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A Global Parameterization of Mixed Layer Eddy
Flow & Scale Aware Restratification

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland,
M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer eddies. llI:

Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78,
2011.

uwb =W x Vb

U — NG < 7

Compare to the original singular, unrescaled version

>
v :ICG}‘If”u(Z) Vb X Z

New version handles the equator, and averages over many fronts
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Submeso closure is
already scale-aware!

®@You can use the global/gcm form at
any resolution.

@It turns itself off as the ML def.
radius becomes resolved.




The Earths Climate
System is driven by the
Suns light
(minus outgoing infrared)

Dissipation concludes turbulence BEE=Eam & NN,
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3D Turbulence Cascade

forcing range

E(k)

Spectral
Density
of
Kinetic
Energy
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1963: Smagorinsky Viscosity Scaling,
So the Energy Cascade is Preserved,

but order-1 gridscale Reynolds #: Re™ = UL/V*

y _(Mx)2 (au* av*)z, (au* | av*>2
T\ ox 9y /) "\ 9y ' ox
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2D Turbulence Differs -....om

forcing
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Spectral Inverse
Density Cl:Energdy
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Energy

dissipation
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1996: Leith Devises Viscosity Scaling,
So that the Enstrophy (vorticity®) Cascade is Preserved

Barotropic or
stacked layers
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Some MOLES
Truncation
Methods In Use
2d (SWE) test

2D Navier-Stokes Homogeneous
f-plane Turbulence
81922 Truth=Black
10082 LES in color

& Harmonic/Biharmonic/Numerical 10 . 100

Graham & Ringler, 2013 Ocean Modelling

& Many. Often not scale- or flow-aware
@ Griffies & Hallberg, 2000, is one aware example
@ Fox-Kemper & Menemenlis, 2008. ECCO2.
@ Leith Viscosity (2d Enstrophy Scaling)
@ Chen, Q., Gunzburger, M., Ringler, T., 2011
@ Anticipated Potential Vorticity of Sadourny

In this comparison,
untuned Leith beats:
tuned harmonic,
tuned biharmonic,
Smagorinsky,
LANS-alpha, &
Anticipated PV

: 3 ; See also Ramachandran et al, 2013
@ Other session going on now in Y10 Ocean Modelling for SMOLES
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QG Turbulence: Pot’| Enstrophy cascade
(o’ren’rial vorticit 2) J. Charney, 1971 JAS

forcing
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F-K & Menemenlis ‘08: Revise Leith Viscosity Scaling,
So that diverging, vorticity-free, modes are also damped

3 B. Fox-Kemper and D. Menemenlis. Can large eddy
Ax simulation techniques improve mesoscale-rich ocean
I \/A6|Vh42d |2 4 A(61|Vh(vh . u*)|2 model§? Ip M. Hecht. and H..Hasumi, editors, Ocean

TC Modeling in an Eddying Regime, volume 177, pages

319-338. AGU Geophysical Monograph Series, 2008.
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30 CAN LARGE EDDY SIMULATION TECHNIQUES IMPROVE MESOSCALE RICH OCEAN MODELS?

& - el -
~ - . - . FOX-KEMPER AND MENEMENLIS 331
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Figure 4. Maximum Courant aumber, wAvAz, for vertical advection. Gray line is from the LeithOnly integration, 2nd black line is
from the LeithPlus integration.

it W

B. Fox-Kemper and D. Menemenlis. Can large eddy

simulation techniques improve mesoscale-rich ocean

—~— — models? In M. Hecht and H. Hasumi, editors, Ocean

Figure 3. Monthly mezn bikarmonic viscosity. v,. ia the model's surface level for December 2001 Units zre m* s ' and color scale  [NIOILENITaloRTgRe=To W <o (o )Y/[aTo M a{cTo |10 g [SMAVIo] (V10 I-Ty WAVARN oT=To [T
displays log, (v ). Top panel is from the LeizhOnly integration. Middle panel is from the LeirhPlus mtegration. Bottom panel shows 319-338. AGU Geophysical Monograph Series, 2008.

pent modification of the LeichPlus integration.
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Is 2D Turbulence a good
proxy for neutral flow?

