
Baylor Fox-Kemper (Brown Geo.)


with Nobu Suzuki, Brodie Pearson, Qing Li, Samantha Bova & Tim Herbert (Brown), 



Arin Nelson & Jeff Weiss (CU-ATOC), Scott Reckinger (Montana State)


Royce Zia (Va. Tech.)



School for Marine Science and Technology Seminar.


U. Massachusetts Dartmouth



706 Rodney French Blvd, New Bedford, MA 9/30/15


Sponsors:  NSF 1245944, 1258907, 1350795, GoMRI, and Institute 

at Brown for Environment and Society (IBES)

Ocean Variability from the 
Surface to the Abyss 



To understand air-sea effects on variability, 
and observations of the consequences, is 

important to distinguish:
Presence of observable variability



Understanding of past variability



Modeling of variability



Prediction of variability

Focus:  diurnal to centennial variability



Brown et al., 2014 IPCC AR5, 2013

In practice, it is easier to observe the integrated 
ocean effects (ocean heat content (OHC), salinity) 
rather than the fluxes themselves. Sea Surface 

Temperature (SST) may approximate OHC. 



However, problematic prediction and attribution

Presence of observable variability



IPCC AR5, 2013

Anthropogenic Forcing



Atmosphere & Surface Energy Budget

Brown et al., 2014



What does hydrography show?


Ocean Heat Content and Fluxes are not fixed!



About 1/3 of forcing ends up warming the oceans


e.g., Hansen et al. (2011).

J. Hansen et al.: Earth’s energy imbalance and implications 13433

 
Fig.10. (a) Estimated contributions to planetary energy imbalance in 1993-2008, and (b) in 2005-2010.  
Except for heat gain in the abyssal ocean and Southern Ocean, ocean heat change beneath the upper ocean 
(top 700 m for period 1993-2008, top 2000 m in period 2005-2010) is assumed to be small and is not 
included.  Data sources are the same as for Figs. 8 and 9.  Vertical whisker in (a) is not an error bar, but 
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates.  Error bar in 
(b) combines estimated errors of von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010). 
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Fig. 10. (a) Estimated contributions to planetary energy imbalance in 1993–2008, and (b) in 2005–2010. Except for heat gain in the abyssal
ocean and Southern Ocean, ocean heat change beneath the upper ocean (top 700m for period 1993–2008, top 2000 m in period 2005–2010)
is assumed to be small and is not included. Data sources are the same as for Figs. 8 and 9. Vertical whisker in (a) is not an error bar, but
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates. Error bar in (b) combines estimated errors of
von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010).

10.3 Summary of contributions to planetary energy
imbalance

Knowledge of Earth’s energy imbalance becomes increas-
ingly murky as the period extends further into the past. Our
choice for starting dates for summary comparisons (Fig. 10)
is (a) 1993 for the longer period, because sea level began to
be measured from satellites then, and (b) 2005 for the shorter
period, because Argo floats had achieved nearly full spatial
coverage.
Observed planetary energy imbalance includes upper

ocean heat uptake plus three small terms. The first term is
the sum of non-ocean terms (Fig. 9a). The second term, heat
gain in the abyssal ocean (below 4000m), is estimated to be
0.027± 0.009Wm�2 by Purkey and Johnson (2010), based
on observations in the past three decades. Deep ocean heat
change occurs on long time scales and is expected to increase
(Wunsch et al., 2007). Because global surface temperature
increased almost linearly over the past three decades (Hansen
et al., 2010) and deep ocean warming is driven by surface
warming, we take this rate of abyssal ocean heat uptake as
constant during 1980–present. The third term is heat gain
in the ocean layer between 2000 and 4000m for which we
use the estimate 0.068± 0.061Wm�2 of Purkey and John-
son (2010).
Upper ocean heat storage dominates the planetary energy

imbalance during 1993–2008. Ocean heat change below
700m depth in Fig. 10 is only for the Southern and abyssal
oceans, but those should be the largest supplements to up-
per ocean heat storage (Leuliette and Miller, 2009). Levi-
tus et al. (2009) depth profiles of ocean heat gain suggest
that 15–20 percent of ocean heat uptake occurs below 700m,
which would be mostly accounted for by the estimates for

the Southern and abyssal oceans. Uncertainty in total ocean
heat storage during 1993–2008 is dominated by the discrep-
ancy at 0–700m between Levitus et al. (2009) and Lyman et
al. (2010).
The Lyman et al. (2010) upper ocean heat storage of

