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Chapter 1

Introduction

Parts of this introduction were drawn from work published as: Abigail S. Bodner, Baylor Fox-Kemper,

Luke P. Van Roekel, James C. McWilliams, and Peter P. Sullivan. ”A perturbation approach to

understanding the effects of turbulence on frontogenesis.” Journal of Fluid Mechanics, 883, A25.

doi:10.1017/jfm.2019.804

1.1 Motivation

On the global scale, the ocean contains over ninety percent of the carbon on Earth (aside from

geological reservoirs), and has a large capacity to store and release heat, thus acting as one of

the most important regulators to the climate system, and therefore the fate of rising temperatures

(Pörtner et al., 2019). Ocean circulation and mixing redistributes heat, salt and carbon over a

wide range of spatial and temporal scales: from global processes such as water mass transport,

sea level and heat content changes, to small scale processes such as mixing heat, momentum and

air-sea interactions (Siedler et al., 2013). Each have unique dynamical, statistical and energetic

properties that can be transferred across scales from planetary scale flows, down to turbulence and

the dissipative scales (e.g. Capet et al., 2008c; Ferrari and Wunsch, 2009; Molemaker et al., 2010;

Callies et al., 2016). Horizontal mixing and transport, as well as over half of the kinetic energy in

the ocean, is dominated by mesoscale eddies. They can span as large as hundreds of kilometers in

horizontal length and months in time evolution. However, vertical mixing and heat transport are

dominated by the submesoscale and 3D turbulence range (e.g Klein et al., 2009).

Submesoscales span the range of 0.1− 10km in horizontal scale (illustrated in figure 1.1), 0.01−
1km in vertical scale and hours to days in time evolution, and boundary layer (3D) turbulence is on

the order of meters in length and minutes to hours in time (Grant and Belcher, 2009; McWilliams,

2016). These scales are particularly evident in the ocean surface, where the dynamic interplay

between submesoscales and boundary layer turbulence modulate the transfer of heat, momentum,

carbon and other properties, between the atmosphere and ocean interior (e.g., Bachman et al.,

2017b; Renault et al., 2018), and therefore are instrumental in determining the ocean’s response

1
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Figure 1.1: Sea surface chlorophyll concentration in the Arabian Sea as viewed by the Moderate
Resolution Imaging Spectroradiometer (MODIS) from NASA’s Aqua satellite on February 22, 2005.
White coloring indicates cloud cover. Data is given at an approximate resolution of 1km illustrating
the different ocean scales, among those are submesoscale eddies and fronts. Image courtesy of
Norman Kuring, MODIS Ocean Color Team. Caption and figure adapted from Mahadevan (2016)

to a changing climate. However, because of the fast time scale and relatively small spatial scales,

it has been challenging to study submesoscales and boundary layer turbulence, as they are small

and impermanent, requiring new strategies for ship surveys, satellite detection and climate models

(McWilliams, 2016).

Building toward a more complete understanding of these processes, and how they interact, this

thesis investigates and quantifies the interaction between submesoscales and boundary layer turbu-

lence through theory, multiscale numerical simulations and general circulation models.
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1.2 Phenomenology

1.2.1 The ocean surface layer

The ocean surface is the most turbulent layer in the ocean, driven primarily by winds, waves and

buoyancy forcing (e.g Reichl and Hallberg, 2018). The ocean surface layer can broadly be described

as the layer in which temperature, salinity and other tracers are vertically well mixed. It is the

connecting layer with the atmospheric boundary, where air-sea fluxes take place, and links the

deep ocean waters with the free atmosphere through vertical mixing and surface ventilation (Fox-

Kemper et al., 2020). Furthermore, vertical mixing processes near the ocean surface are critical in

transporting tracers and supplying essential nutrients to marine biology (Taylor and Ferrari, 2011;

Smith et al., 2016; Mahadevan, 2016; Olita et al., 2017; Lévy et al., 2018).

It is important to differentiate between the mixed layer and the mixing layer. The ocean mixing

layer, also known as the ocean surface boundary layer, is where turbulence– usually estimated

by turbulent kinetic energy or turbulent dissipation– is most active. The boundary layer depth is

determined primarily by surface forcing and is sensitive to the diurnal cycle (e.g. heating or cooling),

wind direction and stress magnitude, and even passing storms with increased precipitation (Kraus

and Turner, 1967; Price, 1981; Price et al., 1986; Belcher et al., 2012; Li et al., 2019).

The mixed layer depth however, may lag or be entirely independent of the instantaneous boundary

layer, as it does not solely depend on surface forcing. The observed mixed layer depth results

from the combined effects of deepening mixing (entrainment) processes and shoaling restratification

processes. Both the mixed layer and boundary layer tend to be deeper during winter, when strong

surface forcing leads to more intense mixing (e.g. Holte et al., 2017).

The mixed layer depth is typically estimated by where tracers (e.g. salinity, temperature, density)

or certain dynamical properties (e.g. potential vorticity, stratification) exceed a certain threshold

relative to their surface values. Ship surveys and Argo profiles estimate the mixed layer depth from

observations, yet there is still debate over what algorithm is most reliable (de Boyer Montégut et al.,

2004; Holte et al., 2017; Li and Fox-Kemper, 2017). An example is demonstrated in figure 1.2, for

which the mixed layer depth is obtained from an Argo profile, following the de Boyer Montégut et al.

(2004) criteria of 0.28C for the temperature and 0.03 kg m−3 for the density, and a surface reference

level of 10m to eliminate diurnal surface heating effects (Holte et al., 2017).

