Uncertainty in Ocean General Circulation Model Mixing Tensors

Baylor Fox-Kemper,

University of Colorado Boulder, Brown U. (>Jan. 2013)
Cooperative Insititute for Research in Environmental Sciences and Dept. of Atmospheric and Oceanic Sciences
with
Frank Bryan (NCAR), John Dennis (NCAR),

Scott Bachman (CIRES/ATOC), Jim McWilliams (UCLA), NCAR Oceanography Section

Bayesian Confab
13:30 - ??, Aug. 9, 2012; Boulder, Colorado

Sponsors:
NSF 0825614; NASA NNX09AF38G
TeraGRID, IBM, NCAR CISL

Mesoscale

Parameterizations

- Researchers have already cast much darkness on this subject and if they continue their investigations we shall soon know nothing at all about it.
- --Mark Twain

Ocean Equations*:

Boussinesq Fluid on Tangent Plane to a Rotating Sphere

$\partial_{t} \mathbf{u}+\mathbf{u} \cdot \nabla_{h} \mathbf{u}+w \partial_{z} \mathbf{u}+R o^{-1} \mathbf{f} \times \mathbf{u}=-\bar{P} \nabla_{h} p+R e^{-1} \nabla^{2} \mathbf{u}$

$$
\partial_{t} w+\mathbf{u} \cdot \nabla_{h} w+w \partial_{z} w=-\bar{P} \partial_{z} p+\Gamma b \hat{\mathbf{z}}+R e^{-1} \nabla^{2} w
$$

Buoyancy (or s, T): $\partial_{t} b+\mathbf{u} \cdot \nabla_{h} b+w \partial_{z} b=P e^{-1} \nabla^{2} b$

$$
\nabla_{h} \cdot \mathbf{u}+\partial_{z} w=0
$$

Re, Pe for an affordable gridscale are 10^{6} to 10^{11}

Numerics require $O(1)$

*From Grooms, Julien, \& F-K, 11

Parameters		Ratios
Rossby	$R o=\frac{U}{f_{0} L}$	$A_{\tau}=\frac{L}{U \tau^{*}}=\frac{t^{*}}{\tau^{*}}$
Euler	$\bar{P}=\frac{p^{*}}{\rho_{0} U^{2}}$	$A_{h}=\frac{L}{L_{p g}}$
Buoyancy	$\Gamma=\frac{B L}{U^{2}}$	$A_{z}=\frac{H}{L}$
Reynolds	$R e=\frac{U L}{\nu}$	$A_{\beta}=\frac{L_{p g}}{R} \tan \varphi_{0}$
Péclet	$P e=\frac{U L}{\kappa}$	

What is a parameterization?

- Express the coarse-grain averages of quantities (including the subgrid effects), e.g.:

- As a function of the resolved coarse-grain fields

$$
\frac{\overline{\partial \tau}}{\partial t}=\frac{\partial \bar{\tau}}{\partial t} \quad \overline{\partial u} \quad \overline{\partial x}=\frac{\partial \bar{u}}{\partial x} \quad \overline{\frac{\partial u \tau}{\partial x}}=\frac{\partial \bar{u} \bar{\tau}}{\partial x}+\frac{\partial \overline{u^{\prime} \tau^{\prime}}}{\partial x}
$$

- Note that nonlinear terms require special treatment
- And Couple different scales, small talks to large!

The Character of the ${ }_{\mathrm{km}}^{100}$

Mesoscale

(Capet et al., 2008)

Longitude

- Boundary Currents
- Eddies
- $\mathrm{Ro}=\mathrm{O}(0.1)$
- $\mathrm{Ri}=O(1000)$
- Full Depth
- Eddies strain to produce Fronts
- 100 km , months

Eddy processes mainly baroclinic \& barotropic instability. Parameterizations of baroclinic instability (GM, Visbeck...).

Mesoscale Eddy Parameterizations all have the form:

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\overline{v^{\prime} \tau^{\prime}} \\
\overline{w^{\prime} \tau^{\prime}}
\end{array}\right]=-\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{l}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Count Degrees of Freedom:
3 tracer flux components
3 tracer gradient components 9 tensor elements!

Does this cover all the degrees of freedom?

- More tracers does provide a just-determined or overdetermined (Moore-Penrose/least squares) problem for M with a unique answer, but...
- Different tracers will have different fluxes as they feel the subgrid 'nooks and crannies' of the mesoscale eddies!