0.64± 0.11Wm�2 for 1993–2008 yields planetary energy
imbalance 0.80Wm�2. The smaller upper ocean heat gain
of Levitus et al. (2009), 0.41Wm�2, yields planetary energy
imbalance 0.57Wm�2.
The more recent period, 2005–2010, has smaller upper

ocean heat gain, 0.38Wm�2 for depths 10–1500m (von
Schuckmann and Le Traon, 2011) averaged over the entire
planetary surface and 0.41Wm�2 for depths 0–2000m. The
total planetary imbalance in 2005–2010 is 0.58Wm�2. Non-
ocean terms contribute 13 percent of the total heat gain in this
period, exceeding the contribution in the longer period in part
because of the increasing rate of ice melt.
Estimates of standard error of the observed planetary en-

ergy imbalance are necessarily partly subjective because the
error is dominated by uncertainty in ocean heat gain, in-
cluding imperfect instrument calibrations and the possibil-
ity of unrecognized biases. The von Schuckmann and Le
Traon (2011) error estimate for the upper ocean (0.1Wm�2)
is 0.07Wm�2 for the globe, excluding possible remaining
systematic biases in the Argo observing system (see also
Barker et al., 2011). Non-ocean terms (Fig. 8) contribute
little to the total error because the terms are small and well
defined. The error contribution from estimated heat gain
in the deep Southern and abyssal oceans is also small, be-
cause the values estimated by Purkey and Johnson (2010) for
these terms, 0.062 and 0.009Wm�2, respectively, are their
95 percent (2-� ) confidence limits.

www.atmos-chem-phys.net/11/13421/2011/ Atmos. Chem. Phys., 11, 13421–13449, 2011

90% anomalous (anthropogenic?) 


warming ends up in the oceans.

From the Argo Era.Trad. Hydrography

0.7 W/m2 to atmosphere


only is about 1.5K/yr



How do we know OHC?
Traditional Hydrography (http://www.ukosnap.org/)

Autonomous: e.g., Argo and Satellite Sea 
Levels.  http://www.argo.ucsd.edu/

GO-SHIP repeat sections: Siedler et al. 2013

Argo floats presently active

http://www.ukosnap.org/
http://www.argo.ucsd.edu/


GMST vs. SST 
vs. MLT  vs. OHC

http://www.oc.nps.edu/

Warming: 


0.7 W/m2



Atmosphere:


1.5K/yr



=


3.4m Ocean:



1.5K/yr


=



34m Ocean:


0.15K/yr



1% of 


mixed layer


seasonality

Which


Temp?

Beginning December 1949,
a weathership or mooring at 
Ocean Station P (50°N, 
145°W, depth 4220 meters)



The net Air-Sea Flux is also about 1% 
of different flux components and 
about 1% of their spatial variation

2006) shows improvement, although many known biases
are still present and are sometimes worse (Fig. 1). The
global present-daymean bias for theQas flux indicates an
overall increase of heat flux into the ocean with the
transition from CCSM3 to CCSM4 with a global mean
bias value of 22.2 W m22 in CCSM3 and 1.5 W m22 in
CCSM4. The root-mean-square error (RMSE) has also
decreased slightly from 25 W m22 in CCSM3 to
23 W m22 in CCSM4. The net Fas 1 R bias has also im-
proved from a global mean bias of 1.1 mg m22 s21 in
CCSM3 to 0.58 mg m22 s21 in CCSM4. The RMSE for
freshwater flux has greatly decreased from 45 to
27 mg m22 s21. The most notable improvements in the
present-day mean Fas 1 R are a reduction of positive
biases in the tropical South Pacific, tropical Atlantic,
Maritime Continent, and western Indian Ocean (Fig. 1,
right panels). Improvements in mean heat flux include
a reduction of biases in the north tropical Atlantic basin,
central to western equatorial Pacific, and western and
equatorial Indian Ocean (Fig. 1, left panels).
The zonalmean of biases andRMSE forQas andFas1R

are shown in Fig. 3. Improvements in RMSE are quite
large in Fas 1 R from approximately 108 to 308S and

