
Coherence – Autocorrelation, and 
Taylor and Integral Scales: Average 
Integral scale is ~10 sec, but some 
intervals stay correlated up to ~100 sec. 
 
 
 
 
 
 
 
 
 
 
Intermittency – Probability density 
function: Flow is more intermittent at 
time scales of ~30-60 sec, which 
correlate to ~3-6m by Taylor’s hypothesis 
 
Anisotropy – Barycentric Map from 
eigenvalues (λi) of the anisotropy tensor 
(Banerjee et al. 2007): Flow is not 
isotropic! 
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Questions and Method Stochastic Model 

Conclusions 
Observational data results: 
•  Coherence was measured through autocorrelations, intermittency was measured 
through probability density functions, and anisotropy was measured based on the 
eigenvalues of the anisotropy tensor.  
•  Physical characteristics were parameterized by the turbulence intensity, turbulent 
kinetic energy, coherent turbulent kinetic energy, and anisotropy magnitude, which 
was introduced.  
•   A was shown to be the best at parameterizing coherence and anisotropy.  
HydroTurbSim results:  
•    No coherent events are seen in the autocorrelation functions. 
•  Anisotropy is only captured when defined by the input (Reynolds shear stresses), 
but not the normal stresses, as seen in the pdf. 
•   HydroTurbSim does what it is built to do, but doesn’t capture coherent events. 
•   LES is expected to capture the coherent structures that HydroTurbSim cannot.  
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Dates Feb 17-21, 2011 

Depth 22m 
Sampling 
Frequency 32 Hz 

Hub Height 4.7m 
Hub Height 

Max. Velocity 1.8 m/s 

C1c = λ1 − λ2
C2c = 2(λ2 − λ3)
C3c = 3λ3 +1

How do we describe the turbulence that a tidal turbine will 
experience, with only a time series of observations at one 
location in space? 
 
What are the physical characteristics – size, shape, frequency – 
of the turbulence? 
 
Can we parameterize, or simply classify, turbulence without 
doing the full analysis of physical characteristics? 
  
How well can we model these turbulent properties with a 
stochastic turbulence generator? 
  
Using data from an acoustic Doppler velocimeter in Puget Sound, WA, we 
perform a detailed characterization of the turbulent flow encountered by 
a turbine in a tidal strait.  These results will be useful for improved 
realism in modeling the performance and loading of turbines in realistic 
ocean environments. 
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Observations 
The data used in this analysis were 

collected from an acoustic Doppler 

velocimeter (ADV) off Nodule Point in 

the Puget Sound (Thomson et al. 2012). 

For a more in-depth description of the 

sites and the data collection details, see 

Thomson et al. (2012). 
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A new and improved metric for turbulence characterization and 
classification (McCaffrey et al, submitted): 
1.  Coordinate-system invariant 
2.  Units of energy 
3.  Built to be like CTKE which correlates with loads (Kelley et al 2000) 
4.  Includes anisotropy from shear stresses (from invariant, II – 

Lumley and Newman, 1977) and normal stresses (from k)  
 
Anisotropy Magnitude: 
 

Anisotropy Magnitude 

A = k aijaji

Physical Descriptors 

Figure 1: Horizontal component of velocity for the 4-day observation campaign. 
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Turbulence Metrics 
Turbulence Intensity:          Coherent Turbulent Kinetic Energy: 

     

 
 

Turbulent Kinetic Energy:    Anisotropy Tensor: 

Iu =
σ u

u
=

u '2 − n2

u
CTKE = 1

2
u 'v '( )2 + u 'w '( )2 + v 'w '( )2

Λ = ρ(τ )dτ
0

∞

∫

λ(sec) Λ (sec) 

Iu 0.596 0.450 
TKE 0.747 0.079 
CTKE 0.680 0.017 
A 0.884 0.317 

Output from the National Renewable 
Energy Laboratory’s HydroTurbSim 
model was analyzed to determine which 
aspects of the realistic flow a stochastic 
turbulence generator captures. 
 
Input: 
•  Background mean flow profile 
•  Turbulent spectral density curve 
based on observations 
•  Turbulence intensity standard 
•  Reynolds Stresses 
Method:  
•  Inverse fast Fourier transform  
•  Spatial correlation function 
Output: 
•  Two-dimensional snapshots of three 
velocity components in time (or, 
assuming Taylor’s hypothesis, the third 
dimension in space) 

HydroTurbSim creates turbulence with a 
set turbulence spectrum, and defines 
anisotropy based on random-phase 
correlations between Reynolds stresses, 
and proportions between normal 
stresses.  

Parameterization 
How do we represent how 
“turbulent” a location is? 

 
Is Iu, CTKE, or A better at 

representing intermittency, 
coherence, and anisotropy? Λ 

 

Figure 4: Barycentric map based on eigenvalues 
colored by A for the ADV data at Nodule Point. 
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Figure 7: Probability density function of 
velocity differences from HydroTurbSim data 
for Δt=1/10s (black), and 3m (gray) and 6m 
(white) rotor diameters.  

 No 
anisotropy! 

Reynolds stresses 
set correct 

location and A 

A best captures:  
•  Anisotropy from 

barycentric maps 
•  Intermittency from pdfs  
•  Coherence from the Taylor 

scale 

Figure 2: Autocorrelation function from ADV 
data at Nodule Point, with the average. 

Coherent 
structures 

Figure 5: A versus Taylor scale, λ, with 
regrression for the ADV data at Nodule Point. 

Parameterization methods: 
•  Barycentric maps colored by 4 metrics 
•  Pdfs separated by strength of 4 metrics 
•  Regression performed on Taylor and 

Integral scales versus 4 metrics 

Figure 8: Barycentric map from HydroTurbSim 
data colored by A. 
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Figure 9: Turbulence intensity, Iu, versus mean 
speed, colored based on A for HydroTurbSim 
data. Black dots are average Iu from ADV data. 

Figure 3: Probability density function of 
velocity differences from ADV data at Δt=1/32s 
(black), and 3m (gray) and 6m (white) rotor 
diameters. 

 Anisotropy 

Figure 6: Autocorrelation from HydroTurbSim 
data, with the average. 

No coherent 
structures! 


