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Ocean Variability:  

Models, Observations, Paleoproxies, 
and Statistics to Glue Them Together



Who am I?

Primarily, my group works on 
process parameterizations for climate 
models, particularly ocean processes. 

We work out what’s wrong or missing 
in those models, fix it, and then use 
the fixed models to quantify what’s 
going on in the earth system.



B. Pearson and BFK. Log-normal turbulence dissipation in global ocean models. 
Physical Review Letters, 120(9):094501, March 2018.



What?

I am going to explain a bit of this 
process, and show interesting cases 
where statistics comes into play. 

First, we need to understand a bit 
about ocean variability and model 
resolution.
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We are modeling important processes in climate models, right? 

Don’t we have big enough computers?

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we need 

to develop a 
parameterization


or subgrid model of 
its effect




Viscosity Scheme:  BFK and D. Menemenlis. Can large eddy simulation techniques improve 
mesoscale-rich ocean models? In M. Hecht and H. Hasumi, editors, Ocean Modeling in an 
Eddying Regime, volume 177, pages 319-338. AGU Geophysical Monograph Series, 2008.

ECCO2 Model




What about modeling important processes in climate models? 

Don’t we have big enough computers? or won’t we soon?

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we need 

to develop a 
parameterization


or subgrid model of 
its effect


16km grid = 3 Providences/grid



B. Fox-Kemper, S. Bachman, B. Pearson, and S. Reckinger. Principles and advances in subgrid 
modeling for eddy-rich simulations. CLIVAR Exchanges, 19(2):42-46, July 2014.

LLC4320 Model


2km

resolution!

Movie:

D. Menemenlis



LLC4320 Model


Local Analysis:  Z. Jing, Y. Qi, B. Fox-Kemper, Y. Du, and S. Lian. Seasonal thermal fronts and their associations with monsoon forcing on 
the continental shelf of northern South China Sea: Satellite measurements and three repeated field surveys in winter, spring and 
summer. Journal of Geophysical Research-Oceans, 121:1914-1930, April 2016.

Movie:

Z. Jing



G. Boccaletti, R. Ferrari, and BFK. 
Mixed layer instabilities and 
restratification. Journal of Physical 
Oceanography, 37(9):2228-2250, 
2007.
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What about modeling important processes in climate models? 

Don’t we have big enough computers? or won’t we soon?

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we need 

to develop a 
parameterization


or subgrid model of 
its effect
100m grid = 1 soccer field/grid



movie credit:  
P. Hamlington

20km x 20km x 150m

domain


10 Day Simulation

P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. 
Chini. Langmuir-submesoscale interactions: Descriptive analysis 
of multiscale frontal spin-down simulations. Journal of Physical 
Oceanography, 44(9):2249-2272, September 2014.



Climate Model Resolution: an issue for centuries to come!

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we need 

to develop a 
parameterization


or subgrid model of 
its effect


3m = 1 office/grid 
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P. E. Hamlington, L. P. Van Roekel, BFK, K. Julien, and G. P. Chini. Langmuir-submesoscale interactions: Descriptive analysis of multiscale 
frontal spin-down simulations. Journal of Physical Oceanography, 44(9):2249-2272, September 2014.
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In the face of all of this model 
ocean & climate variability, how do 
we know if we’re doing it right?

Presence of observable variability

Understanding of past variability

Modeling of variability

Prediction of variability


All of these vary strongly by scale & process!



Observable: What do hydrographic observations show?

Ocean Heat Content not fixed: QBML not zero (it even varies)!


 28% of anthropogenic forcing equals the warming 

in the oceans and about 70% goes back to space.

J. Hansen et al.: Earth’s energy imbalance and implications 13433

 
Fig.10. (a) Estimated contributions to planetary energy imbalance in 1993-2008, and (b) in 2005-2010.  
Except for heat gain in the abyssal ocean and Southern Ocean, ocean heat change beneath the upper ocean 
(top 700 m for period 1993-2008, top 2000 m in period 2005-2010) is assumed to be small and is not 
included.  Data sources are the same as for Figs. 8 and 9.  Vertical whisker in (a) is not an error bar, but 
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates.  Error bar in 
(b) combines estimated errors of von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010). 
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Fig. 10. (a) Estimated contributions to planetary energy imbalance in 1993–2008, and (b) in 2005–2010. Except for heat gain in the abyssal
ocean and Southern Ocean, ocean heat change beneath the upper ocean (top 700m for period 1993–2008, top 2000 m in period 2005–2010)
is assumed to be small and is not included. Data sources are the same as for Figs. 8 and 9. Vertical whisker in (a) is not an error bar, but
rather shows the range between the Lyman et al. (2010) and Levitus et al. (2009) estimates. Error bar in (b) combines estimated errors of
von Schuckmann and Le Traon (2011) and Purkey and Johnson (2010).