slight improvement for most of the Northern Hemi-
sphere south of 608N (solid lines). Differences in mean
biases of Fas1R (dashed lines) are not correlated to the
RMSE and do not span large latitudinal ranges. A sim-
ilar widespread reduction of RMSE is noted inQas from
approximately 308S to 308N (solid lines). An overall in-
crease of Qas mean bias occurs CCSM4 from CCSM3 in
the latitudinal range of 308S to 408N (dashed lines), thus
improving negative biases and causing positive biases to
be worse.
The majority of the freshwater flux improvement re-

sults from large improvements in precipitation biases,
which are reflected in surface salinity biases (see
Danabasoglu et al. 2011). Improvements in the atmo-
sphere model convection scheme (Richter and Rasch
2008) lead to improvements in the statistics of pre-
cipitation extreme events; however, some mean biases
remain. The erroneous double intertropical convergence
zone (ITCZ) south of the equator still exists and there is
an exacerbation of the positive precipitation bias asso-
ciated with the ITCZ north of the equator in the Pacific
Ocean (visible in the Fas 1 R plot of Fig. 1). In general,
the central to western equatorial and midlatitude

FIG. 1. (top) CORE (left) total air–sea heat flux and (right) total freshwater flux (air–sea1 runoff) into the ocean.
Also shown are biases in the present-day mean of these fluxes from the (middle) CCSM3 and (bottom) CCSM4 20C
ensemble means. Units: W m22. The increment in latitude is 158.
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Pacific go from too saline (CCSM3) to too fresh
(CCSM4) (Danabasoglu et al. 2011). Present-day mean
precipitation biases (not shown) also indicate reduced
precipitation in CCSM4 from CCSM3 in Indonesia and
a better representation of precipitation in the South Pa-
cific convergence zone (SPCZ). In CCSM3, the SPCZ
extends to 1308W whereas in the CCSM4 it extends only
to 1608W.
Examination of the individual components of the air–

sea heat flux reveals that themajority of improvement in
Qas in the tropics is due to a reduction of biases in latent
heat flux (Figs. 2 and 3). Although the global mean bias
increases from23.4 W m22 in CCSM3 to26 W m22 in
CCSM4, there are significant improvements in regions
of largest error. The largest improvements in Qas are in
the tropics of all ocean basins. These are the same re-
gions with largest improvement inQE, most notably the
tropical North Atlantic and Maritime Continent region.
All of these regions also have improved SST biases as
well (Danabasoglu et al. 2011) reflecting the connection
between evaporation and SST.With the exception of the
equatorial region, the zonal mean of bias and RMS er-
rors do not reflect these improvements (Fig. 3).
Net shortwave radiation is degraded in the transition

from CCSM3 to CCSM4 (Figs. 2 and 3) with a global

mean bias increase from 2.3 to 9.6 W m22.With a nearly
uniform increase, the result is that negative biases in
CCSM3 are reduced and positive ones made even worse
in CCSM4. Although the zonal mean of biases reflects
the degradation at almost all latitudes, the zonal average
of RMS shows improvement in CCSM4. This reflects the
considerable compensation of regional error that can be
hidden when regionally averaging.
The CCSM4 present-day (1986–2005) regionally av-

eraged flux components are compared to a collection of
flux datasets [compiled by Roske (2006)] in Figs. 4 and 5.
All data are presented here as differences from the re-
gional mean of the CORE flux components. The en-
semble mean difference is displayed as an asterisk, and
the range in differences of various observational data-
sets is indicated by the vertical line. Note that this line
does not represent error, but rather the range of dif-
ferences of the Roske (2006) datasets from CORE. The
purpose of this exercise is to illustrate how the CCSM4
data compare to a variety of flux datasets and how large
their range is.
For many regional components, the observational range

is quite large, thus making it difficult to unambiguously
test model performance; however, the main conclusion
to be drawn from these plots is that the model fluxes lie

FIG. 2. As in Fig. 1, but for (left) net shortwave heat flux and (right) latent heat flux.
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S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-sea 
fluxes and SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.
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S. Stevenson, BFK, and M. Jochum, 2012: Understanding the ENSO-CO2 link using stabilized climate simulations. Journal 
of Climate, 25(22):7917–7936. 

