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Extrapolar Surface Energy Budget

O(2W/m2) change to QBML as important as GHG

Slight oversimplification—sensitivity + budget

Slide: Brown et al., 2014



http://www.metoffice.gov.uk/research/areas/cryosphere-oceans/sea-ice/overview

Arctic Surface Energy Budget



What do hydrographic observations show?

Ocean Heat Content not fixed: QBML not zero (and varies)!

 28% of anthropogenic forcing equals the warming 

in the oceans and about 70% goes back to space.

J. Hansen et al.: Earth’s energy imbalance and implications 13433

 
Fig.10. (a) Estimated contributions to planetary energy imbalance in 1993-2008, and (b) in 2005-2010.  
Except for heat gain in the abyssal ocean and Southern Ocean, ocean heat change beneath the upper ocean 
(top 700 m for period 1993-2008, top 2000 m in period 2005-2010) is assumed to be small and is not 
included.  Data sources are the same as for Figs. 8 and 9.  Vertical whisker in (a) is not an error bar, but 
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates.  Error bar in 
(b) combines estimated errors of von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010). 
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Fig. 10. (a) Estimated contributions to planetary energy imbalance in 1993–2008, and (b) in 2005–2010. Except for heat gain in the abyssal
ocean and Southern Ocean, ocean heat change beneath the upper ocean (top 700m for period 1993–2008, top 2000 m in period 2005–2010)
is assumed to be small and is not included. Data sources are the same as for Figs. 8 and 9. Vertical whisker in (a) is not an error bar, but
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates. Error bar in (b) combines estimated errors of
von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010).

10.3 Summary of contributions to planetary energy
imbalance

Knowledge of Earth’s energy imbalance becomes increas-
ingly murky as the period extends further into the past. Our
choice for starting dates for summary comparisons (Fig. 10)
is (a) 1993 for the longer period, because sea level began to
be measured from satellites then, and (b) 2005 for the shorter
period, because Argo floats had achieved nearly full spatial
coverage.
Observed planetary energy imbalance includes upper

ocean heat uptake plus three small terms. The first term is
the sum of non-ocean terms (Fig. 9a). The second term, heat
gain in the abyssal ocean (below 4000m), is estimated to be
0.027± 0.009Wm�2 by Purkey and Johnson (2010), based
on observations in the past three decades. Deep ocean heat
change occurs on long time scales and is expected to increase
(Wunsch et al., 2007). Because global surface temperature
increased almost linearly over the past three decades (Hansen
et al., 2010) and deep ocean warming is driven by surface
warming, we take this rate of abyssal ocean heat uptake as
constant during 1980–present. The third term is heat gain
in the ocean layer between 2000 and 4000m for which we
use the estimate 0.068± 0.061Wm�2 of Purkey and John-
son (2010).
Upper ocean heat storage dominates the planetary energy

imbalance during 1993–2008. Ocean heat change below
700m depth in Fig. 10 is only for the Southern and abyssal
oceans, but those should be the largest supplements to up-
per ocean heat storage (Leuliette and Miller, 2009). Levi-
tus et al. (2009) depth profiles of ocean heat gain suggest
that 15–20 percent of ocean heat uptake occurs below 700m,
which would be mostly accounted for by the estimates for

the Southern and abyssal oceans. Uncertainty in total ocean
heat storage during 1993–2008 is dominated by the discrep-
ancy at 0–700m between Levitus et al. (2009) and Lyman et
al. (2010).
The Lyman et al. (2010) upper ocean heat storage of

0.64± 0.11Wm�2 for 1993–2008 yields planetary energy
imbalance 0.80Wm�2. The smaller upper ocean heat gain
of Levitus et al. (2009), 0.41Wm�2, yields planetary energy
imbalance 0.57Wm�2.
The more recent period, 2005–2010, has smaller upper

ocean heat gain, 0.38Wm�2 for depths 10–1500m (von
Schuckmann and Le Traon, 2011) averaged over the entire
planetary surface and 0.41Wm�2 for depths 0–2000m. The
total planetary imbalance in 2005–2010 is 0.58Wm�2. Non-
ocean terms contribute 13 percent of the total heat gain in this
period, exceeding the contribution in the longer period in part
because of the increasing rate of ice melt.
Estimates of standard error of the observed planetary en-