10.3 Summary of contributions to planetary energy
imbalance

Knowledge of Earth’s energy imbalance becomes increas-
ingly murky as the period extends further into the past. Our
choice for starting dates for summary comparisons (Fig. 10)
is (a) 1993 for the longer period, because sea level began to
be measured from satellites then, and (b) 2005 for the shorter
period, because Argo floats had achieved nearly full spatial
coverage.
Observed planetary energy imbalance includes upper

ocean heat uptake plus three small terms. The first term is
the sum of non-ocean terms (Fig. 9a). The second term, heat
gain in the abyssal ocean (below 4000m), is estimated to be
0.027± 0.009Wm�2 by Purkey and Johnson (2010), based
on observations in the past three decades. Deep ocean heat
change occurs on long time scales and is expected to increase
(Wunsch et al., 2007). Because global surface temperature
increased almost linearly over the past three decades (Hansen
et al., 2010) and deep ocean warming is driven by surface
warming, we take this rate of abyssal ocean heat uptake as
constant during 1980–present. The third term is heat gain
in the ocean layer between 2000 and 4000m for which we
use the estimate 0.068± 0.061Wm�2 of Purkey and John-
son (2010).
Upper ocean heat storage dominates the planetary energy

imbalance during 1993–2008. Ocean heat change below
700m depth in Fig. 10 is only for the Southern and abyssal
oceans, but those should be the largest supplements to up-
per ocean heat storage (Leuliette and Miller, 2009). Levi-
tus et al. (2009) depth profiles of ocean heat gain suggest
that 15–20 percent of ocean heat uptake occurs below 700m,
which would be mostly accounted for by the estimates for

the Southern and abyssal oceans. Uncertainty in total ocean
heat storage during 1993–2008 is dominated by the discrep-
ancy at 0–700m between Levitus et al. (2009) and Lyman et
al. (2010).
The Lyman et al. (2010) upper ocean heat storage of

0.64± 0.11Wm�2 for 1993–2008 yields planetary energy
imbalance 0.80Wm�2. The smaller upper ocean heat gain
of Levitus et al. (2009), 0.41Wm�2, yields planetary energy
imbalance 0.57Wm�2.
The more recent period, 2005–2010, has smaller upper

ocean heat gain, 0.38Wm�2 for depths 10–1500m (von
Schuckmann and Le Traon, 2011) averaged over the entire
planetary surface and 0.41Wm�2 for depths 0–2000m. The
total planetary imbalance in 2005–2010 is 0.58Wm�2. Non-
ocean terms contribute 13 percent of the total heat gain in this
period, exceeding the contribution in the longer period in part
because of the increasing rate of ice melt.
Estimates of standard error of the observed planetary en-

ergy imbalance are necessarily partly subjective because the
error is dominated by uncertainty in ocean heat gain, in-
cluding imperfect instrument calibrations and the possibil-
ity of unrecognized biases. The von Schuckmann and Le
Traon (2011) error estimate for the upper ocean (0.1Wm�2)
is 0.07Wm�2 for the globe, excluding possible remaining
systematic biases in the Argo observing system (see also
Barker et al., 2011). Non-ocean terms (Fig. 8) contribute
little to the total error because the terms are small and well
defined. The error contribution from estimated heat gain
in the deep Southern and abyssal oceans is also small, be-
cause the values estimated by Purkey and Johnson (2010) for
these terms, 0.062 and 0.009Wm�2, respectively, are their
95 percent (2-� ) confidence limits.

www.atmos-chem-phys.net/11/13421/2011/ Atmos. Chem. Phys., 11, 13421–13449, 2011

90% of anomalous 
warming is in the oceans.

From the Argo EraTrad. Hydrography

0.7 W/m2 to atmosphere

only is about 1.5K/yr

Hansen et al. (2011)



How do we know OHC?
Traditional Hydrography (http://www.ukosnap.org/)

Autonomous: e.g., Argo and Satellites.  
http://www.argo.ucsd.edu/

GO-SHIP repeat sections: Siedler et al. 2013

Argo floats presently active

http://www.ukosnap.org/
http://www.argo.ucsd.edu/


Understanding: Another reason to care about ocean warming
—and to observe it (by subtraction):  Sea Level Rise

(Sea Level)-(Ocean Mass)/Density/Area=Thermosteric Expansion

IPCC AR5, 2013

nesdis.noaa.gov

podaac.jpl.nasa.gov

http://nesdis.noaa.gov
http://podaac.jpl.nasa.gov


Modeling: Surface Energy Budget

O(2W/m2) change to QBML as important as GHG

Slight oversimplification—sensitivity + budget

Slide: Brown et al., 2014



http://www.oc.nps.edu/

0.7 W/m2

=


Atmosphere:

1.5K/yr


=

3.4m Ocean:


1.5K/yr

=


34m Ocean:

0.15K/yr

=1% of 


mixed layer

seasonality

Surface, Mixed Layer, 
Seasons? Temporal Sampling

Beginning December 1949,
a weathership or mooring at 
Ocean Station P (50°N, 
145°W, depth 4220 meters)