From the >1000yr steady forcing CCSM3.5


runs of Stevenson et al. 2012 

Contours = 4 units Contours = 1 unit

What does a climate model—WITHOUT WARMING—


look like in Ocean Heat Content Variability?



Doesn’t even include mesoscale eddies



Levitus, S., J. I. Antonov, T. P. Boyer, O. K. Baranova, H. E. Garcia, R. A. Locarnini, A.V. Mishonov, J. R. Reagan, D. Seidov, E. S. Yarosh, M. M. 
Zweng, 2012: World Ocean heat content and thermosteric sea level change (0-2000 m) 1955-2010. Geophys. Res. Lett. , 39, L10603, doi:
10.1029/2012GL051106"

Compare to Observational Product



Boundary Currents


Eddies


Ro=O(0.1)


Ri=O(1000)


Full Depth (4km)


Eddy Pot’l Energy: 
13EJ vs. 20EJ in 
Mean Circulation 


Eddy Kinetic Power: 
About equal to mean 
circ. 2-3TW


100km, months

The Character of 
Mesoscale Eddies

100 
km

(Capet et al., 2008)

Mesoscale Eddies will be routinely resolved in 
climate models in 2040—some on this later!



(NASA GSFC Gallery)



CORA and CCSM Total OHC Density Down to 700m

Note: uses an old and questionable definition of trend...
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CORA and CCSM Total OHC Density Down to 700m

Note: uses an old and questionable definition of trend again...
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A. D. Nelson, J. B. Weiss, B. Fox-Kemper, 2015: Reconciling observations and models of ocean heat content variability. In preparation. 

Sophisticated analysis to 
overcome Ship & Argo 

sampling problems—inherent 
uncertainty, O(0.2W/m2), on 

interannual to decadal 
timescales in global average.


O(10W/m2) without analysis.

CORA is Argo+ 

Detrended, Deseasoned

Detrended, Deseasoned,
Sampled at Argo Locations



Another reason to care about ocean warming:


Sea Level Rise



There is observable (autonomous & ship) ocean heat 
content variability.



The near surface seasonal cycle, regional variations, and 
individual flux components are O(100 W/m2)



Global top of atmosphere net imbalance QTOA and net 
mixed layer entrainment QBML is more like O(1 W/m2)



Nonetheless this warming 


is about half of the 


observed sea level rise

Presence of observable variability



Understanding of past variability


Monday Morning Quarterbacking abounds in 
variability analyses, e.g.:



You can’t use 1998 as a start year—it was the 
biggest ENSO event of the past 100yr…



Phase of the IPO/PDO explains the hiatus, 
but we don’t know what causes the IPO/
PDO…



May be explanations and tests of understanding, 
but little predictive power.



Stochastic, Unpredictable (beyond persistence) Model: 


Frankignoul & Hasselmann (77)

STOCHASTIC CLIMATE MODELS 295 

series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 

Tellus 29 (1977), 4 

sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
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seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 
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the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
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integration time in (3.5), the larger the amplitude of 
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case without feedback. 
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formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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Modeling of variability

Air: 1000 J/kg/K, Water: 4186 J/kg/K


Density: Weight Atmosphere=10m Ocean


Area: 71% of Surface => Weight Atmo=14m ocean


Heat Cap: 3.4m Ocean=Whole Atmo 


Ocean = 1000x Atmo. in Heat Capacity

Decadal power varies by
2 orders of magnitude



Consider 
1D Oceans: 
one per 

watermass



Wind-
Driven 


(Ekman) 
flushing 
gives 

upper limit 
to 



damping 
timescale



〈 L  〉  ~  −24.4 

(ZJ)2 /season 

Examples 

Jeffrey B Weiss, Baylor Fox-Kemper, Dibyendu Mandal and Royce K P Zia, 2015: Fluctuation cycles of ocean 
heat content. New Journal of Physics, in prep. 

If Connections Occur Between Regions—Predictability Arises,
Even in Stochastic Systems (Nonequilibrium Stat. Mechanics).

This is the root cause of 
most stochastic model
predictability beyond persistence

Tropical Ocean Heat Content

Polar Ocean Heat Content

Poles->Tropics->Poles->Tropics…



What about modeling every important process in climate models? 


Don’t we have big enough computers? or won’t we soon?

Here are the 
collection of IPCC 

models...



