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Significant Air-Sea Heat Flux Errors vs. Data (Large & Yeager 09)
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S.C. Bates, B. Fox-Kemper, S.R. Jayne, W.G. Large, S. Stevenson, and S.G. Yeager. Mean biases, variability, and trends in air-sea fluxes and 
SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.
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Near-surface
Langmuir Cells & 
Langmuir Turb.
Ro>>1
Ri<1: Nonhydro
10-100m
10s to mins
w, u=O(10cm/s)
Stokes drift
Eqns: Craik-Leibovich
Params: McWilliams & 
Sullivan, 2000, etc.

Image: 
Leibovich, 83The Character of the 

Langmuir Scale

Image: Quickbird, 
Deepwater Horizon 
Oil Spill
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WAVEWATCH III is run as a CESM component, then
Large & Yeager (04) Normal Year Ocean Only, 

15-month run
(Qing Li, new primary)
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La

There are about 5 different
scalings for the enhancement

factor is use, many based on LES.  
Shown here are

McWilliams & Sullivan (00)
Harcourt & D’Asaro (08, Approximated)

Van Roekel et al. (2011, aligned)
Fan & Griffies (2013)
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WAVEWATCH III is run as a CESM component, then
Large & Yeager (04) Normal Year Ocean Only, 15-month run

(Qing Li, new primary)
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Compare to 
GFDL
CM2M

(Fully-Coupled)

Similar results

Fan & Griffies 
(2013, subm.)

Details differ,
both are based 
on McWilliams 

& Sullivan 
(2000)
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Offline Calculation 
using Harcourt (2013)

Second-Moment 
Closure,

Argo Initial Conds.,
and Large & Yeager 
(04) Normal Year

Less deepening than 
the CESM/KPP/McW&S 

&
GFDL/KPP/McW&S

E. A. D'Asaro, J. Thomson, A. Y. 
Shcherbina, R. R. Harcourt, M. F. Cronin, 
M. A. Hemer, and B. Fox-Kemper. 
Quantifying upper ocean turbulence driven 
by surface waves. Geophysical Research 
Letters, 2013. in press.
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Waves in Climate Models
Adding wave models into climate models is now done at 
NCAR, GFDL, CSIRO, FIO, ECMWF/Hadley

Substantial mixed layer deepening is seen from Langmuir 
turbulence, especially in S. Ocean.  

Need to:

Cross-check extant parameterizations

Cross-check different models

Retune other parameterizations (e.g., submeso 
restratification limiters). 

Build “data waves” cheap & accurate version.

Explore other wave-driven processes (air-sea, bubbles, etc.)
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Boundary 
Currents
Eddies
Ro=O(0.1)
Ri=O(1000)
Full Depth
Eddies strain to 
produce Fronts
100km, months

The Character of the 
Mesoscale

100 
km

(Capet et al., 2008)

Eddy processes mainly baroclinic & 
barotropic instability. Parameterizations 
of baroclinic instability (GM, Visbeck...).

(NASA GSFC Gallery)

Surface Temp.

200m Temp.

Temp x-z Section
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Parameterization of 
Mesoscale Eddies

Scott Reckinger (New Primary)
• Continuity and tracer evolution (Boussinesq with no 

irreversible effects)

• Reynolds averaged equations

• Tracer eddy flux modeled as

r · ~u = 0

@t�+r · ~u� = 0

r · h~ui = 0

@t h�i+ h~ui ·rh�i = �r · h~u0�0i

~u = h~ui+ ~u0

� = h�i+ �0
h~u0i = ~0

h�0i = 0

Needs 
closure!

h~u0�0i = � ¯̄J ·rh�i
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Parameterization of 
Mesoscale Eddies

• Split tensor into symmetric and antisymmetric parts

• Governing tracer equation (drop average notation)
@t�+ ~u ·r� = r ·

⇣
¯̄K + ¯̄A

⌘
·r�

¯̄J = ¯̄K + ¯̄A

mixing
dissipative
symmetric

eddy diffusivity tensor
reduce global tracer variance

stirring
advective

antisymmetric
eddy transport tensor

zero tracer variance effect
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Traditional 
Gent-McWilliams  