The net QBML is about 1% of different flux 
components and 1% of net spatial values: 

spatial & process sampling

2006) shows improvement, although many known biases
are still present and are sometimes worse (Fig. 1). The
global present-daymean bias for theQas flux indicates an
overall increase of heat flux into the ocean with the
transition from CCSM3 to CCSM4 with a global mean
bias value of 22.2 W m22 in CCSM3 and 1.5 W m22 in
CCSM4. The root-mean-square error (RMSE) has also
decreased slightly from 25 W m22 in CCSM3 to
23 W m22 in CCSM4. The net Fas 1 R bias has also im-
proved from a global mean bias of 1.1 mg m22 s21 in
CCSM3 to 0.58 mg m22 s21 in CCSM4. The RMSE for
freshwater flux has greatly decreased from 45 to
27 mg m22 s21. The most notable improvements in the
present-day mean Fas 1 R are a reduction of positive
biases in the tropical South Pacific, tropical Atlantic,
Maritime Continent, and western Indian Ocean (Fig. 1,
right panels). Improvements in mean heat flux include
a reduction of biases in the north tropical Atlantic basin,
central to western equatorial Pacific, and western and
equatorial Indian Ocean (Fig. 1, left panels).
The zonalmean of biases andRMSE forQas andFas1R

are shown in Fig. 3. Improvements in RMSE are quite
large in Fas 1 R from approximately 108 to 308S and

slight improvement for most of the Northern Hemi-
sphere south of 608N (solid lines). Differences in mean
biases of Fas1R (dashed lines) are not correlated to the
RMSE and do not span large latitudinal ranges. A sim-
ilar widespread reduction of RMSE is noted inQas from
approximately 308S to 308N (solid lines). An overall in-
crease of Qas mean bias occurs CCSM4 from CCSM3 in
the latitudinal range of 308S to 408N (dashed lines), thus
improving negative biases and causing positive biases to
be worse.
The majority of the freshwater flux improvement re-

sults from large improvements in precipitation biases,
which are reflected in surface salinity biases (see
Danabasoglu et al. 2011). Improvements in the atmo-
sphere model convection scheme (Richter and Rasch
2008) lead to improvements in the statistics of pre-
cipitation extreme events; however, some mean biases
remain. The erroneous double intertropical convergence
zone (ITCZ) south of the equator still exists and there is
an exacerbation of the positive precipitation bias asso-
ciated with the ITCZ north of the equator in the Pacific
Ocean (visible in the Fas 1 R plot of Fig. 1). In general,
the central to western equatorial and midlatitude

FIG. 1. (top) CORE (left) total air–sea heat flux and (right) total freshwater flux (air–sea1 runoff) into the ocean.
Also shown are biases in the present-day mean of these fluxes from the (middle) CCSM3 and (bottom) CCSM4 20C
ensemble means. Units: W m22. The increment in latitude is 158.
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Pacific go from too saline (CCSM3) to too fresh
(CCSM4) (Danabasoglu et al. 2011). Present-day mean
precipitation biases (not shown) also indicate reduced
precipitation in CCSM4 from CCSM3 in Indonesia and
a better representation of precipitation in the South Pa-
cific convergence zone (SPCZ). In CCSM3, the SPCZ
extends to 1308W whereas in the CCSM4 it extends only
to 1608W.
Examination of the individual components of the air–

sea heat flux reveals that themajority of improvement in
Qas in the tropics is due to a reduction of biases in latent
heat flux (Figs. 2 and 3). Although the global mean bias
increases from23.4 W m22 in CCSM3 to26 W m22 in
CCSM4, there are significant improvements in regions
of largest error. The largest improvements in Qas are in
the tropics of all ocean basins. These are the same re-
gions with largest improvement inQE, most notably the
tropical North Atlantic and Maritime Continent region.
All of these regions also have improved SST biases as
well (Danabasoglu et al. 2011) reflecting the connection
between evaporation and SST.With the exception of the
equatorial region, the zonal mean of bias and RMS er-
rors do not reflect these improvements (Fig. 3).
Net shortwave radiation is degraded in the transition

from CCSM3 to CCSM4 (Figs. 2 and 3) with a global

mean bias increase from 2.3 to 9.6 W m22.With a nearly
uniform increase, the result is that negative biases in
CCSM3 are reduced and positive ones made even worse
in CCSM4. Although the zonal mean of biases reflects
the degradation at almost all latitudes, the zonal average
of RMS shows improvement in CCSM4. This reflects the
considerable compensation of regional error that can be
hidden when regionally averaging.
The CCSM4 present-day (1986–2005) regionally av-

eraged flux components are compared to a collection of
flux datasets [compiled by Roske (2006)] in Figs. 4 and 5.
All data are presented here as differences from the re-
gional mean of the CORE flux components. The en-
semble mean difference is displayed as an asterisk, and
the range in differences of various observational data-
sets is indicated by the vertical line. Note that this line
does not represent error, but rather the range of dif-
ferences of the Roske (2006) datasets from CORE. The
purpose of this exercise is to illustrate how the CCSM4
data compare to a variety of flux datasets and how large
their range is.
For many regional components, the observational range

is quite large, thus making it difficult to unambiguously
test model performance; however, the main conclusion
to be drawn from these plots is that the model fluxes lie

FIG. 2. As in Fig. 1, but for (left) net shortwave heat flux and (right) latent heat flux.