If we can’t resolve 
a process, we 

need to develop a 
parameterization


or subgrid model 

of its effect



10km

100m

3m



S. C. Bates, BFK, S. R. Jayne, W. G. 
Large, S. Stevenson, and S. G. 
Yeager. Mean biases, variability, and 
trends in air-sea fluxes and SST in 
the CCSM4. Journal of Climate, 
25(22):7781-7801, November 2012.

Yes, climate models do pretty 
well at matching heat fluxes.  



Statistically significant 
differences in only a few 

timescales & regions


from observation uncertainty 



Models get better every 
generation due to improved 

resolution and 
parameterizations



What does it take to make 
these improvements?



Boundary Currents


Eddies


Ro=O(0.1)


Ri=O(1000)


Full Depth (4km)


Eddy Pot’l Energy: 
13EJ vs. 20EJ in 
Mean Circulation 


Eddy Kinetic Power: 
About equal to mean 
circ. 2-3TW


100km, months

Recall:


 Mesoscale Eddies

100 
km

(Capet et al., 2008)

Mesoscale Eddies will be routinely resolved in 
climate models in 2040!



(NASA GSFC Gallery)



Mesoscale Eddy Advective 
& Diffusive Transport

BFK, R. Lumpkin, and F. O. Bryan. Lateral transport in the ocean interior. In G. Siedler, S. M. Griffies, J. Gould, and J. A. Church, editors, Ocean 
Circulation and Climate: A 21st century perspective, volume 103 of International Geophysics Series, chapter 8, pages 185-209. Academic Press 
(Elsevier Online), 2013. 

S. Bachman and BFK. Eddy parameterization challenge suite. I: Eady spindown. Ocean Modelling, 64:12-28, 2013 

S. Bachman, BFK, and F. O. Bryan. A tracer-based inversion method for diagnosing eddy-induced diffusivity and advection. Ocean Modelling, 
86:1-14, February 2015.

Symmetric=Diff.

Antisymmetric=Adv.

Flux-Gradient 
(Anisotropic)



Along transects

24

Control:  Isotropic Anisotropic

Anisotropy often reduces biases:
pCFC by up to 24%
Temp by up to 48%
Salinity by up to 63%



Mesoscale Eddy Air-Sea Feedbacks? Resolve the eddies!  


Effect on net air-sea fluxes observed statistically, not parameterized.



Bryan et al. 2010, Frenger et al. 2013



Viscosity Scheme:  BFK and D. Menemenlis. Can large eddy simulation techniques improve mesoscale-rich ocean models? 
In M. Hecht and H. Hasumi, editors, Ocean Modeling in an Eddying Regime, volume 177, pages 319-338. AGU Geophysical 
Monograph Series, 2008.

ECCO2 Model





Climate Model Resolution: an issue for centuries to come!

Here are the 
collection of IPCC 

models...



If we can’t resolve 
a process, we 

need to develop a 
parameterization


or subgrid model 

of its effect



10km



Stephen M. Griffies, Michael Winton, Whit G. Anderson, Rusty Benson, Thomas L. Delworth, Carolina O. 
Dufour, John P. Dunne, Paul Goddard, Adele K. Morrison, Anthony Rosati, Andrew T. Wittenberg, Jianjun 
Yin, and Rong Zhang, 2015: Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of 
Climate Models. J. Climate, 28, 952–977.

By comparing resolved mesoscale eddies to parameterized ones 
(with same 50km atmosphere), we get another entry in the pile!

O(0.7 W/m2) and O(0.4 K/century), i.e., significant warming to 
upper 1500m of ocean.



Viscosity Scheme:  BFK and D. Menemenlis. Can large eddy simulation techniques improve mesoscale-rich ocean models? 
In M. Hecht and H. Hasumi, editors, Ocean Modeling in an Eddying Regime, volume 177, pages 319-338. AGU Geophysical 
Monograph Series, 2008.

LLC4320 Model



2km


resolution!

Movie:


D. Menemenlis



LLC4320 Model



Local Analysis:  Z. Jing, Y. Qi, BFK, Y. Du, and S. Lian. Seasonal thermal fronts and their associations with monsoon forcing 
on the continental shelf of northern South China Sea: Satellite measurements and three repeated field surveys in winter, 
spring and summer. Journal of Geophysical Research-Oceans, August 2015. Submitted.