ergy imbalance are necessarily partly subjective because the
error is dominated by uncertainty in ocean heat gain, in-
cluding imperfect instrument calibrations and the possibil-
ity of unrecognized biases. The von Schuckmann and Le
Traon (2011) error estimate for the upper ocean (0.1Wm�2)
is 0.07Wm�2 for the globe, excluding possible remaining
systematic biases in the Argo observing system (see also
Barker et al., 2011). Non-ocean terms (Fig. 8) contribute
little to the total error because the terms are small and well
defined. The error contribution from estimated heat gain
in the deep Southern and abyssal oceans is also small, be-
cause the values estimated by Purkey and Johnson (2010) for
these terms, 0.062 and 0.009Wm�2, respectively, are their
95 percent (2-� ) confidence limits.

www.atmos-chem-phys.net/11/13421/2011/ Atmos. Chem. Phys., 11, 13421–13449, 2011

90% of anomalous 
warming is in the oceans.

From the Argo EraTrad. Hydrography

0.7 W/m2 to atmosphere

only is about 1.5K/yr

Hansen et al. (2011)



Another reason to care about ocean warming—and to 
observe it (by subtraction):  Sea Level Rise

(Sea Level)-(Ocean Mass)/Density/Area=Thermosteric Expansion

IPCC AR5, 2013

nesdis.noaa.gov

podaac.jpl.nasa.gov

http://nesdis.noaa.gov
http://podaac.jpl.nasa.gov


http://www.oc.nps.edu/

0.7 W/m2

=


Atmosphere:

1.5K/yr


=

3.4m Ocean:


1.5K/yr

=


34m Ocean:

0.15K/yr

=1% of 


mixed layer

seasonality

Surface, Mixed Layer, 
Seasons?

Beginning December 1949,
a weathership or mooring at 
Ocean Station P (50°N, 
145°W, depth 4220 meters)



Weather, 
Atmosphere


Fast


Ocean, 
Climate

Slow  

3.4m of ocean 
water has 
same heat 
capacity as 
the WHOLE 
atmosphere

ECCO Movie:  Chris Henze, NASA Ames
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The net QBML is also about 1% of 
different flux components and about 

1% of net spatial extremes

2006) shows improvement, although many known biases
are still present and are sometimes worse (Fig. 1). The
global present-daymean bias for theQas flux indicates an
overall increase of heat flux into the ocean with the
transition from CCSM3 to CCSM4 with a global mean
bias value of 22.2 W m22 in CCSM3 and 1.5 W m22 in
CCSM4. The root-mean-square error (RMSE) has also
decreased slightly from 25 W m22 in CCSM3 to
23 W m22 in CCSM4. The net Fas 1 R bias has also im-
proved from a global mean bias of 1.1 mg m22 s21 in
CCSM3 to 0.58 mg m22 s21 in CCSM4. The RMSE for
freshwater flux has greatly decreased from 45 to
27 mg m22 s21. The most notable improvements in the
present-day mean Fas 1 R are a reduction of positive
biases in the tropical South Pacific, tropical Atlantic,
Maritime Continent, and western Indian Ocean (Fig. 1,
right panels). Improvements in mean heat flux include
a reduction of biases in the north tropical Atlantic basin,
central to western equatorial Pacific, and western and
equatorial Indian Ocean (Fig. 1, left panels).
The zonalmean of biases andRMSE forQas andFas1R

are shown in Fig. 3. Improvements in RMSE are quite
large in Fas 1 R from approximately 108 to 308S and

slight improvement for most of the Northern Hemi-
sphere south of 608N (solid lines). Differences in mean
biases of Fas1R (dashed lines) are not correlated to the
RMSE and do not span large latitudinal ranges. A sim-
ilar widespread reduction of RMSE is noted inQas from
approximately 308S to 308N (solid lines). An overall in-
crease of Qas mean bias occurs CCSM4 from CCSM3 in
the latitudinal range of 308S to 408N (dashed lines), thus
improving negative biases and causing positive biases to
be worse.
The majority of the freshwater flux improvement re-

sults from large improvements in precipitation biases,
which are reflected in surface salinity biases (see
Danabasoglu et al. 2011). Improvements in the atmo-
sphere model convection scheme (Richter and Rasch
2008) lead to improvements in the statistics of pre-
cipitation extreme events; however, some mean biases
remain. The erroneous double intertropical convergence
zone (ITCZ) south of the equator still exists and there is
an exacerbation of the positive precipitation bias asso-
ciated with the ITCZ north of the equator in the Pacific
Ocean (visible in the Fas 1 R plot of Fig. 1). In general,
the central to western equatorial and midlatitude