15 NOVEMBER 2012 BATE S ET AL . 7785

S. C. Bates, BFK, S. R. Jayne, W. G. Large, S. Stevenson, and S. G. Yeager. Mean biases, variability, and trends in air-sea fluxes and SST 
in the CCSM4. Journal of Climate, 25(22):7781-7801, November 2012.
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CORA and CCSM Total OHC Density Down to 700m

Note: uses an old and questionable definition of trend...

A. D. Nelson (ATOC, U.C. Boulder) The Sampling Problem March 11
th
, 2015 8 / 17

CORA and CCSM Total OHC Density Down to 700m

Note: uses an old and questionable definition of trend again...

A. D. Nelson (ATOC, U.C. Boulder) The Sampling Problem March 11
th
, 2015 12 / 17

Sophisticated analysis to overcome Ship & Argo 
sampling problems—inherent uncertainty, O(0.2W/m2), 

on interannual to decadal timescales in global 
average.


O(10W/m2) without analysis.

CORA is Argo+ 

Detrended, Deseasoned,
Sampled at Argo Locations

Nelson, A. D., Weiss, J., BFK, B., Zia, R. K. P., and Gaillard, F.: An Ensemble Observing System Simulation Experiment of 
Global Ocean Heat Content Variability, Ocean Sci. Discuss., http://sci-hub.tw/10.5194/os-2016-105, in review, 2017.



Modeling: Surface Energy Budget

O(2W/m2) change to QBML as important as GHG

Slight oversimplification—sensitivity + budget

Slide: Brown et al., 2014



S. C. Bates, BFK, S. R. Jayne, W. G. 
Large, S. Stevenson, and S. G. Yeager. 
Mean biases, variability, and trends in air-
sea fluxes and SST in the CCSM4. 
Journal of Climate, 25(22):7781-7801, 
November 2012.

Global climate models do pretty 
well at matching heat fluxes and 

watermasses.  


Statistically significant 
differences in a few timescales & 

regions from obs.

(Ticks=10 W/m2) 


Models get better every 
generation due to improved 

resolution and parameterizations



Sampling & accuracy are 
issues: now what?

We expect that observations will be 
understood as sampling from distributions of 
possible values.


Models also produce distributions.


We compare the distributions to see when the 
model succeeds or fails.


But, different processes have different stats!


2 Examples: Ocean Heat Content & El Nino
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Fig. 3. Simulated SST variations (without and with feedback effect) and total heat flux at x = 0, y = LJ4.  The heat 
flux time series is subsampled at 5-day intervals and the SST time series are low-passed, using a quadratic Lanczos 
filter (cut-off frequency 8 - lo-' Hz). 
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cools, and when it blows from the south, the water 
warms. With this crude parameterization an 
equation formally analogous to eq. (1.1) is obtained 
for the rate of change of SST, 

dT pa C;: KvlUl 
-=C, , ( l  + B )  

10' dt pw c; h 
(3.5) 

In our simulations, we have set K = 0.25 (" C/m/s) 
and taken C,, = gm 
~ m - ~ ,  pw = 1 gm ~ m - ~ ,  C; = 0.24 cal gm-' (" C)-I, 
C; = 0.96 cal gm-' ("C)-', and h = 25 m. A 
mixed-layer depth of 25 m has been suggested by 
Thompson (1976) for low mid-latitudes (30" N) on 
the basis of a comparison of the observed seasonal 
SST cycle with predictions by a copper-plate 
model. The effective mixed-layer depths at higher 
latitudes are considerably greater (a value of 1 0 0  m 
is taken in the following section for station India at 

B = 3, p" = 1.25 

100 

lo-' 

(10-7 I lb -6  Hz 
( 1  / rnon th) 

Fig. 4 .  Simulated spectrum of sensible heat flux (dashed 
lines) and SST anomaly (continuous lines) at x = 0, y = 
LJ4. The arrows indicate the 95% confidence interval. 

To incorporate heat transfer into our at- 
mospheric model we assume that the air-sea 
temperature difference is proportional to the north- 
south velocity V, (To - T )  = KV,  K = const. Thus 
when the wind blows from the north, the water 

59"N). With our choice of K ,  the r.m.s. air-sea 
temperature difference generated by the model is 
1.25 "C. 

(b) Simulated SST anomalies neglecting feedback 
Time series of the stochastic atmospheric forcing 

according to eq. (3.5) were constructed at each grid 
point, and the SST changes were then calculated by 
straightforward integration. Fig. 3 illustrates the 
integral response of the SST to the rapidly varying 
fluxes. To draw attention to the evolution of the low 
frequencies in the SST fluctuations, the SST time 

Tellus 29 (1977), 4 

A stochastic, predictable persistence model: 

Frankignoul & Hasselmann (77)
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 

Tellus 29 (1977), 4 

sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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series have been low-pass filtered. The longer the 
integration time in (3.5), the larger the amplitude of 
the SST oscillations, as expected from the non- 
stationarity state of the climatic response for the 
case without feedback. 

