
Estimating eddy

uwy =w x Vb

A submeso eddy-induced overturning:
C.H?u(z)
/]

I ° Overturnin
In ML Only' Streamfunction ;
L

U = Vb X Z
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What does eddy restratification look like?

Parameterization Prediction Averaged MLE-resolving Model Solution

7d01h from 2d parameterization 7d01h from 3d MITgem (smoothed)
e Tt 7 ¢ 2 7 ¢ 8 1 4 PR | :. | .," Iy / ,'I. N, by l. :. | |

red=streamfunction black=mean density
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What does eddy restratification look like?

-300 ; b e 0] B v pn g gy
10° 10’ 10°

Time-Evolving  N°(s?)
Stratification (N?)
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Mixed Layer
Depth Bias
Versus
Observations
(No MLE,
Control)

Mixed Layer
Depth Bias
Versus

Observations
(With MLE)

Monday, June 13, 2011

CM2M Hml Control-deBM (m) FEB

max=2528m, min=-1560m

CcCM2M Hml Submeso-deBM (m) FEB

400

200

max=1422m, min=-1600m

CM2M H__ Control-deBM (m) SEP

max=2050m, min=-320m

CM2M Hml Submeso-deBM (m) SEP

max=2888m, min=-397m

400

200

400




Physical Sensitivity of to

FFH implemented in CCSM (NCAR), CM2M & CM2G (GFDL)

CM2M Hm Control-daBM (m) FEB CM2M Hm Control-deBM (m) SEP

NO RETUNING
NEEDED!!!

Improves CFCs

Passive tracer
Bias with MLE Bias w/o MLE

Deep ML Bias reduced

From Fox-Kemper et al., 2011

IN'E 3JWE
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, . o Figure 10: Wintertime sea ice sensitivity to introduction of MLE parameterization
Maximum AMOC at 45n in coupled MOM

(CCSM™ minus CCSM™): January to March Northern Hemisphere a) ice area and b)
thickness and July to September Southern Hemisphere ¢) ice area and d) thickness,

Affects sea ice

NO RETUNING
NEEDED!!!
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Langmuir Turbulence
Parameterizations

@ On a list of the 50 most important
things to fix in the ocean model,
Langmuir is number 51.

@ --Bill Large




The Character of
the Langmuir Scale

Near-surface

@

@

Langmuir Cells &
Langmuir Turb.

Ro>>1

Rik1: Nonhydro
10-100m

mins, hours

w, u=0(20cm/s) N e L
Stokes drift Lol R R e
Eqtns: Craik-Leibovich i G

@ © 0 © O @ Q O

unused params exist
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=% An Immature Improvement to
E Air-Sea BL

@Mixing by Langmuir Turbulence SRR L
@Forced by wind and waves SRR AL R
Di.e., Stokes drift & Eulerian Shear N S BT
@Scalings from LES, Observations disagree -~ = . o /L
~d

@We used a 2-part approximation

@1) McWilliams & Sullivan (01) additional
OBL mixing (within mixed layer)

@2) Li & Garrett (98) Langmuir mixing
depth (entrainment)

@Roughly comparable to other schemes,
but crude & incompletely validated

@Needs only u*, u_ to work
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Langmuir Mixing
Forced by Climatology

—WW3

—ERA40

—lOPEX
-CCSM 3.5

(Generalized Turbulent Langmuir)?

Projection of u*, u_ into Langmuir Direction
Monday, June 13, 2011

u* {u“' + |ug| cos ()}

us| | |us| + |u*|cos6
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Tricky: Misaligned Wind & Waves
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Tricky: Misaligned Wind & Waves
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Tricky: Misaligned Wind & Waves
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Coupling between
Langmuir and Submeso?