FIG. 1. (top) CORE (left) total air–sea heat flux and (right) total freshwater flux (air–sea1 runoff) into the ocean.
Also shown are biases in the present-day mean of these fluxes from the (middle) CCSM3 and (bottom) CCSM4 20C
ensemble means. Units: W m22. The increment in latitude is 158.
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Pacific go from too saline (CCSM3) to too fresh
(CCSM4) (Danabasoglu et al. 2011). Present-day mean
precipitation biases (not shown) also indicate reduced
precipitation in CCSM4 from CCSM3 in Indonesia and
a better representation of precipitation in the South Pa-
cific convergence zone (SPCZ). In CCSM3, the SPCZ
extends to 1308W whereas in the CCSM4 it extends only
to 1608W.
Examination of the individual components of the air–

sea heat flux reveals that themajority of improvement in
Qas in the tropics is due to a reduction of biases in latent
heat flux (Figs. 2 and 3). Although the global mean bias
increases from23.4 W m22 in CCSM3 to26 W m22 in
CCSM4, there are significant improvements in regions
of largest error. The largest improvements in Qas are in
the tropics of all ocean basins. These are the same re-
gions with largest improvement inQE, most notably the
tropical North Atlantic and Maritime Continent region.
All of these regions also have improved SST biases as
well (Danabasoglu et al. 2011) reflecting the connection
between evaporation and SST.With the exception of the
equatorial region, the zonal mean of bias and RMS er-
rors do not reflect these improvements (Fig. 3).
Net shortwave radiation is degraded in the transition

from CCSM3 to CCSM4 (Figs. 2 and 3) with a global

mean bias increase from 2.3 to 9.6 W m22.With a nearly
uniform increase, the result is that negative biases in
CCSM3 are reduced and positive ones made even worse
in CCSM4. Although the zonal mean of biases reflects
the degradation at almost all latitudes, the zonal average
of RMS shows improvement in CCSM4. This reflects the
considerable compensation of regional error that can be
hidden when regionally averaging.
The CCSM4 present-day (1986–2005) regionally av-

eraged flux components are compared to a collection of
flux datasets [compiled by Roske (2006)] in Figs. 4 and 5.
All data are presented here as differences from the re-
gional mean of the CORE flux components. The en-
semble mean difference is displayed as an asterisk, and
the range in differences of various observational data-
sets is indicated by the vertical line. Note that this line
does not represent error, but rather the range of dif-
ferences of the Roske (2006) datasets from CORE. The
purpose of this exercise is to illustrate how the CCSM4
data compare to a variety of flux datasets and how large
their range is.
For many regional components, the observational range

is quite large, thus making it difficult to unambiguously
test model performance; however, the main conclusion
to be drawn from these plots is that the model fluxes lie

FIG. 2. As in Fig. 1, but for (left) net shortwave heat flux and (right) latent heat flux.
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S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-sea 
fluxes and SST in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.

Solar to 
Ocean

Evaporation 
from Ocean

Net Heat
Air-Sea 



The Ocean Mixed Layer

Stommel’s Demon: ocean properties at depth set by 
deepest wintertime mixed layer & its properties:


Subsurface T, S, CFCs, etc., affected.  Use to check!