The power spectrum of the simulated sensible 
heat flux anomaly at a fixed location is shown in 
Fig. 4. It has the same features as the simulated 
wind spectrum (Fig. I). In particular, it is essentially 
white at low frequencies, in agreement with 
observation (and as required by theory) although 
the energy level is about one order of magnitude 
lower than observed flux data (Section'4). The 
simulated flux spectrum implies a diffusion co- 
efficient according to relation (3.5) of D z 0.25 
(°C)2 year-', i.e. the random atmospheric forcing 
produces a standard deviation in the SST of about 
0.7 OC in one year. As predicted by relation (1.5), 
the simulated SST anomaly spectrum is propor- 
tional to the inverse frequency squared at low fre- 
quencies (Fig. 4). This is again in agreement with 
the observations, and the energy level is also about 
one order of magnitude lower than observed mid- 
and high-latitude levels, in accordance with the 
order of magnitude underestimate of the simulated 
input spectrum. A more detailed comparison with 
the observations is given in Section 4. 

The wavenumber spectrum of the SST anomalies 
is proportional to the wavenumber spectrum of the 
atmospheric input (Fig. 2, dotted lines). In contrast 
to the wind spectrum, which is highest at wave- 
number 1, the maximum variance of the simulated 
SST occurs at wavenumbers 2 and 3. This corres- 
ponds roughly to the observed scale of the 
dominant SST anomaly patterns, which are 
typically several thousand kilometers in diameter, 
and is also consistent with the observation that the 
dominant scales of the SST anomalies appear to be 
somewhat smaller than the scales of air tem- 
perature or sea-level pressure anomalies (e.g. 
Kraus & Morrison, 1966; Davis, 1976). 

Although our ocean-atmosphere model is admit- 
tedly highly simplified, the main features of the SST 
spectral response to short time scale weather 
forcing appear to be reproduced reasonably well in 
the numerical experiments. As discussed in Section 
4, further processes (e.g. radiation fluxes of Ekman 
transport) will need to be considered in more 
quantitative models. However, as long as these can 
be represented by short-time-scale "weather vari- 
ables", they will yield only an additional white 
noise input. Depending on their correlation with the 
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sensible and latent heat fluxes considered here, they 
will produce lower or higher energy levels of the 
SST anomalies, but no changes in the basic 
structure of the spectrum. Other effects which 
should be incorporated in more detailed models 
include slow changes in the coupled system (e.g. 
seasonal variations of the mixed-layer depth), 
which will modulate the oceanic response. 

Up to this point we have also omitted feedback 
effects. The observations (Section 4) suggest that 
the characteristic feedback time of SST anomalies 
is of the order of 6 months, so that the results of 
this section can be applied only for periods shorter 
than this time scale. 
(c) Simulated SST anomalies including feedback 

For small temperature anomalies, the function f, 
in eq. (3.1), dT/dt = f,/h (h = const), can be 
expanded with respect to T. Writing f, = ull + f i, 
and defining T = 0 to correspond to an equilibrium 
temperature for which ull = 0, eq. (3.1) then takes 
the form of a first-order autoregressive (Markov) 
process 

dt h 

where 1 = (a[ f , l /aT) , , ,  is a constant feedback 
factor. For a stable system with negative feedback, 
1 is positive (cf. eq.) (1.7)). 

Since our atmospheric model contains no ther- 
modynamics, we cannot simulate the feedback 
explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
formula (3.4) with respect to T. Assuming the air 
temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
3a, one obtains 1 = (1.7 month)-'. This feedback 
factor is larger than inferred from observations, 
presumably because of the unrealistic assumption 
of a constant air temperature (cf. Section 4). The 
value was nevertheless used in our model experi- 
ments to illustrate the stabilizing influence of a 
negative feedback in our rather short (512) day) 
simulation runs (Fig. 3). The decrease in amplitude 
of the lowest frequency SST oscillation as com- 
pared with the case without feedback is clearly dis- 
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is of the order of 6 months, so that the results of 
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and defining T = 0 to correspond to an equilibrium 
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explicitly in the coupled system. However, we can 
estimate the feedback factor by expanding the bulk 
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temperature to remain constant, this yields 

where (lUl) is the mean wind speed. Taking (IUl) 
= 8 m sec-' and C,,, B and h as given in Section 
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factor is larger than inferred from observations, 
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of a constant air temperature (cf. Section 4). The 
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Examples 
If Connections Occur Between Regions—
Predictability Can Arise, Even in Stochastic Systems.

This is the root of 
most stochastic model
predictability beyond persistence

Tropical Ocean Heat Content

Polar Ocean Heat Content

Poles->Tropics->Poles->Tropics…

R. Zia, J. B. Weiss, D. Mandal, and B. Fox-Kemper. Manifest and subtle cyclic behavior in nonequilibrium steady 
states. In Journal of Physics: Conference Series, volume 750, page 012003. IOP Publishing, 2016.



Predictability of ENSO

events limited to < 1yr


ENSO statistics more predictable?

El NINO!



El Nino: 1998 vs 2015

SSH Movie Credit: NASA JPL

Are ENSO statistics predictable?