Mesoscale Eddy Parameterizations all have the form: $\overline{\mathbf{u}^{\prime} \tau^{\prime}}=-\mathbf{M} \nabla \bar{\tau}$
$\left[\begin{array}{c}\overline{u^{\prime} \tau^{\prime}} \\ \frac{v^{\prime} \tau^{\prime}}{w^{\prime} \tau^{\prime}}\end{array}\right]=-\left[\begin{array}{lll}M_{x x} & M_{x y} & M_{x z} \\ M_{y x} & M_{y y} & M_{y z} \\ M_{z x} & M_{z y} & M_{z z}\end{array}\right]\left[\begin{array}{c}\bar{\tau}_{x} \\ \bar{\tau}_{y} \\ \bar{\tau}_{z}\end{array}\right]$
With John Dennis \& Frank Bryan, we took a POPO. 1° Normal-Year forced model (yrs 16-20) Added 9 Passive tracers--restored x, y, z @ 3 rates Kept all the eddy fluxes for passive \& active Coarse-grained to 2°, transient eddies, tracers to M

$\mathbf{u}^{\prime} \tau^{\prime}=-\mathbf{M} \nabla \bar{\tau}$

$$
\begin{gathered}
\text { Sym Part=Anisotropic* Redi } \\
{\left[\begin{array}{c}
\frac{u^{\prime} \tau^{\prime}}{v^{\prime} \tau^{\prime}} \\
\frac{w^{\prime} \tau^{\prime}}{}
\end{array}\right]=-\left[\begin{array}{lll}
K_{x x} & K_{x y} & \mathrm{~K} \\
K_{y x} & K_{y y} & \mathrm{~K} \\
\mathrm{~K} & \mathrm{~K} & \mathrm{~K}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]}
\end{gathered}
$$

AntiSym Part=Anisotropic* GM

$$
\left[\begin{array}{c}
\overline{u^{\prime} \tau^{\prime}} \\
\hline \frac{v^{\prime} \tau^{\prime}}{\overline{w^{\prime} \tau^{\prime}}}
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 0 & -\hat{\mathbf{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
0 & 0 & -\hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbb{Z}} \\
\hat{\mathrm{x}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbf{z}} \hat{\mathbf{y}} \cdot \mathbf{K} \cdot \tilde{\nabla}_{\mathbf{z}} & 0
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{x} \\
\bar{\tau}_{y} \\
\bar{\tau}_{z}
\end{array}\right]
$$

Yellow K 'are' horizontal stirring \& mixing

Underdetermined

$$
\left[\begin{array}{c}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1}
\end{array}\right]=-\left[\begin{array}{ccc}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{1, x} \\
\bar{\tau}_{1, y} \\
\bar{\tau}_{1, z}
\end{array}\right]
$$

Just-determined
$\left[\begin{array}{ccc}\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & \overline{u \tau_{2}}-\bar{u} \bar{\tau}_{2} & \overline{u \tau_{3}}-\bar{u} \bar{\tau}_{3} \\ \overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \overline{v \tau_{2}}-\bar{v} \bar{\tau}_{2} & \overline{v \tau_{3}}-\bar{v} \bar{\tau}_{3} \\ \overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & \overline{w \tau_{2}}-\bar{w} \bar{\tau}_{2} & \overline{w \tau_{3}}-\bar{w} \bar{\tau}_{3}\end{array}\right]=-\left[\begin{array}{ccc}M_{x x} & M_{x y} & M_{x z} \\ M_{y x} & M_{y y} & M_{y z} \\ M_{z x} & M_{z y} & M_{z z}\end{array}\right]\left[\begin{array}{ccc}\bar{\tau}_{1, x} & \bar{\tau}_{2, x} & \bar{\tau}_{3, x} \\ \bar{\tau}_{1, y} & \bar{\tau}_{2, y} & \bar{\tau}_{3, y} \\ \bar{\tau}_{1, z} & \bar{\tau}_{2, z} & \bar{\tau}_{3, z}\end{array}\right]$

Overdetermined

$$
\left[\begin{array}{ccc}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & & \overline{u \tau_{N}}-\bar{u} \bar{\tau}_{N} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \cdots & \overline{v \tau_{N}}-\bar{v} \bar{\tau}_{N} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & & \overline{w \tau_{N}}-\bar{w} \bar{\tau}_{N}
\end{array}\right]=-\left[\begin{array}{ccc}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{ccc}
\bar{\tau}_{1, x} & & \bar{\tau}_{N, x} \\
\bar{\tau}_{1, y} & \ldots & \bar{\tau}_{N, y} \\
\bar{\tau}_{1, z} & & \bar{\tau}_{N, z}
\end{array}\right]
$$

Is Lagrangian Transport Unique?