From Argo float data courtesy C. de Boyer-Montegut



SALLÉE ET AL.: MIXED-LAYER DEPTHS IN CMIP5 MODELS

Figure 1. Multi-model representation of summer, winter and amplitude of MLD seasonal cycle (in
meters; climatological mean over the “historic” period). (a–c) Observed MLD, (d–f) multi-model mean
bias, (g–i) multi-model standard deviation of bias. Analysis for summer is shown on the left column
(i.e., Figures 1a, 1d, and 1g), for winter on the middle column (i.e., Figures 1b, 1e, and 1h) and for the
amplitude of the seasonal cycle on the right column (i.e., Figures 1c, 1f, and 1i).

ocean general circulation models (AOGCMs) and Earth
system models (ESMs). The required variables were
downloaded from the British Atmospheric Data Centre por-
tal (http://badc.nerc.ac.uk/home/index.html). Variables from
both the ocean and atmosphere components of the model
were used (temperature, salinity, pressure, and velocity for
the ocean component; heat and freshwater air-sea fluxes
for the atmospheric component). At the time of writing, 21
models were available with all the required ocean parame-
ters, while only 14 models had both atmospheric and ocean
parameters available (see Table 1).

[7] The present-day mean state of the models is assessed
through comparisons with observation-based estimates of
the Southern Ocean mixed layer properties. Mixed-layer
structure and characteristics have been computed on indi-
vidual temperature/salinity profiles from the Argo program
and from ship-based observations [Sallée et al., 2010b].

The term “present day” is defined here as the 30 year
period 1976–2005. To assess the model representation of
the present state, data from the CMIP5 “historical” forc-
ing runs is used. The historical runs are fully coupled
experiments that are forced by 20th century variations
of important climate drivers, including both natural and
anthropogenic factors. Two future scenarios are also con-
sidered: Representative Concentration Pathway (RCP) 4.5
(a medium mitigation scenario) and RCP 8.5 (a high
emissions scenario), where the numbers refer to approx-
imate estimates of radiative forcing at the year 2100. A
full range of anthropogenic forcing factors are included
in the RCP scenarios (GHGs, aerosols, chemically active
gases and land use) along with a repeating 11 year solar
cycle (repeating solar cycle 23), which are detailed in
Meinshausen et al. [2011]. In this paper, 21st century
change is defined as the difference between the mean

1847





So, processes important in the 
Polar Upper Ocean?

Submesoscale Eddies—A review of F-K et al. 
2011 parameterization effects


What is the EKE spectrum under ice?


Langmuir Turbulence—A review of Li et al. 2015 
parameterization effects


Atmosphere-Ocean-Ice-Wave coupling?


Mesoscale Eddies—Anisotropy and MLD



Too Simple:  What about directly modeling processes in climate models? 

Don’t we have big enough computers? or won’t we soon?

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we 

need to develop a 
parameterization

or subgrid model 

of its effect


10km grid

100m grid

3m grid
B. Fox-Kemper, S. Bachman, B. 
Pearson, and S. Reckinger. 
Principles and advances in 
subgrid modeling for eddy-rich 
simulations. CLIVAR Exchanges, 
19(2):42-46, July 2014.



10 km

Fronts

Eddies

Ro=O(1)

Ri=O(1)

near-surface 
(H=100m)

1-10km, days

The Character of the 
Submesoscale

(NASA GSFC Gallery)

(Capet et al., 2008)

Eddy processes often 
baroclinic instability 


Parameterizations =      
F-K, Ferrari et al (08-11).

Routinely resolved in 2100


BFK, R. Ferrari, and R. W. Hallberg. Parameterization of 

mixed layer eddies. Part I: Theory and diagnosis. Journal of 

Physical Oceanography, 38(6):1145-1165, 2008 

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. 

Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. 

L. Samuels. Parameterization of mixed layer eddies. III: 

Implementation and impact in global ocean climate 

simulations. Ocean Modelling, 39:61-78, 2011. 

S. Bachman and BFK. Eddy parameterization challenge 

suite. I: Eady spindown. Ocean Modelling, 64:12-28, 2013

http://oceancolor.gsfc.nasa.gov/

http://oceancolor.gsfc.nasa.gov/


No Wind or 
Waves

Submesoscale?

Movie: P. Hamlington

Wind, 
Waves

Submesoscale (1-10km)

fronts & the eddies that form on 
them help restratify the boundary 

layer


Mixing balances restratification 

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive analysis of 
multiscale frontal spin-down simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.



Physical Sensitivity of Ocean Climate to 
Submesoscale Mixed Layer Eddy Restratification: 

MLE implemented in NCAR, GFDL, Hadley, NEMO,
…

ç

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer eddies. III: 

Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.