G. Boccaletti, R. Ferrari, and 
BFK. Mixed layer instabilities 
and restratification. Journal of 
Physical Oceanography, 37(9):
2228-2250, 2007.

200km x 600km 
x 700m


domain



1000 Day 
Simulation



Climate Model Resolution: an issue for centuries to come!

Here are the 
collection of IPCC 

models...



If we can’t resolve 
a process, we 

need to develop a 
parameterization


or subgrid model 

of its effect



10km

100m



Fronts


Eddies


Ro=O(1)


Ri=O(1)


near-surface 
(H=100m)


1-10km, days

The Character of 
the Submesoscale

(NASA GSFC Gallery)

10 
km

(Capet et al., 2008)

Eddy processes often 
baroclinic instability 



Parameterizations =   
BFK et al (08-11).



BFK, R. Ferrari, and R. W. Hallberg. Parameterization 

of mixed layer eddies. Part I: Theory and diagnosis. 

Journal of Physical Oceanography, 38(6):1145-1165, 

2008 

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. 

Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, 

and B. L. Samuels. Parameterization of mixed layer 

eddies. III: Implementation and impact in global ocean 

climate simulations. Ocean Modelling, 39:61-78, 2011. 

S. Bachman and BFK. Eddy parameterization 

challenge suite. I: Eady spindown. Ocean Modelling, 

64:12-28, 2013



Global Ocean Climate is SENSITIVE to even these 


Submesoscale Eddies!  At least in parameterized form 

Implemented in IPCC AR5: NCAR, GFDL, Hadley, NEMO,…

Deep Mixed Layer 


Bias reduced

MLD Bias 


With MLE 



Parameteriz
ation

Mixed layer 
depth Bias w/o 

MLE

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed 

layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.

O(0.1 W/m2) change to 
global mean net fluxes, 
Regional: 5 to 50 W/m2



movie credit:  
P. Hamlington

20km x 20km x 150m


domain



10 Day Simulation

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and 
G. P. Chini. Langmuir-submesoscale interactions: 
Descriptive analysis of multiscale frontal spin-down 
simulations. Journal of Physical Oceanography, 44(9):
2249-2272, September 2014.



Climate Model Resolution: an issue for centuries to come!

Here are the 
collection of IPCC 

models...



If we can’t resolve 
a process, we 

need to develop a 
parameterization


or subgrid model 

of its effect



10km

100m

3m



movie credit:  
P. Hamlington

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive 
analysis of multiscale frontal spin-down simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.

20km x 20km x 150m


domain



10 Day Simulation

1km x 1km x 40m


sub-domain



about 1 day shown

Colors=Temperature


Surfaces of Large w



Near-surface


Langmuir Cells & Langmuir Turb.


Ro>>1


Ri<1: Nonhydro


1-100m (H=L)


10s to 1hr


w, u=O(10cm/s)


Stokes drift


Eqtns:Craik-Leibovich


Params:  McWilliams & Sullivan, 
2000, Van Roekel et al. 2011


Resolved routinely in 2170

The Character of the 
Langmuir Scale

Image: NPR.org, 
Deep Water 
Horizon Spill

image:


Thorpe, 04



Modeling of variability
First-Principle Process & GCM Modeling:  Predictions and Biases

Q. Li, A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on 
global climate: WAVEWATCH III in CESM. Ocean Modelling, August 2015. in press.

How much do Langmuir mixing affect Global OHC? 

Global Air-sea flux 
changes by 0.26 W/m2



when Langmuir mixing 
is introduced  



Regions, e.g. Lab Sea: 
10-15 W/m2

Dashed lines 
include 



wave mixing 
Model Error:
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> 45
There are 851796 drifters in the picture

After 80 Min

Movie: Creative Commons

N. Suzuki and BFK. Understanding Stokes Forces in the 
Wave-Averaged Equations, JGR, in prep, 2015.

A. Webb and B. Fox-Kemper. Impacts of wave spreading 
and multidirectional waves on estimating Stokes drift. 

Ocean Modelling, January 2015. In press

A. Webb and B. Fox-Kemper. Wave spectral moments 
and Stokes drift estimation. Ocean Modelling, 40(3-4):

273-288, 2011.

