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Atmosphere-ocean boundary 
layers and fluxes



Brown et al., 2014 IPCC AR5, 2013

In practice, it is easier to observe the integrated 
ocean effects (ocean heat content (OHC), salinity) 

rather than the fluxes themselves.


However, problematic prediction and attribution—
this is where modeling helps!

Presence of observable variability



What does hydrography show?

OHCs and fluxes are not fixed!


90% anomalous (anthropogenic?) warming ends up in oceans. 

Hansen et al. (2011).

J. Hansen et al.: Earth’s energy imbalance and implications 13433

 
Fig.10. (a) Estimated contributions to planetary energy imbalance in 1993-2008, and (b) in 2005-2010.  
Except for heat gain in the abyssal ocean and Southern Ocean, ocean heat change beneath the upper ocean 
(top 700 m for period 1993-2008, top 2000 m in period 2005-2010) is assumed to be small and is not 
included.  Data sources are the same as for Figs. 8 and 9.  Vertical whisker in (a) is not an error bar, but 
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates.  Error bar in 
(b) combines estimated errors of von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010). 
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Fig. 10. (a) Estimated contributions to planetary energy imbalance in 1993–2008, and (b) in 2005–2010. Except for heat gain in the abyssal
ocean and Southern Ocean, ocean heat change beneath the upper ocean (top 700m for period 1993–2008, top 2000 m in period 2005–2010)
is assumed to be small and is not included. Data sources are the same as for Figs. 8 and 9. Vertical whisker in (a) is not an error bar, but
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates. Error bar in (b) combines estimated errors of
von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010).

10.3 Summary of contributions to planetary energy
imbalance

Knowledge of Earth’s energy imbalance becomes increas-
ingly murky as the period extends further into the past. Our
choice for starting dates for summary comparisons (Fig. 10)
is (a) 1993 for the longer period, because sea level began to
be measured from satellites then, and (b) 2005 for the shorter
period, because Argo floats had achieved nearly full spatial
coverage.
Observed planetary energy imbalance includes upper

ocean heat uptake plus three small terms. The first term is
the sum of non-ocean terms (Fig. 9a). The second term, heat
gain in the abyssal ocean (below 4000m), is estimated to be
0.027± 0.009Wm�2 by Purkey and Johnson (2010), based
on observations in the past three decades. Deep ocean heat
change occurs on long time scales and is expected to increase
(Wunsch et al., 2007). Because global surface temperature
increased almost linearly over the past three decades (Hansen
et al., 2010) and deep ocean warming is driven by surface
warming, we take this rate of abyssal ocean heat uptake as
constant during 1980–present. The third term is heat gain
in the ocean layer between 2000 and 4000m for which we
use the estimate 0.068± 0.061Wm�2 of Purkey and John-
son (2010).
Upper ocean heat storage dominates the planetary energy

imbalance during 1993–2008. Ocean heat change below
700m depth in Fig. 10 is only for the Southern and abyssal
oceans, but those should be the largest supplements to up-
per ocean heat storage (Leuliette and Miller, 2009). Levi-
tus et al. (2009) depth profiles of ocean heat gain suggest
that 15–20 percent of ocean heat uptake occurs below 700m,
which would be mostly accounted for by the estimates for

the Southern and abyssal oceans. Uncertainty in total ocean
heat storage during 1993–2008 is dominated by the discrep-
ancy at 0–700m between Levitus et al. (2009) and Lyman et
al. (2010).
The Lyman et al. (2010) upper ocean heat storage of

0.64± 0.11Wm�2 for 1993–2008 yields planetary energy
imbalance 0.80Wm�2. The smaller upper ocean heat gain
of Levitus et al. (2009), 0.41Wm�2, yields planetary energy
imbalance 0.57Wm�2.
The more recent period, 2005–2010, has smaller upper

ocean heat gain, 0.38Wm�2 for depths 10–1500m (von
Schuckmann and Le Traon, 2011) averaged over the entire
planetary surface and 0.41Wm�2 for depths 0–2000m. The
total planetary imbalance in 2005–2010 is 0.58Wm�2. Non-
ocean terms contribute 13 percent of the total heat gain in this
period, exceeding the contribution in the longer period in part
because of the increasing rate of ice melt.
Estimates of standard error of the observed planetary en-