Bias with MLE 

Parameterization Bias w/o MLE

Improves CFC uptake (Atlantic water masses)



A problem with Mixed Layer Eddy Restratification—

Southern Ocean already too shallow!

ç

Bias w/
o MLE

BFK, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, 

M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization of mixed layer 

eddies. III: Implementation and impact in global ocean climate simulations. 

Ocean Modelling, 39:61-78, 2011.

Shallow ML 
Bias worse

Sallee et al. (2013) 
show a shallow S. 

Ocean MLD bias is in 
most* climate models 

even those with MLE 

parameteriation!


salinity forcing or 
ocean physics?


*CMIP5 ensemble

Bias 
with 
MLE

Observations of MLEs in S. Ocean 
It’s not that they aren’t there!



A Global Parameterization of Mixed Layer Eddy              Flow 
& Scale Aware Restratification 
validated against simulations

Eb(k) ⇥ k�2 ⇤ � =
�
�x

Lf

⇥
CeH2µ(z)⇤

f2 + ⇥�2
⌅b� ẑ

u′b′ ≡ Ψ ×∇b̄

Ψ =
CeH

2µ(z)

|f |
∇b̄ × ẑ

Compare to the original singular, unrescaled version

New version handles the equator, and averages over many fronts

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. Samuels. Parameterization 
of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 39:61-78, 2011.



Different Eddy Spectra 
Under Ice?

B. Fox-Kemper, G. Danabasoglu, R. Ferrari, S. M. Griffies, R. W. 
Hallberg, M. M. Holland, M. E. Maltrud, S. Peacock, and B. L. 
Samuels. Parameterization of mixed layer eddies. III: 
Implementation and impact in global ocean climate simulations. 
Ocean Modelling, 39:61-78, 2011.

If accurate, k-3 implies a reduction of submesoscale effect by about 20x. 





Near-surface 

Langmuir Cells & Langmuir Turb. 

Ro>>1 

Ri<1: Nonhydro 

1-100m (H=L) 

10s to 1hr 

w, u=O(10cm/s) 

Stokes drift 

Eqtns: Craik-Leibovich, Wave-Averaged 
Equations 

Params:  McWilliams & Sullivan, 2000, 
Van Roekel et al. 2012 

Resolved routinely in 2170

The Character of Langmuir

(Wave-driven) Turbulence 

Image: NPR.org, Deep 
Water Horizon Spill

image:

Thorpe, 04



Wave-Averaged Eqtns: 
Stokes Drift Affects Slower Phenomena

Formally a multiscale asymptotic equation set: 
3 classes: Small, Fast; Large, Fast; Large, Slow 
Solve first 2 types of motion in the case of limited 
wave steepness, irrotational --> Deep Water Waves! 
Average over deep water waves in space & time, 
Arrive at Large, Slow equation set with wave effects

In these equations all Wave 
Effects involve the Stokes Drift  

Turbulent Langmuir #
Friction Velocity



Waves Provide Stokes Drift

Stokes: Compare the velocity 
of wave trajectories vs. 

Eulerian velocity;  
leading difference=Stokes:

Monochromatic:

Wave 
Spectrum:

A. Webb and BFK. Wave spectral moments and Stokes drift 
estimation. Ocean Modelling, 40(3-4):273-288, 2011.

A. Webb and B. Fox-Kemper. Impacts of wave spreading and 
multidirectional waves on estimating Stokes drift. Ocean 

Modelling, June 2014. Accepted.

Movie: Creative Commons

& Stokes Drift drives 
Langmuir Turbulence

Turbulent Langmuir #



To quantify Langmuir Turb. 
effects on climate: 3 WAYS
1) From OBSERVATIONS, estimate wave effects on key 
parameters (<w2>, sources of energy) using scalings 
from Large Eddy Simulations.  MODEL INDEPENDENT 

2) OFFLINE 1d mixing with waves parameterized, 
mixing into observed Argo profiles, reanalysis winds, 
waves, cooling.  ROBUST TO MODEL ERRORS 

3) In a climate model, *add in a wave forecast model 
as a new component in addition to atmosphere, ocean, 
ice, etc.*, use this to drive parameterizations of wave 
mixing in ocean component.  FEEDBACKS PRESENT 

No Retuning!  All coefficents from LES



1) Observations 
obey a particular 
scaling for <w2>!