S. Haney, B. Fox-Kemper, K. Julien, and A. Webb. 
Symmetric and geostrophic instabilities in the wave-

forced ocean mixed layer. Journal of Physical 
Oceanography, September 2015. In press.

Stokes drift does more than 
wave mixing!



Making our way to new 
parameterizations



Approach

Are Fronts and Filaments different with Stokes shear force?

P. E. Hamlington, L. P. Van Roekel, B. Fox-Kemper, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive 
analysis of multiscale frontal spin-down simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.

N. Suzuki, BFK, Hamlington, Van Roekel, Sullivan. Stokes Forces Affect Frontogenesis, JGR, in prep, 2015.

J. C. McWilliams and BFK. Oceanic wave-balanced surface fronts and filaments. Journal of Fluid Mechanics, 730:464-490, 2013. 

Stokes 
Drift

Wind&Waves: 
Down-Stokes  
Fronts are 
Enhanced!

Winds Only: 
Fronts  

are more 
Isotropic

Wind & Waves Wind Only



Predictability of ENSO


events limited to < 1yr



ENSO statistics more predictable?

Prediction of variability



S. Stevenson, BFK, M. Jochum, R. 
Neale, C. Deser, and G. Meehl. 

Will there be a significant change 
to El Nino in the 21st century? 

Journal of Climate, 25(6):
2129-2145, March 2012.

Almost no change to 
ENSO variability with 
GHG… (>200 yr to detect)

Big GHG Change 
to ENSO impacts!



REMOTE 


PROXY



RECONSTRUCTION 
IMPOSSIBLE!!!



S. Stevenson, H. V. McGregor, S. J. Phipps, and B. Fox-Kemper. Quantifying errors in coral-based ENSO 
estimates: Towards improved forward modeling of δ18O. Paleoceanography, 28(4):633-649, December 2013.



Abyssal Variability is the 
HARDEST!

Stochastic damping very slow!


huge heat capacity (biggest watermasses on Earth)!



Timescales may be very long!  


Watermasses O(1500yr) old



Lengthscales may be very short!


(weak stratification implies a Rossby radius of O(2km) for modes 
trapped in AABW only)



Water “formed” in very small areas!


Very small-scale atmospheric & oceanic phenomena will 
be disproportionately important



Difficult to observe, IMPOSSIBLE TO MODEL = FUN!



Even with deep Argo, it will be a while until we 
have long timescale variability.  What to do?

Purkey & Johnson, 2010

Two locations of 
well-dated 

sediment cores 
from the mid-

Holocene 
indicated



Assessing'variability'using'individual'
benthic'foraminifera'
•  Benthic'foraminiferal'δ18O'values'

record'temperature'and'salinity'
proper;es'of'ambient'seawater ''

'T'(°C)'='21.6'F'5.50'✕'(δ18OcFδ18Osw)''

"δ18Osw='F14.38'+0.42*salinity'
'

•  Individual'foraminifera'provide'2F3'
week'snapshots'of'seawater'
proper;es''

•  We'analyze'30F40'individuals'within'
200'year'windows'to'assess'the'mean'
and'variance'of'foraminiferal'δ18O'
values''

Bemis'et'al.'2002''

Uvigerina'spp.'

Conroy'et'al.'2014'

Slide:  Sam Bova

On roughly decadal timescales
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Figure Credit:  Sam Bova

Some individuals
>2C warmer!

Low variability 
in mean climate

Some individuals
colder!



Figure Credit:  Sam Bova

At these four time intervals, the spread of 
individual values fits within a size-matched 
spread of  instrumental standards.  



Figure Credit:  Sam Bova

At these three time intervals, the spread of 
individual values exceeds a size-matched 
spread of instrumental standards.  

The statistical significance of this deviation 
is given by the p-values from a 
Kolmogorov-Smirnov test to compare the 
distributions.  

If this is right—abyssal variability may 
have an unexpectedly important role!



Conclusions
Presence of observable variability



Difficult due to sampling, obs. duration


Interesting problems require paleothermometry!



Understanding of past variability


Possible, but not always a path to progress.



Modeling of variability


Stochastic models work-not always predictive


Deterministic models: discrepancies in tuning, params, resolution.



Prediction of variability


Possible in regions, but global budget requires an 
order-of-magnitude improvement in process-level 
understanding and modeling.


