Uncertainty in Ocean General Circulation Model Mixing Tensors

Baylor Fox-Kemper, University of Colorado Boulder, Brown U. (>Jan. 2013) Cooperative Insititute for Research in Environmental Sciences and Dept. of Atmospheric and Oceanic Sciences with Frank Bryan (NCAR), John Dennis (NCAR), Scott Bachman (CIRES/ATOC), Jim McWilliams (UCLA), NCAR Oceanography Section

> Bayesian Confab 13:30 – ??, Aug. 9, 2012; Boulder, Colorado

> > Sponsors: NSF 0825614; NASA NNX09AF38G TeraGRID, IBM, NCAR CISL

Mesoscale Parameterizations

Researchers have already cast much darkness on this subject and if they continue their investigations we shall soon know nothing at all about it.

Image: Image:

Ocean Equations*: Boussinesq Fluid on Tangent Plane to a Rotating Sphere

 $\begin{aligned} \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla_h \mathbf{u} + w \partial_z \mathbf{u} + Ro^{-1} \mathbf{f} \times \mathbf{u} &= -\overline{P} \nabla_h p + Re^{-1} \nabla^2 \mathbf{u} \\ \partial_t w + \mathbf{u} \cdot \nabla_h w + w \partial_z w &= -\overline{P} \partial_z p + \Gamma b \mathbf{\hat{z}} + Re^{-1} \nabla^2 w \end{aligned}$ Buoyancy (or S, T): $\partial_t b + \mathbf{u} \cdot \nabla_h b + w \partial_z b = Pe^{-1} \nabla^2 b$ $\nabla_h \cdot \mathbf{u} + \partial_z w = 0$

Re, Pe for an affordable gridscale are 10⁶ to 10¹¹

Numerics require O(1)

*From Grooms, Julien, & F-K, 11

Parameters		Ratios			
Rossby	$Ro = \frac{U}{f_0 L}$	$A_{\tau} = \frac{L}{U\tau^{\star}} = \frac{t^{\star}}{\tau^{\star}}$			
Euler	$\overline{P} = rac{p^{\star}}{ ho_0 U^2}$	$A_h = rac{L}{L_{pg}}$			
Buoyancy	$\Gamma = \frac{BL}{U^2}$	$A_z = \frac{H}{L}$			
Reynolds	$Re = \frac{UL}{\nu}$	$A_eta = rac{L_{pg}}{R} an arphi_0$			
Péclet	$Pe = \frac{UL}{\kappa}$				

What is a parameterization?

Express the coarse-grain averages of quantities (including the subgrid effects), e.g.:

The Character of the ¹⁰⁰_{km} Mesoscale

(Capet et al., 2008)

Longitude

FIG. 16. Sea surface temperature measured at 1832 UTC 3 Jun 2006 off Point Conception in the California Current from CoastWatch (http://coastwatch.pfeg.noaa.gov). The fronts between recently upwelled water (i.e., 15°–16°C) and offshore water (≥17°C) show submesoscale instabilities with wavelengths around 30 km (right front) or 15 km (left front). Images for 1 day earlier and 4 days later show persistence of the instability events. BoundaryCurrents

Eddies

Ro=O(0.1)

Ri=O(1000)

Full Depth

 Eddies strain to produce Fronts
 100km, months

Eddy processes mainly baroclinic & barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

Mesoscale Eddy Parameterizations all have the form: $\mathbf{1}'\tau' = -\mathbf{V}\tau$ $-\begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix}$ $\overline{ au}_x$ $u'\tau'$ $\overline{v'\tau'}$ $\overline{ au}_y$ $m'\tau'$

Count Degrees of Freedom:

3 tracer flux components3 tracer gradient components9 tensor elements!

Does this cover all the degrees of freedom? More tracers does provide a just-determined or overdetermined (Moore-Penrose/least squares) problem for M with a unique answer, but...

 Different tracers will have different fluxes as they feel the subgrid 'nooks and crannies' of the mesoscale eddies!