E. A. D'Asaro, J. Thomson, A. Y. 
Shcherbina, R. R. Harcourt, M. F. 
Cronin, M. A. Hemer, and BFK. 

Quantifying upper ocean turbulence 
driven by surface waves. Geophysical 

Research Letters, 41(1):102-107, 
January 2014.

wavywindy



1) From OBSERVATIONS, estimate wave effects on key 
parameters (<w2>, sources of energy) using scalings 
from Large Eddy Simulations.  MODEL INDEPENDENT 

2) OFFLINE 1d mixing with waves parameterized, 
mixing into observed Argo profiles, reanalysis winds, 
waves, cooling.  ROBUST TO MODEL ERRORS 

3) In a climate model, *add in a wave forecast model 
as a new component in addition to atmosphere, ocean, 
ice, etc.*, use this to drive parameterizations of wave 
mixing in ocean component.  FEEDBACKS PRESENT 

No Retuning!  All coefficents from LES

Langmuir 
important

To quantify Langmuir Turb. 
effects on climate: 3 WAYS



Including  
Stokes-driven  

Mixing 
(Harcourt 2013) 

Deepens the 
Winter Mixed Layer 

about 30%! 

Waves can be 
dominant source of 

energy for OSBL 
mixing! 

E. A. D'Asaro, J. Thomson, A. Y. Shcherbina, 
R. R. Harcourt, M. F. Cronin, M. A. Hemer, 

and BFK. Quantifying upper ocean 
turbulence driven by surface waves. 

Geophysical Research Letters, 41(1):
102-107, January 2014.

S. E. Belcher, A. A. L. M. Grant, K. E. Hanley, 
B. Fox-Kemper, L.  Van Roekel, P. P. Sullivan, 
W. G. Large, A. Brown, A. Hines, D. Calvert, 

A. Rutgersson, H. Petterson, J. Bidlot, P. A. E. M. 
Janssen, and J. A. Polton. A global perspective on 

Langmuir turbulence in the ocean surface 
boundary layer. Geophysical Research Letters, 

39(18):L18605, 9pp, 2012.



1) From OBSERVATIONS, estimate wave effects on key 
parameters (<w2>, sources of energy) using scalings 
from Large Eddy Simulations.  MODEL INDEPENDENT 

2) OFFLINE 1d mixing with waves parameterized, 
mixing into observed Argo profiles, reanalysis winds, 
waves, cooling.  ROBUST TO MODEL ERRORS 

3) In a climate model, *add in a wave forecast model 
as a new component in addition to atmosphere, ocean, 
ice, etc.*, use this to drive parameterizations of wave 
mixing in ocean component.  FEEDBACKS PRESENT 

No Retuning!  All coefficents from LES

Langmuir 
important

Langmuir 
important

To quantify Langmuir Turb. 
effects on climate: 3 WAYS
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Vertical Velocity (m/s)

Van Roekel, BFK, P. P. 
Sullivan, P. E. Hamlington, 
and S. R. Haney. The form 
and orientation of 
Langmuir cells for 
misaligned winds and 
waves. Journal of 
Geophysical Research-
Oceans, 117:C05001, 
22pp, May 2012.



Tricky: Misaligned Wind & Waves

Distance (m)

D
is

ta
n
ce

 (
m

)

 

 

40 120 200 280

40

120

200

280

−0.02

−0.01

0

0.01

0.02
Vertical Velocity (m/s)

Van Roekel, BFK, P. P. 
Sullivan, P. E. Hamlington, 
and S. R. Haney. The form 
and orientation of 
Langmuir cells for 
misaligned winds and 
waves. Journal of 
Geophysical Research-
Oceans, 117:C05001, 
22pp, May 2012.