- Taylor $1921 / 1953$ says yes, in a decorrelation timescale sense
- If non-conservative tracers, then no
- Nearly conservative tracers--probably something that becomes identical in limit
- Active vs. passive tracers?

What does mean mean?

- Temporal averaging -> $8 y r$ average by season or overall
- Must preserve covariances...
- $20 x$ increase in variables
- Spatial coarse-graining 10 km ->200km
- 20×20 gridpoints per coarse-gridpoint
- 400x reduction of variables
- Collect
- slow,coarse; slow,fine; fast,coarse; fast,fine

Result: Strong Anisotropy Along/Across Isopycnals
Mixing direction

Eigenvectors@z=-318m

Eigenvectors@z=-318m

Eigenvectors@z=-318m

Mixing:

Real Eigenvals@z=-318m

Imag. Eigenvals@z=-318m
Stirring:

Imag. Eigenvals@z=-318m

Are Diffusivity Values Resonable?

Hor. Diffusivity is roughly Trace(M)/2

Peak of Diffusivity near $250 \mathrm{~m}^{2} / \mathrm{s}$

Median Diffusivity near $1000 \mathrm{~m}^{2} / \mathrm{s}$ <6\% negative

But, how well does it work? Suppose we only plot values where different tracer sets agree...

$$
\frac{d \tau}{d t}=-\lambda\left(\tau-\tau_{0}\right)
$$

$$
{\overline{v^{\prime} b^{\prime}}}_{\text {rec }}^{\prime}=-\mathbf{M} \nabla \bar{b} \stackrel{\substack{v^{\prime \prime} b^{\prime} \\ \text { Nor re }}}{ }
$$

In idealized $r^{20} n s, c^{40} n s e e^{i 0}$ the éffect of restoring. Whatever we do, we need to get buoyancy right!

In idealized setting, can do better
Reconstruction of eddy buoyancy fluxes

Original fluxes

- Reconstructed fluxes

Using specially-tailored non-restored tracers improves estimate (error is now $<10 \%$)... not feasible in realistic diagnosis.

In realistic diagnosis, we can improve the estimate a bit by approximating restoring effect

Uncertainty... How many tracers needed?

- Distribution?

Underdetermined

$$
\left[\begin{array}{c}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1}
\end{array}\right]=-\left[\begin{array}{ccc}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{1, x} \\
\bar{\tau}_{1, y} \\
\bar{\tau}_{1, z}
\end{array}\right]
$$

Just-determined
$\left[\begin{array}{ccc}\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & \overline{u \tau_{2}}-\bar{u} \bar{\tau}_{2} & \overline{u \tau_{3}}-\bar{u} \bar{\tau}_{3} \\ \overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \overline{v \tau_{2}}-\bar{v} \bar{\tau}_{2} & \overline{v \tau_{3}}-\bar{v} \bar{\tau}_{3} \\ \overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & \overline{w \tau_{2}}-\bar{w} \bar{\tau}_{2} & \overline{w \tau_{3}}-\bar{w} \bar{\tau}_{3}\end{array}\right]=-\left[\begin{array}{ccc}M_{x x} & M_{x y} & M_{x z} \\ M_{y x} & M_{y y} & M_{y z} \\ M_{z x} & M_{z y} & M_{z z}\end{array}\right]\left[\begin{array}{ccc}\bar{\tau}_{1, x} & \bar{\tau}_{2, x} & \bar{\tau}_{3, x} \\ \bar{\tau}_{1, y} & \bar{\tau}_{2, y} & \bar{\tau}_{3, y} \\ \bar{\tau}_{1, z} & \bar{\tau}_{2, z} & \bar{\tau}_{3, z}\end{array}\right]$

Overdetermined

$$
\left[\begin{array}{ccc}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & & \overline{u \tau_{N}}-\bar{u} \bar{\tau}_{N} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \cdots & \overline{v \tau_{N}}-\bar{v} \bar{\tau}_{N} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & & \overline{w \tau_{N}}-\bar{w} \bar{\tau}_{N}
\end{array}\right]=-\left[\begin{array}{ccc}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{ccc}
\bar{\tau}_{1, x} & & \bar{\tau}_{N, x} \\
\bar{\tau}_{1, y} & \ldots & \bar{\tau}_{N, y} \\
\bar{\tau}_{1, z} & & \bar{\tau}_{N, z}
\end{array}\right]
$$

Uncertainty... Coarse-grain? What is the mean \& eddy?