ergy imbalance are necessarily partly subjective because the
error is dominated by uncertainty in ocean heat gain, in-
cluding imperfect instrument calibrations and the possibil-
ity of unrecognized biases. The von Schuckmann and Le
Traon (2011) error estimate for the upper ocean (0.1Wm�2)
is 0.07Wm�2 for the globe, excluding possible remaining
systematic biases in the Argo observing system (see also
Barker et al., 2011). Non-ocean terms (Fig. 8) contribute
little to the total error because the terms are small and well
defined. The error contribution from estimated heat gain
in the deep Southern and abyssal oceans is also small, be-
cause the values estimated by Purkey and Johnson (2010) for
these terms, 0.062 and 0.009Wm�2, respectively, are their
95 percent (2-� ) confidence limits.

www.atmos-chem-phys.net/11/13421/2011/ Atmos. Chem. Phys., 11, 13421–13449, 2011

From the Argo Era.Trad. Hydrography



GMST vs. SST 
vs. MLT  vs. OHC

http://www.oc.nps.edu/

BUDGET is for 

Heat Content


Atmosphere 

Recent Warm:

0.15K/decade


=

3.4m Ocean:

0.15K/decade


=

34m Ocean:


0.15K/century

<


0.01% this 

seasonality



S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-
sea fluxes and SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.

Global climate models 
do pretty well at 

matching heat fluxes 
and watermasses.  


Models get better 
every generation due 

to improved 
resolution and 

parameterizations


What do we usually 
do to make these 
improvements?


Changes to model 
physics, clouds, 

resolution, numerics, 
etc.  Updates of the 
flux laws (but not 

recently)



BUT, 

S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-
sea fluxes and SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.

Often agreement in 
time mean fluxes


Often disagreement in 
annual band flux 

variability



Along transects
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Control:  Isotropic Anisotropic

Mesoscale anisotropy often reduces mean biases:
pCFC by up to 24%
Temp by up to 48%
Salinity by up to 63%

Mesoscale Eddies have a 
profound effect on QBML
Even small changes affect
surface warming budget

S. Reckinger, BFK, S. Bachman, 
F. O. Bryan, G. Danabasoglu. 
Anisotropic shear dispersion 
parameterization for mesoscale 
eddy transport. Ocean 
Modelling, In prep, 2015.



Mesoscale Eddy Air-Sea Feedbacks?  

Effect on net air-sea fluxes observed: too hard to parameterize?


Bryan et al. 2010, Frenger et al. 2013



Stephen M. Griffies, Michael Winton, Whit G. Anderson, Rusty Benson, Thomas L. Delworth, Carolina O. 
Dufour, John P. Dunne, Paul Goddard, Adele K. Morrison, Anthony Rosati, Andrew T. Wittenberg, Jianjun Yin, 
and Rong Zhang, 2015: Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate 
Models. J. Climate, 28, 952–977. doi: http://dx.doi.org/10.1175/JCLI-D-14-00353.1

By comparing resolved mesoscale eddies to parameterized 
ones (with same 50km atmosphere), Griffies et al show 
global differences of O(0.7 W/m2) or O(0.14 K/century)

http://dx.doi.org/10.1175/JCLI-D-14-00353.1


Scale-Aware (Leith) Viscosity:  BFK, S. Bachman, B. Pearson, and S. Reckinger. Principles and 
advances in subgrid modeling for eddy-rich simulations. CLIVAR Exchanges, 19(2):42-46, July 
2014.

LLC4320 Model


2km

resolution!

Movie:

D. Menemenlis



LLC4320 Model


Local Analysis:  Z. Jing, Y. Qi, BFK, Y. Du, and S. Lian. Seasonal thermal fronts and their associations with monsoon forcing 
on the continental shelf of northern South China Sea: Satellite measurements and three repeated field surveys in winter, 
spring and summer. Journal of Geophysical Research-Oceans, August 2015. Submitted.

Brown Visitor
from
S. China Sea
Institute of Ocean.

Movie:

Z. Jing



Perform large eddy simulations (LES) of 
Langmuir turbulence with a submesoscale 

temperature front 

Use NCAR LES model to solve Wave-
Averaged Eqtns.  

2 Versions:  1 With Waves & Winds 
1 With only Winds 

Computational parameters: 
 Domain size: 20km x 20km x -160m 

 Grid points: 4096 x 4096 x 128  
 Resolution: 5m x 5m x -1.25m 
1000x more gridpoints than CESM 

LES as big as we can? Movie: P. Hamlington

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive analysis of multiscale frontal spin-down 

simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.