Wind

Waves

(Stokes Drift)



Distance (m)

D
is

ta
n

ce
 (

m
)

 

 

40 120 200 280

40

120

200

280

−0.02

−0.01

0

0.01

0.02
Vertical Velocity (m/s)

Tricky: Misaligned Wind & Waves

Van Roekel, BFK, P. P. 
Sullivan, P. E. Hamlington, 
and S. R. Haney. The form 
and orientation of 
Langmuir cells for 
misaligned winds and 
waves. Journal of 
Geophysical Research-
Oceans, 117:C05001, 
22pp, May 2012.

Wind

Waves

(Stokes Drift)



Distance (m)

D
is

ta
n
ce

 (
m

)

 

 

40 120 200 280

40

120

200

280

−0.02

−0.01

0

0.01

0.02
Vertical Velocity (m/s)

Tricky: Misaligned Wind & Waves

Van Roekel, BFK, P. P. 
Sullivan, P. E. Hamlington, 
and S. R. Haney. The form 
and orientation of 
Langmuir cells for 
misaligned winds and 
waves. Journal of 
Geophysical Research-
Oceans, 117:C05001, 
22pp, May 2012.
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Langmuir Mixing in KPP for use in CESM1.2

VR12-EN

also Including Stokes shear in mixing depth

• WaveWatch-III (Stokes drift) <-> POP2 (U, T, HBL) 

• CORE2 interannual forcing (Large and Yeager,2009), or fully coupled climate 

• 4 IAF cycles; average over last 50 years for climatology (over 200 years total)
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Van Roekel, BFK, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation of Langmuir cells for misaligned winds and waves. 
Journal of Geophysical Research-Oceans, 117:C05001, 22pp, May 2012.

1) Assume aligned wind and waves

Q. Li, A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, W. G. Large, and M. 
Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III in CESM. 

Ocean Modelling, 2015. Submitted.
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Q. Li, A. Webb, BFK, A. Craig, G. Danabasoglu, W. G. Large, and M. Vertenstein. Langmuir mixing effects on global climate: WAVEWATCH III 
in CESM. Ocean Modelling, 2015. In press.

Wave Mixing in CESM: Reduces MLD Errors 

% Summer Change % Winter Change

L. P. Van Roekel, BFK, P. P. Sullivan, P. E. Hamlington, and S. R. Haney. The form and orientation of Langmuir cells for misaligned winds and 
waves. Journal of Geophysical Research-Oceans, 117:C05001, 22pp, May 2012.
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Despite MLD bias increase in near 
Equator—better ventilation and 

subsurface effects when Langmuir 
is included, even near Equator!

Wave Mixing in CESM 
Improves Subsurface 

Properties &  
Stommel’s Demon!

Q. Li, A. Webb, B. Fox-Kemper, A. Craig, G. Danabasoglu, 
W. G. Large, and M. Vertenstein. Langmuir mixing effects on 
global climate: WAVEWATCH III in CESM. Ocean Modelling, 

2015. In press.

N. Hem.

Temperature Errors:

CFC BiasCFC Bias

CFC Bias CFC Bias

GLOBAL

EQ.

S. Hem.

Dashed Lines 
are VR-12MA 

Solid Lines are 
Control (no Langmuir)

vs. Observations



Prognostic Waves versus 
“Data Waves”



Prognostic Waves 
versus “Data Waves”
There are minimal differences in most places—data waves usually closer to 
prognostic waves than differences among different Langmuir parameterizations.

As you can see, there is some difference in West Antarctic sea ice response between the data 
waves and the prognostic waves… we are working to figure out exactly what causes it. 

Prognostic Waves Data Waves

Preliminary trends indicate more increase with prognostic waves—needs more time to run!



Langmuir effects on climate

1) From observational, offline, and climate model 
estimates, including Langmuir mixing generally 
improves the mixed layer depths in many regions 
and improves ventilation. 

A prognostic wave model is generally thought to be 
required to force the Langmuir mixing. 

By comparison against a “data waves” climatology, it 
is found that feedbacks to the wave model are 
weak.  Thus, this cheaper option is available.

No Retuning!  All coefficents from LES



L. Cavaleri, BFK, and M. Hemer. Wind waves in the coupled climate system. Bulletin of the American Meteorological Society, 
93(11):1651-1661, 2012.

More wave effects

 to come!