@ Separate?
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The Game

@ Spin up a submeso-resolving, but

not Langmuir resolving model DCly 6.5 of a Submeso

o 20kmx20kmx0.1km Resolving run
Near Surf. Temp

® Grid 384x384x20

@ 52m resolution 290.166

{ 290.164
@ Interpolate down to Langmuir

resolving LES

290.162

290.16

& 20kmx20kmx0.3km 1C 290.158

290.156

@ Grid 4096x4096x128

290.154

. 290.152
@ 5m resolution >

290.15

@ Run for 2 more days, then... 5 _



The Game

@ Spin up a submeso-resolving, but

not Langmuir resolving model Ddy 6.5 of a Submeso

& 20kmx20kmx0.1km Resolving run
Vert. Velocity

® Grid 384x384x20
@ 52m resolution

@ Interpolate down to Langmuir
resolving LES

@ 20kmx20kmx0.3km

@ Grid 4096x4096x128

@ 5m resolution

@ Run for 2 more days, then...

Monday, June 13, 2011



Coupling Langmuir to

Submesoscale?
Near-Surf Vert. Vel. Near-Surf Temp.

With Stokes Drift | With Stokes Drift

290.155

290.145
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Coupling Langmuir to
Submesoscale?

From Scratch... No interpolation!
Near-Surf. Temp. Near-Surf. Temp.
No Stokes Drift Submeso-Only Res.

290.15

290.145 .

290.14

290.135

290.13
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Conclusions

@ Mesoscale, Submesoscale, and Langmuir scale
phenomena all have a nontrivial affect on
the global climate, thus need accurate
parameterizations

@ Parameterizations are developed by
comparison to higher-resolution models, with
careful diagnosis of interesting terms

@ These high resolution models reveal primary
balances and spatiotemporal dependence that
should be approximated by the
parameterizations.
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Locations of
E extraction
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Result:
coarse KE-> vertical structure of Mixing

K x v/ (KE)

Histogram of Iogl 0(KE) VS. Iogw(M eig. #1) Slope Histogram of Iogl 0(KE) VSs. Iog1 0(M eig. #2) Slope
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°00 °00
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0 0
S 2 0

Even better with EKE!

Note--barotropic mode is in there!
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Comparisons with Marshall et al.

zohal » value #2

horizontal isopycnal ’

-500

-1000

-1500

-2000

-2500

-3000

.
zonal us eigenvalue #2

Cal i aTal

-500

-1000

-1500

-2000

—
o
(-
o

-2500

™ Critical Layer?

Depth (m)

=8 thus nonlocal vert. modes?

brna’rh et al 09

Monday, June 13, 2011



Locations of
E extraction

100 150 200 250 300 350

Locations of
large eigs of

100 150 200 250 300 350

Monday, June 13, 2011



Use a Natural, Mesoscale Eddy
Environment to Test Out:
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Use a Natural, Mesoscale Eddy
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Use a Natural, Mesoscale Eddy
Environment to Test Out:
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Scaling: Antisymmetric part

K
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Scaling: Larger symmetric eigenvalue
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Scaling: Smaller symmetric eigenvalue
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Overdetermined vs. Underdetermined:

Mean values across eddying region

tme (days)

and y_~ are mathematically equivalent!
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Parameterization of Finite Amp. Eddies: Ingredients

time (days)
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Parameterization of Finite Amp. Eddies: Ingredients
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Parameterization of Finite Amp. Eddies: Ingredients

Finite
Amplitude

kinetic energy (m2/32)
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time (days) time (days)
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Parameterization of Finite Amp. Eddies: Ingredients

kinetic energy (m2/32)

| Finite
Ampl|1-Ude - -~ basin-avg. pert. KE
linear predict. pert. KE.

’ I oL y _
\'s
\»’ i Y, initial mean KEZ: 1/2(M? H/f)?

\’:\, — avg. pert. \# in front

' ' | ' 15 20 5
6 8 10 12 .
time (days) time (days)

Vert. Excursions

(b’ /N?)

rms

scale with H

time (days)
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Parameterization of Finite Amp. Eddies: Ingredients

250+

Finite
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15 20 25 30
time (days)

Eddy Fluxes
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iIsopycnal slope-

time (days)
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Parameterization of Finite Amp. Eddies: Ingredients
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