Yes: Thermocline
3 For a Few eddy ‘I'ime_ Nurser & Marshall, 1991 JPO @ BOIUS Fluxes——
scales QG & 2D AGREE Divergen’r 2d flow

(Bracco et al. '04)
@ Sloped, not horiz.

@ Barotropic Flow--Obvious
2d analogue @ Surface Effects?




Some Asymptotic Limits,

Following McWilliams ‘85

@ Very Small Fr,
but large Ro:

The following equations result

@ stacked 2d Ro [% + Vy -VVy + Fr? max(Ro"'l, l)w%VH]
layers 3
+ max(1, Ro)Vym + (1 -+ _y) kxVy=0,
@ Very Small H/L, Jo (2.44)
small b: , '
Fr2H [Bw + Vi - w+ Fr?max(Ro™* l)wgw]
@ Barotropic 2d L* | ot 02
Turbulence N %W _b=0 (2.45)
@ Ro, Fr, beta << 1, b . 2 -1 9 N* _
5 + Vi - Vb + Fr° max(Ro ,l)wazb+ng 0,
o & Ro/Fr=Ld/L=l, (2.46)
s,
, 2 -1 Y. _
0 QG SQG V-Vy 4+ Fremax(Ro ", 1) Py 0. (2.47)
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QG Turbulence: Pot’| Enstrophy cascade
(o’ren’rial vorticit 2) J. Charney, 1971 JAS

forcing
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In real Pierrehumbert, Held, Swanson, 1994 Chaos

Spectra of Local and Nonlocal Two-dimensional Turbulence

stratified

flows, things Enstrophy

are a bit
more

complex
than in 2d RAd

Spectrum

Even more
than QG... IRA

Surface

Effects may R
dominate 1 \ngenumber1oo
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= " W. Bl , 1978 JAS
SQG Turbulence: Surface Buoyancy & Velocity e e

cascade--scales surface horiz. diffusivity only smitetal. 2002, srm

forcing
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And QG pot’l enstrophy Leith
IS ... working in MITgcm

@ Scott Bachman (DAMTP) has implemented this QG Leith
closure in the MITgcm

@ Both Germano Dynamic and Fixed Coefficient
@ Sefts viscosity=diffusivity=GM coefficient
@ Both are stable and robust, very similar (is dynamical needed?)

@ Both work better than Smagorinsky, smoother spectrum to
grid scale (to be shown next).

@ But, we dont yet understand the spectral behavior of all test
cases. 2d barotropic, QG, & SQG, equatorial are coexistent...




Movie: S. Bachman
Potential Temperature

Day 1

Zonal Average

S. Bachman and
B. Fox-Kemper.
Eddy
parameterization
challenge suite. I:
Eady spindown.

: Ocean Modelling,

17.02 17.04 17.06 17.08 64:12-28, 2013.
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p ‘OIS pecian O Enetuy; od Mo siops =% Dio b sldge = Fourier Spectrum of Enerqy; red line slope = -3, blue ling slope = -5/3
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Comparing the spectrum in QG Leith against another
(inappropriate) LES closure, we see:

1) Better adherence to expected spectrum

2) Less "ski jump” near gridscale

3) Effects of choice *not limited™ to small scales, slope in
Smag. is too steep across whole range!
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Fluxes:
Horizontal Buoyancy
<vb>

Parameterized:
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Fluxes:
Vertical Buoyancy
<wb>

Parameterized:
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Fluxes:
Momentum
VWD

Parameterized:
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- -4x, dynamical

4x, non-dynamical
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1x, non-dynamical
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A Prescription for Parameterization...
Needs to be checked in various
regimes
@ QG Leith & Potential Vorticity to generate #1 viscosity

@ 2D Leith & Barotropic Vorticity to generate #2 viscosity

® SQG Leith & Surf. Buoyancy to generate #3 diffusivity

o Take max(#1, #2, #3) as viscosity, Redi diffusivity, *and™ as
GM '|'ra ns Fer Coefﬁ Nearly suggested by Roberts & Marshall, 98, JPO

@ Note: Unlike Eddy-Free closures, e.g., Visbeck et al (97),
Eddy-Rich closures take advantage of resolved eddies &
instabilities, only need a boost from eddy-permitting to
eddy-resolving (and for numerical stability)