S. Stevenson, BFK, M. Jochum, B. Rajagopalan, and S. G. Yeager. ENSO model validation 
using wavelet probability analysis. Journal of Climate, 23:5540-5547, 2010.

Takes >200 yrs to know what ENSO stats are!!



S. Stevenson, H. V. McGregor, S. J. Phipps, and B. Fox-Kemper. Quantifying 
errors in coral-based ENSO estimates: Towards improved forward modeling of 

δ18O. Paleoceanography, 28(4):633-649, December 2013.
Stevenson, UCSB



S. Stevenson, BFK, M. Jochum, 
R. Neale, C. Deser, and G. 

Meehl. Will there be a significant 
change to El Nino in the 21st 
century? Journal of Climate, 

25(6):2129-2145, March 2012.

Almost no 
change to Direct 
ENSO variability 

with GHG… 


But Big GHG 
Change to ENSO 

impacts!


INDIRECT Proxy

Reconstructions 

won’t work!!!

CU, now NCAR



Covariances?
The two examples—OHC and ENSO—show that 
not just variability, but co-variability of 
different variables is interesting. 


In one study, of multiple proxies in a site at 
1000m depth off the Peru Margin, the co-
variance story is particularly interesting.

S. Ahn, BFK, T. Herbert, and C. Lawrence. Autoregressive statistical modeling of a peru 
margin multi-proxy holocene record shows correlation not cause, flickering regimes and 

persistence. Climate of the Past, January 2018. In discussion review.
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S. Ahn, BFK, T. Herbert, and C. Lawrence. Autoregressive statistical modeling of a peru margin multi-proxy holocene record 
shows correlation not cause, flickering regimes and persistence. Climate of the Past, January 2018. In discussion review.

Hidden Markov Model infills & predicts regimes



S. Ahn, BFK, T. Herbert, and C. Lawrence. Autoregressive statistical modeling of a peru margin multi-proxy holocene record 
shows correlation not cause, flickering regimes and persistence. Climate of the Past, January 2018. In discussion review.

Auto-Regressive Hidden Markov Model infills & predicts regimes



Granger Causality: What is causing what ?  
Correlation is not Causation

S. Ahn, BFK, T. Herbert, and C. Lawrence. Autoregressive statistical modeling of a peru margin multi-proxy holocene record 
shows correlation not cause, flickering regimes and persistence. Climate of the Past, January 2018. In discussion review.

Calm Regime

Noisy Regime

Hidden Markov Auto-Regressive 
Hidden Markov



Deep Variability is the HARDEST!


Intermittency?
Stochastic damping very slow!


huge heat capacity (biggest watermasses on Earth)!

Timescales may be very long!  


Watermasses O(1500yr) old by radiocarbon

Lengthscales may be very short!


(weak stratification implies a Rossby radius of O(2km) for modes 
trapped in AABW only)


Water “formed” in very small areas!

Small-scale atmospheric & oceanic phenomena will be 
disproportionately important on air-sea effects


Difficult to observe, IMPOSSIBLE TO MODEL = FUN!



Even with Argo, it will be a while until we have 
long timescale variability.  What to do?

Purkey & Johnson, 2010

Examine 
CDH-26 

sediment core 
from the 
Holocene 
indicated

now Rutgers

Pattern of Warming from Hydrography

Understanding of past variability



S. Stevenson, BFK, and M. Jochum, 2012: Understanding the ENSO-CO2 link using 
stabilized climate simulations. Journal of Climate, 25(22):7917–7936. 

From the >1000yr steady forcing CCSM3.5


Contours = 4 units Contours = 1 unit

What does a climate model—WITHOUT WARMING—

look like in Ocean Heat Content Variability?


Doesn’t even include mesoscale eddies

CU, now NCAR



Assessing'variability'using'individual'
benthic'foraminifera'
•  Benthic'foraminiferal'δ18O'values'

record'temperature'and'salinity'
proper;es'of'ambient'seawater ''

'T'(°C)'='21.6'F'5.50'✕'(δ18OcFδ18Osw)''

"δ18Osw='F14.38'+0.42*salinity'
'

•  Individual'foraminifera'provide'2F3'
week'snapshots'of'seawater'
proper;es''

•  We'analyze'30F40'individuals'within'
200'year'windows'to'assess'the'mean'
and'variance'of'foraminiferal'δ18O'
values''

Bemis'et'al.'2002''

Uvigerina'spp.'

Conroy'et'al.'2014'

On roughly decadal timescales

Understanding of past variability

S. Bova, T. D. Herbert, and BFK. Rapid variations in deep ocean 
temperature detected in the holocene. Geophysical Research 

Letters, 43, December 2016.
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Some individuals
>2C warmer!

Low variability 
in mean climate

Some individuals
colder!

Understanding of past variability

S. Bova, T. D. Herbert, and BFK. Rapid variations in deep ocean temperature detected in the 
holocene. Geophysical Research Letters, 43, December 2016.



Figure Credit:  Sam Bova

At these three time intervals, the spread of 
individual values exceeds a size-matched 
spread of instrumental standards.  