With John Dennis & Frank Bryan, we took a POP0.1° Normal-Year forced model (yrs 16-20) Added 9 Passive tracers--restored x,y,z @ 3 rates Kept all the eddy fluxes for passive & active Coarse-grained to 2°, transient eddies, tracers to M

Underdetermined

Overdetermined

$\overline{u au_1} - \overline{u}\overline{ au}_1$	$\overline{u au_N} - ar{u}ar{ au}_N$		M_{xx}	M_{xy}	M_{xz}	$\overline{} \overline{\tau}_{1,x}$	$ar{ au}_{N,x}$]
$\overline{v\tau_1} - \overline{v}\overline{\tau}_1 \dots$	$\overline{v au_N} - \overline{v}\overline{ au}_N$	= -	M_{yx}	M_{yy}	M_{yz}	$ \bar{\tau}_{1,y} \dots$	$ar{ au}_{N,y}$
$\overline{w au_1} - \overline{w}\overline{ au}_1$	$\overline{w\tau_N} - \overline{w}\overline{\tau}_N$		M_{zx}	M_{zy}	M_{zz}	$\int \left[\bar{\tau}_{1,z} \right]$	$ar{ au}_{N,z}$]

Is Lagrangian Transport Unique?

- Taylor 1921/1953 says yes, in a decorrelation timescale sense
- If non-conservative tracers, then no
- Nearly conservative tracers--probably something that becomes identical in limit
- Active vs. passive tracers?

What does mean mean?

Temporal averaging -> 8yr average by season or overall

Must preserve covariances... 20x increase in variables Spatial coarse-graining 10km->200km 20x20 gridpoints per coarse-gridpoint 400x reduction of variables Collect

slow,coarse; slow,fine; fast,coarse; fast,fine

Result: Strong Anisotropy Along/Across Isopycnals

But, how well does it work? Suppose we only plot values where different tracer sets agree...

In idealized setting, can do better Reconstruction of eddy buoyancy fluxes

Using specially-tailored non-restored tracers improves estimate (error is now < 10%)... but not feasible in realistic diagnosis.

In realistic diagnosis, we can improve the estimate a bit by approximating restoring effect

Uncertainty... How many tracers needed?

Distribution?

Underdetermined

Overdetermined

$\overline{u au_1} - \overline{u}\overline{ au}_1$	$\overline{u au_N} - ar{u}ar{ au}_N$		M_{xx}	M_{xy}	M_{xz}	$\overline{} \overline{\tau}_{1,x}$	$ar{ au}_{N,x}$]
$\overline{v\tau_1} - \overline{v}\overline{\tau}_1 \dots$	$\overline{v au_N} - \overline{v}\overline{ au}_N$	= -	M_{yx}	M_{yy}	M_{yz}	$ \bar{\tau}_{1,y} \dots$	$ar{ au}_{N,y}$
$\overline{w au_1} - \overline{w}\overline{ au}_1$	$\overline{w\tau_N} - \overline{w}\overline{\tau}_N$		M_{zx}	M_{zy}	M_{zz}	$\int \left[\bar{\tau}_{1,z} \right]$	$ar{ au}_{N,z}$]

Uncertainty... Coarse-grain? What is the mean & eddy? Flierl & McWilliams '77: ~30 yrs of Eulerian obs. needed for variances & co-variances Single snapshots are huge at Global 10km (>2.10⁸ gridpoints, 5 state variables, 9 tensor elements, 3N fluxes, N tracers, N variances, etc) Spatial coarse-graining desirable to improve averaging and condense dataset

Underdetermined

Overdetermined

 $\begin{bmatrix} \overline{u\tau_1} - \overline{u}\overline{\tau}_1 & \overline{u\tau_N} - \overline{u}\overline{\tau}_N \\ \overline{v\tau_1} - \overline{v}\overline{\tau}_1 & \dots & \overline{v\tau_N} - \overline{v}\overline{\tau}_N \\ \overline{w\tau_1} - \overline{w}\overline{\tau}_1 & \dots & \overline{w\tau_N} - \overline{w}\overline{\tau}_N \end{bmatrix} = -\begin{bmatrix} M_{xx} & M_{xy} & M_{xz} \\ M_{yx} & M_{yy} & M_{yz} \\ M_{zx} & M_{zy} & M_{zz} \end{bmatrix} \begin{bmatrix} \overline{\tau}_{1,x} & \overline{\tau}_{N,x} \\ \overline{\tau}_{1,y} & \dots & \overline{\tau}_{N,y} \\ \overline{\tau}_{1,z} & \overline{\tau}_{N,z} \end{bmatrix}$

Could INCLUDE AVERAGING in linear model: Then get distribution pre-coarse graining & time avg

Conclusions: None Prospects:

Can we make a better measure of the uncertainty profile?

Can we use the distribution in stochastic, rather than deterministic, parameterizations?

Can we detect times when the flux-gradient relationship itself fails?

Can we specify better averaging kernels?

$\overline{\mathbf{u}\tau} - \overline{\mathbf{u}} \,\overline{\tau} = -\mathbf{M}\nabla\overline{\tau} + \overline{\epsilon}$

Result: Strong Anisotropy Along/Across PV Grads.

1.5