- Flierl \& McWilliams '77: ~30 yrs of Eulerian obs. needed for variances \& co-variances
- Single snapshots are huge at Global 10 km
- (>2.10 ${ }^{8}$ gridpoints, 5 state variables, 9 tensor elements, 3 N fluxes, N tracers, N variances, etc)
- Spatial coarse-graining desirable to improve averaging and condense dataset

Underdetermined

$$
\left[\begin{array}{c}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1}
\end{array}\right]=-\left[\begin{array}{ccc}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{c}
\bar{\tau}_{1, x} \\
\bar{\tau}_{1, y} \\
\bar{\tau}_{1, z}
\end{array}\right]
$$

Just-determined
$\left[\begin{array}{ccc}\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & \overline{u \tau_{2}}-\bar{u} \bar{\tau}_{2} & \overline{u \tau_{3}}-\bar{u} \bar{\tau}_{3} \\ \overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \overline{v \tau_{2}}-\overline{v \tau_{2}} & \overline{\bar{u} \bar{\tau}_{3}}-\bar{v} \bar{\tau}_{3} \\ \overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & \overline{w \tau_{2}}-\overline{w \tau_{2}} & \overline{w \tau_{3}}-\bar{w} \bar{\tau}_{3}\end{array}\right]=-\left[\begin{array}{ccc}M_{x x} & M_{x y} & M_{x z} \\ M_{y x} & M_{y y} & M_{y z} \\ M_{z x} & M_{z y} & M_{z z}\end{array}\right]\left[\begin{array}{ccc}\bar{\tau}_{1, x} & \bar{\tau}_{2, x} & \bar{\tau}_{3, x} \\ \bar{\tau}_{1, y} & \bar{\tau}_{2, y} & \bar{\tau}_{3, y} \\ \bar{\tau}_{1, z} & \bar{\tau}_{2, z} & \bar{\tau}_{3, z}\end{array}\right]$
Overdetermined

$$
\left[\begin{array}{ccc}
\overline{u \tau_{1}}-\bar{u} \bar{\tau}_{1} & & \overline{u \tau_{N}}-\bar{u} \bar{\tau}_{N} \\
\overline{v \tau_{1}}-\bar{v} \bar{\tau}_{1} & \cdots & \overline{v \tau_{N}}-\bar{v} \bar{\tau}_{N} \\
\overline{w \tau_{1}}-\bar{w} \bar{\tau}_{1} & & \overline{w \tau_{N}}-\bar{w} \bar{\tau}_{N}
\end{array}\right]=-\left[\begin{array}{lll}
M_{x x} & M_{x y} & M_{x z} \\
M_{y x} & M_{y y} & M_{y z} \\
M_{z x} & M_{z y} & M_{z z}
\end{array}\right]\left[\begin{array}{lll}
\bar{\tau}_{1, x} & & \bar{\tau}_{N, x} \\
\bar{\tau}_{1, y} & \cdots & \bar{\tau}_{N, y} \\
\bar{\tau}_{1, z} & & \bar{\tau}_{N, z}
\end{array}\right]
$$

Could INCLUDE AVERAGING in linear model:
Then get distribution pre-coarse graining \& time avg

Conclusions: None

Prospects:

- Can we make a better measure of the uncertainty profile?
- Can we use the distribution in stochastic, rather than deterministic, parameterizations?
- Can we detect times when the flux-gradient relationship itself fails?
- Can we specify better averaging kernels?
$\overline{\mathbf{U} \tau}-\overline{\mathbf{U}} \bar{\tau}=-\mathbb{M} \nabla \bar{\tau}+\bar{\epsilon}$

Result: Strong Anisotropy Along/Across PV Grads.

Mixing Either along PV direction contours or across