All papers at

fox-kemper.com

http://fox-kemper.com


Boundary Currents

Eddies

100km, months

Full Depth (4km)

Eddy Pot’l Energy: 
13EJ vs. 20EJ in 
Mean Circulation 

Eddy Kinetic Power: 
About equal to mean 
circ. 2-3TW 

(Wunsch & Ferrari, 2004)

 The Mesoscale 100 
km

(Capet et al., 2008)

Mesoscale Eddies:  How to represent in climate models?


(NASA GSFC Gallery)

Satellite altimetry 
view of mesoscale 
flows

A Mesoscale Eddy can be covered with
 1-10 Rhode Islands.——————— Cambridgeshires



Shear Dispersion:

More along-flow than cross-flow diffusivity

Credit:
Environmental Fluid Dynamics Toronto



Anisotropy in Mesoscale Eddy Transport 
Scott J. Reckinger 

CESM Workshop 2015

– Parameterizations currently 
use isotropic diffusivity 

– Extend for anisotropy* 
• Principal axis alignment 
•     . 

– What will be gained? 
• Shear dispersion 
• PV-gradient suppression 
• Better ventilation of passive 

and biogeochemical tracers

*Bachman & Fox-Kemper (2013) 
            *Fox-Kemper et al (2013)

Mesoscale Eddy Parameterization

43



• Baroclinic instability drives eddies through a conversion of available 
potential energy to kinetic energy 

• Eddies anisotropically…

44

diffuse along isopycnals flatten isopycnal slopes

Mesoscale Eddy Parameterization



• Parameterize anisotropic transport mechanisms in the ocean: 
        (suppression from background diffusivity) 

                         (enhancement from background diffusivity) 

                         (alignment of principal axis of diffusion) 

45

Anisotropic GM/Redi  



Anisotropy in Mesoscale Eddy Transport 
Scott J. Reckinger 

CESM Workshop 2015

Hi-res Diagnosed Tensor

46

*Bachman & Fox-Kemper (2013)  

*Fox-Kemper et al (2013)

• 0.1 degree POP2 with 9 passive tracers 
(various orientation restoring)* 

• Diffusivities calculated using least-squares 
• Tensor applied statically in 1-degree tests 



Anisotropy in Mesoscale Eddy Transport 
Scott J. Reckinger 

CESM Workshop 2015

*Fox-Kemper et al (2013)

• Principal axis alignment 
• Major axis aligned zonally away from 

boundary currents 
• Major axis aligned with the flow 

near boundary currents 

•   dfd 
• > 16 in equatorial region
• Typical ratio is ≈ 5 

Drifter Observation 
Diffusivity Tensor

47



Anisotropy in Mesoscale Eddy Transport 
Scott J. Reckinger 

CESM Workshop 2015
48

Global RMSEs Global RMSEs Global RMSEs

High diffusivity ratios introduce 
drastic biases likely due to 
suppression of deep water 
formation & AMOC shutdown

Diffusivity Ratio Study

N2 isotropic ratio=2.5 ratio=10 diagnosed smoothed diagnosisratio=5



Along WOCE 
Transect

49

N2 isotropic Anisotropic

Anisotropy 
drastically reduces 
biases:
pCFC by 24%
Temp by 48%
Salinity by 63%



Along WOCE 
Transect

50

Anisotropy also 
reduces biases in 
equatorial Atlantic

N2 isotropic Anisotropic



Shear Dispersion Parameterization

51

shear dispersion

Current version reduces CFC bias, 
but does not maintain AMOC, 
likely due to strong shear (strong 
diffusion) in Labrador Sea, 
preventing deep water formation

Anisotropy in Mesoscale Eddy Transport 
Scott J. Reckinger 

CESM Workshop 2015
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Temperature at 300m

Control Shear Dispersion
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Mixed Layer Depth

Shear Dispersion

Shear Dispersion minus Control



Conclusions
Submesoscale Parameterization


Mature parameterization

Significant impact on MLD—model dependent

Removing param doesn’t fix S. Ocean MLD bias


Langmuir Mixing

Mature parameterization

Significant improvement of MLD & ventilation

Can be run with prognostic or “data waves”

Interesting feedbacks with sea ice not understood


Mesoscale Anisotropy

Basic physics understood

Significant bias reductions under controlled circumstances

Shear dispersion parameterization less well developed