• Align harmonic (horizontally 
isotropic) diffusion of tracers 
along neutral (isopycnal) 
surfaces with diffusive flux 
is down the tracer gradient

• Eddy-induced stirring 
flattens neutral slopes and 
releases stored potential 
energy with skew flux is 
perpendicular to the tracer 
gradient
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0
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• Generalize to anisotropic horizontal diffusion
• Symmetric diffusivity tensor 

• real eigenvalues => diffusivity values
• orthogonal eigenvectors => principal axes

• When the tracer gradient is partly orientated 
along a principal axis, the amount of diffusion in 
that direction is given by the associated 
eigenvalue and the tracer gradient projection
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Anisotropic 
Following Smith & Gent (04)
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• The advective stirring has been historically 
associated with an eddy-induced bolus velocity and 
streamfunction

• In the anisotropic case, the streamfunction 
components involve both isopycnal slope directions

• The streamfunction is used to formalize the Near 
Surface Eddy Flux Parameterization (NSEF)
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Anisotropic 
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Eddy Transport Operator
• Associate a functional, where the functional 

derivative is equal to the diffusive operator
• Avoid introducing         computational modes that 

can lead to numerical stability issues
• Ensure consistency by reducing global variance

2�x

G(�) = �1

2

Z
dVr� · ¯̄K ·r�

�G(�)
��

= R(�) ⌘ r · ¯̄K ·r�

Griffies et al. (98), Smith & Gent (02)
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• Discrete functional is the
global sum of the discrete
integrand 

• Discrete diffusion operator
at a point is the discrete
functional derivative
with respect to 
• Requires a local sum of

only the cells whose
contribution to     
depends on 

• Split cell into 8 subcells +  
24 neighboring subcells

�ijk

G(�)

�ijk

Discretization of the 
Eddy Transport Operator

G(�) =1

2

X

ijk

8X

n=1

v
ijkn

[K
xx

(@
x

�+ S
x

@
z

�)2 +

K
yy

(@
y

�+ S
y

@
z

�)2 +

2K
xy

(@
x

�+ S
x

@
z

�) (@
y

�+ S
y

@
z

�)]

Rijk = � 1

Vijk

@G(�)
@�ijk

Tuesday, January 28, 14



• Advective tensor terms discretized in the same way 
as the contributions to          from the off-diagonal 
elements of the discretized diffusivity tensor

Discretization of the 
Eddy Transport Operator
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• Requires true 3D volume integration
• Terms with derivatives in all 3 dimensions

e.g.                          or
• Sensitive to rapid changes of the grid 

spacing lengths among neighboring cells
• Accurate subcell volume calculations
• Appropriate grid spacing lengths for 

discrete differentiation
• NSEF parameterization - streamfunction 

and the associated horizontal diffusion has 
modifications for the anisotropic case

Discretization of the 
Anisotropic Operator
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Ongoing/Future Work
• Advance the work of 

Smith and Gent (2004) - 
North Atlantic simulations 
using anisotropic GM

• Global simulations using 
Large and Yeager (2009) 
dataset - to show the 
effectiveness of including 
anisotropy 

• Model enhancements, 
such as allowing partial 
bottom cells
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B. Fox-Kemper, R. Lumpkin, and F. O. Bryan. Lateral transport in the ocean interior. In 
G. Siedler, S. M. Griffies, J. Gould, and J. A. Church, editors, Ocean Circulation and 
Climate: A 21st century perspective, volume 103 of International Geophysics Series, 
chapter 8, pages 185-209. Academic Press (Elsevier Online), 2013.

One eigenvalue 
is similar to 

either N2 param
(Danabasoglu & 
Marshall) or 

Eden & 
Greatbatch

Other is larger, 
probably due to 

shear 
dispersion
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Conclusions & Status
Scott Reckinger (new)

Anisotropic GM/Redi is now coded in CESM/POP

Compiles & runs stably in ocean-only mode.  Includes 
extension of transition layer physics to anisotropic K.

Need to:

Cross-check vs. old GM/Redi code for backwards 
compatibility

Run control cases in coupled & Ocean-Only modes

Run simple aniso cases--By OS14

Implement physics params leading to anisotropic transports:         
shear dispersion, PV barriers

Implement & cross-check in different models
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