Wind, 
Waves



movie credit:  
P. Hamlington

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive 
analysis of multiscale frontal spin-down simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.

20km x 20km x 150m

domain


14 Day Simulation

1km x 1km x 40m

sub-domain


about 1 day shown

Colors=Temp.

Surfaces on 

Large w



Near Future of Modeling
LES 5m, 20km x 20km, weeks.  Atmosphere & Ocean separate
—not coupled.


NCOM 3-4 km, Global, Forecasts < Annual, ocean-only


JPL ECCO MITgcm LLC4320, 2km, Global, Months, ocean-only


CFSv2, CFSR, 50km, Global, Decades, coupled


CESM 10km, 100km, Global, Centuries, coupled


GFDL 10km, 25km, 100km, Global, Centuries, coupled

For foreseeable future, air-sea flux & 
boundary layer turbulence will be 

parameterized except on very small domains—
on both climate & weather timescales.



Modeling of decadal variability
First-Principle Process & GCM Modeling:  Predictions and Biases

Q. Li, A. Webb, BFK, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on global climate: 
WAVEWATCH III in CESM. Ocean Modelling, August 2015. in press.

Quantify process uncertainty, how much do Langmuir 
mixing or anisotropy of mesoscale eddies affect OHC? 

Roughly 1 W/m2 each

as estimated by integrated T 
difference from control run.  

Model versions differ in net 
air-sea fluxes by 1-6 W/m2 

in mean and rms.  This is 
2-10x the observed trend! 

Retuning, parameterizations, 

resolution. 

S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-sea 
fluxes and SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.



Stochastic (unpredictable beyond persistence) Model: 

Frankignoul & Hasselmann (77)
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 

Tellus 29 (1977), 4 

sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 

STOCHASTIC CLIMATE MODELS 295 

series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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Modeling of decadal variability

Decadal power varies by
2 orders of magnitude

Centennial power varies by
4 orders of magnitude

One difficulty is getting the reservoir in 
communication with the atmospheric variability right.


Another is getting predictable variability right!

These factors are affected by mixed layer depth.



Q. Li, A. Webb, BFK, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III 
in CESM. Ocean Modelling, August 2015. in press.

Langmuir Mixing in CESM: Reduces MLD Errors 

% Summer Change % Winter Change

L. P. Van Roekel, BFK, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation of Langmuir cells for misaligned winds and 
waves. Journal of Geophysical Research-Oceans, 117:C05001, 22pp, May 2012.
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Mesoscale Anisotropy & Mixed Layer Depth
N2 isotropic Anisotropic: ratio=5

Anisotropy deepens MLD in Southern Ocean, shallows MLD in North 
Atlantic, and reduces winter mean rms bias by 15% (annual by 18%)

S. Reckinger, BFK, S. Bachman, F. O. Bryan, G. Danabasoglu. Anisotropic shear dispersion parameterization for 
mesoscale eddy transport. Ocean Modelling, In prep, 2015.



“Twenty years ago, bulk flux schemes were 
considered to be uncertain by about 30%; the 
authors find COARE 3.0 to be accurate within 5% for 
wind speeds of 0–10 m/s and 10% for wind speeds of 
between 10 and 20 m/s.”  (Fairall et al. 2003).


Since then, COARE has been updated to v3.5 (Edson et al. 
2013).  Other observation-based schemes exist as well.


GFDL uses a version of Beljaars (1994)


CESM uses a version of Bryan et al. (1996).

STOCHASTIC CLIMATE MODELS 295 

series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 

This factor is affected by flux laws.



Conclusions
Improvements to mesoscale, fluxes, boundary layer schemes 
are similar in bias change magnitude to introducing new 
physics (submesoscale, Langmuir).


Mesoscale resolution will soon fix many problems—some 
difficulty to parameterization (e.g., mesoscale air-sea coupling)


Scale-aware subgrid models needed for mesoscale resolution


Climate model air-sea flux schemes have not been refreshed 
in 20 years, progress has been made in obs, process, theory 
since then. 


Entrainment, subduction, seasonality are critical to determining 
the reservoir of OHC and its timescale—which relate to 
variability, persistence, predictability.  They depend on getting 
many things right—some easy (Ekman pumping), some hard 
(turbulent entrainment under diverse forcing)
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