The statistical significance of this deviation 
is given by the p-values of a Kolmogorov-
Smirnov test comparing the distributions.  

According to these forams—deep water 
variability is unexpectedly important, 
intermittently through the past!



Boundary Currents

Eddies

100km, months

Full Depth (4km)

Eddy Pot’l Energy: 
13EJ vs. 20EJ in Mean 
Circulation 

Eddy Kinetic Power: 
About equal to mean 
circ. 2-3TW 


(Wunsch & Ferrari, 2004)

 The Mesoscale 100 
km

(Capet et al., 2008)

Mesoscale Eddies:  How to represent in climate models?


(NASA GSFC Gallery)

Satellite altimetry 
view of mesoscale 
flows

A Mesoscale Eddy can be covered with
 1-10 Rhode Islands.



3D Turbulence Cascade

1963: Smagorinsky Scale & Flow Aware Viscosity Scaling,

So the Energy Cascade is Preserved,

but order-1 gridscale Reynolds #:    

Re=1

Re*=1

Re⇤ = UL/⌫⇤

2⇡

�x

Spectral 

Density 

of 

Kinetic

Energy

k�5/3



Climate Model Resolution: an issue for centuries to come!

Here are the 
collection of IPCC 

models...


If we can’t resolve 
a process, we need 

to develop a 
parameterization


or subgrid model of 
its effect


depth of  
the ocean



3D Turbulence Cascade

1963: Smagorinsky Scale & Flow Aware Viscosity Scaling,

So the Energy Cascade is Preserved,

but order-1 gridscale Reynolds #:    

Re=1

Re*=1

Re⇤ = UL/⌫⇤

2⇡

�x

Spectral 

Density 

of 

Kinetic

Energy

k�5/3



2D Turbulence Differs

Re*=1

2⇡

�x

1996: Leith Devises Viscosity Scaling,

So that the Enstrophy (vorticity2) Cascade is Preserved

Spectral 

Density 

of 

Kinetic

Energy

Inverse

Energy 
Cascade

Enstrophy

Cascade

R. Kraichnan, 1967 JFM

Barotropic or 

stacked layers



Viscosity Scheme:  BFK and D. Menemenlis. Can large eddy simulation techniques improve mesoscale-
rich ocean models? In M. Hecht and H. Hasumi, editors, Ocean Modeling in an Eddying Regime, volume 
177, pages 319-338. AGU Geophysical Monograph Series, 2008.

ECCO2 Model


18km resolution



Viscosity Scheme:  BFK and D. Menemenlis. Can large eddy simulation techniques improve 
mesoscale-rich ocean models? In M. Hecht and H. Hasumi, editors, Ocean Modeling in an Eddying 
Regime, volume 177, pages 319-338. AGU Geophysical Monograph Series, 2008.

LLC4320 Model


2km

resolution!

Movie:

D. Menemenlis



Is 2D Turbulence a good proxy 
for stratified flow?

Nurser & Marshall, 1991 JPO 
For a few eddy time-
scales QG & 2D AGREE 
(Bracco et al. ‘04)


Barotropic Flow--Obvious 
2d analogue

Eddy Fluxes--Divergent 2d 
flow & advective fluxes


Sloped, not horiz.


Surface Effects?

Yes: No:



Stretching & Squashing



Re*=1

2⇡

�x

QG Turbulence: Pot’l Enstrophy cascade

(potential vorticity2) 


S. D. Bachman, B. Fox-Kemper, and B. Pearson. A scale-aware subgrid model for quasigeostrophic 
turbulence.Journal of Geophysical Research-Oceans, 122:1529-1554, March 2017.

Spectral 

Density 

of 

Kinetic

Energy

Inverse

Energy 
Cascade

Potential 
Enstrophy

Cascade

J. Charney, 1971 JAS

(quasi-geostrophic), or QG Leith



Movie: S. Bachman

S. Bachman and 
B. Fox-Kemper. 
Eddy 
parameterization 
challenge suite. I: 
Eady spindown. 
Ocean Modelling, 
64:12-28, 2013.

S. D. Bachman, 
BFK, and B. 
Pearson. A scale-
aware subgrid model 
for quasigeostrophic 
turbulence. Journal 
of Geophysical 
Research-Oceans, 
February 2017. In 
press.
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slope, in agreement with Large Scale QG (hereafter LSQG) as found by Smith et al. [2002]. These slopes are
also in agreement with observations by Le Traon et al. [2008], who found the sea surface height spectra to fol-
low k211=3, which would imply a KE slope of k25=3. They argued this is SQG, not large-scale QG, but both are
consistent.

The energy spectral performance of the dynamically prescribed QG Leith viscosity (Figure 6, top) is depen-
dent on the filter width !, consistent with previous studies on dynamical filters [e.g., Najjar and Tafti, 1996].
In these simulations a wider test filter (!5 8) reproduces the correct spectra more closely than the narrow
filter (!5 2), in contrast with previous studies which have found little sensitivity to the choice of ! [Lund,
1997]. Nonetheless, the performance by simply setting K 5 1 rivals that of the most expensive, large-stencil
filter and suggests that the extra computation cost of the dynamical scheme will outweigh its potential ben-
efits when used in a GCM. Avoiding the additional complexity of designing filters for use with complex
topography is a beneficial side benefit.

By contrast, both harmonic and biharmonic forms of the 2-D Leith viscosity underdamp energy (Figure 6,
middle row, left and center column) and are noisy at small scales with spectral slopes that are too shallow
and not in agreement with QG (or 2-D) theory. This underdamping is symptomatic of the difference
between the potential enstrophy cascade in these simulations and the enstrophy cascade that is assumed
in the 2-D Leith theory. Note that this underdamping persists even though Bu! is quite large, and thus the
modest differences between 2-D and QG Leith are significant even at high resolution.

Figure 6. Energy spectra for the simulations where the deformation radius is explicitly resolved, decreasing in resolution from Ds5Ld=10 (black), Ds5Ld=5 (blue), Ds5Ld=2:5 (blue), Ds5
Ld (green), to Ds52Ld (red). The dashed black lines show the k23 spectral slope of energy anticipated by theory in the LSQG forward potential enstrophy cascade regime. The gray shad-
ed area represents ‘‘truth,’’ which is the range of spectra covered by the highest-resolution simulations excluding Smagorinsky. Subpanels indicate the results for simulations using differ-
ent subgrid schemes: (top left) QG Leith, Kq51, (top center) dynamic QG Leith, filter width 52Ds, (top right) dynamic QG Leith, filter width 58Ds; (middle left) harmonic 2-D Leith,
K251, (middle center) biharmonic 2-D Leith, K451, (middle right) harmonic Smagorinsky !253:0; (bottom left) biharmonic Smagorinsky, !453:0, (bottom center) constant harmonic,
m25Ds2=Dt, (bottom right) constant biharmonic, m45Ds4=Dt. Vertical line indicates approximate fastest growing instability wave number of 2p=3:9Ld . The spectra are measured at the
simulation stopping time, which occurs before the edge of the front reaches the lateral boundary.
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models with increasing resolution

theory

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  

“Forcing Scale”

Where does ocean energy go?

Spectrally speaking



Where does ocean energy go?

Spectrally speaking

theory

QGLeith:

Just Right!

2DLeith:

Too Noisy

Smagorinsky:

Too Smooth

S. D. Bachman, B. Fox-Kemper, and B. Pearson, 2017: A scale-aware subgrid 
model for quasi- geostrophic turbulence. Journal of Geophysical Research–
Oceans, 122:1529–1554. URL http: //dx.doi.org/10.1002/2016JC012265.  



QGLeith:  
Let’s try it in a global model!

B. Pearson, BFK, S. D. Bachman, and F. O. 
Bryan, 2017: Evaluation of scale-aware subgrid 
mesoscale eddy models in a global eddy-rich 
model. Ocean Modelling, 115:42–58. 

S. D. Bachman, BFK, and B. Pearson, 2017: A 
scale-aware subgrid model for quasi-
geostrophic turbulence. Journal of Geophysical 
Research–Oceans, 122:1529–1554. 



LES for Pot’l 
Enstrophy

LES for EKE

Mesoscale Ocean LES: QGLeith

ACC in Global!

Channel:

100m Dissipation
Global:

Global, POP, realistic forcing 
10km (nominal) global 

42 vertical levels  
(most in upper 200m) 

B. Pearson, BFK, S. D. Bachman, and F. O. Bryan, 2017: 
Evaluation of scale-aware subgrid mesoscale eddy models in 
a global eddy-rich model. Ocean Modelling, 115:42–58. 

Traditional QG Leith 

Global Energy 
Budget STILL 
DEPENDS on 
subgrid, even 

at HI-RES.



@100m 
 depth

Lognormally distributed—AND 
knows where the Gulf Stream is! 



Wait—log-normal…



MOLES: Log-Normal Dissipation Intermittency

B. Pearson and BFK. 
Log-normal turbulence 
dissipation in global 
ocean models. Physical 
Review Letters, 120(9):
094501, March 2018.

A (weak)  
dissipation of  

energy  
with pot’l 
enstrophy 
cascade 

… 
 that’s 

lognormally 
distributed 

(super-Yaglom ‘66) 

90% of KE 
dissipation in 
10% of ocean



B. Pearson and BFK. Log-normal turbulence dissipation in global ocean models. 
Physical Review Letters, 120(9):094501, March 2018.



Conclusions
Presence of observable variability


Requires accurate obs. & sampling

Really only get a distribution to compare to models

Many problems require paleothermometry, e.g. ENSO!


Understanding of past variability

Correlation is not causation!

Variability can be intermittent—even in deep water


Modeling of variability

Stochastic models can reveal causation & correlation.

Deterministic models: challenges are tuning, params, resolution.


Prediction of variability

Possible in some regions, chaos limits the forecast window.

Longer predictions can be possible if cross-correlations exist, but sometimes 
they only seem to exist!  (e.g., the multi-proxy record off Peru)  

Intermittency, e.g., lognormal eddy dissipation, challenges observations and 
models