However, the focus here is not on how to best estimate the mixed layer depth, but rather on the

actual processes competing for mixing and deepening vs restratifying and shoaling it. An illustration

of the different mixing processes at the ocean surface are shown in figure 1.3, and are described in

more depth in section 1.2.3.

1.2.2 Submesoscales

Submesoscale currents can be found in the form of density fronts and filaments, coherent vortices

and topographic wakes (e.g. Flament et al., 1985; Fedorov, 1986). Submesoscale fronts and filaments

are most commonly generated by mesoscale straining and boundary layer turbulence (McWilliams,
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Figure 1.2: An Argo profile example of temperature, potential density, and salinity to 2000 m from
float 3900082 on 29 Jan 2003 at 52.78S, 89.78W. To 400 m, the float’s sampling interval is 10 m,
after which it increases to 50 m. This profile is from a Canadian Argo float, figure and caption
adapted from Holte and Talley (2009).

2021), and are thus more evident during winter, when strong surface forcing leads to stronger

boundary layer mixing (Rudnick and Ferrari, 1999; Ferrari and Rudnick, 2000; Callies et al., 2015)

or in regions with strong mesoscale eddies (Capet et al., 2008a; Sasaki et al., 2014; Brannigan

et al., 2015; Buckingham et al., 2016). Furthermore, coastlines and marginal ice zones provide a

source of fresh water, generating density fronts and filaments by other sources and that may have

land-dependent seasonal variability (Luo et al., 2016; Mensa et al., 2013, 2018).

Due to their small size and rapid behaviour, submesoscale currents have historically been un-

derstudied, as it has been difficult to obtain measurements from standard ship surveys and remote

sensing satellites (e.g. Weller and Samelson, 1991; Hosegood et al., 2006; Zhang et al., 2019). Other

techniques such as targeted ship surveys, high frequency radars of sea level anomalies, surface drifters,

drone and aerial footage are often utilized in multi-platform observational campaigns specifically de-

signed for the purpose of studying surface submesoscales (e.g. Gildor et al., 2009; Chavanne and

Klein, 2010; Shcherbina et al., 2015; Novelli et al., 2017). However, these studies are performed on

regional scales, and a complete understanding of how submesoscales behave on the global scale is

still lacking (Ullman and Cornillon, 1999; Dong et al., 2020).

From an energetic perspective, mesoscales tend to merge, transferring kinetic energy from smaller

scales to the larger scales (inverse cascade), and so do not provide an easy route to dissipation (Ferrari

and Wunsch, 2009). Therefore, submesoscale currents are thought to be a key component in the

forward energy cascade in the ocean (Molemaker et al., 2010; D’Asaro et al., 2011; Gula et al.,

2016), primarily due to loss of balance, interaction with inertia-gravity waves, and finer turbulent

structures that emerge along the currents (Thomas, 2012; Vanneste, 2013; Shakespeare and Taylor,

2014). Submesoscales tend to overlap in scale with inertia-gravity waves, and it is often difficult to
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Figure 1.3: Ocean surface boundary layer processes that contribute to mixing: wind shear, convection
and Langmuir are discussed in section 1.2.3. Sketch is borrowed from (Thorpe, 2007)

distinguish between them in observational measurements (Cao et al., 2021). However, inertia-gravity

waves are characterized by oscillatory propagation, whereas the submesoscale currents discussed here

are a unique dynamical class (Shakespeare and Taylor, 2014).

In planetary and mesoscale flows, several approximations are made that greatly simplify the

equations of motion. These simplifications allow for analytic solutions that have historically helped

the understanding of large scale atmospheric and oceanic flows. To explore the dominant forces that

govern the flow, it is useful to quantify the relative scale of different terms in the equations of motion

via dimensionless parameters. For example, the Rossby number Ro = U/fL, represents the ratio

of inertial forces to the Coriolis force i.e. Earth’s rotation (U and L are a characteristic horizontal

velocity and length scales, f is the Coriolis frequency parameter). The Froude number Fr = U/NH

represents the ratio of inertial forces to the gravity force (H is a characteristic vertical length scale,

N =
√
− gρ

∂ρ
∂z is the Brunt-Väisälä buoyancy frequency, g is gravity and ρ is density). Similarly, the

Richardson number represents the ratio of buoyancy frequency to vertical shear Ri = N2/(∂zU)2

(Pedlosky et al., 1987). Typically in large scale flows, where rotation and stratification govern

the flow, Ro, Fr � 1 and Ri � 1 , meaning inertial forces are negligible in this limit. In the

submesoscale, the Rossby, Froude and Richardson numbers are typically all on the order of O(1) and

thus not negligibly small as in the meso- and planetary scales (e.g. Thomas et al., 2008; McWilliams,

2016). Practically, this means that these terms cannot be ignored, and nonlinear terms need to be

fully accounted for in the equations of motion. Thus, from a theoretical perspective, many of the

clean solutions that exist for mesoscale and planetary scale flows, do not apply for the submesoscale,

and creative techniques are required to describe these flows theoretically and numerically.
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Frontogenesis and Frontal arrest

Fronts and filaments are an important and ubiquitous submesoscale feature of the ocean surface

(illustrated in figures 1.1 and 1.4). They are characterized by elongated sharp horizontal density

gradients, and an overturning circulation in the interior, working to restore stratification and thermal

wind balance, as mixing and strain alter the front (McWilliams, 2017). A filament is dynamically

similar to a two-sided front, with anomalously dense or light water in the middle. Dense filaments

are found to be more common in the ocean due to their stronger formation mechanism (McWilliams,

2021).

Figure 1.4: Schematic adapted from McWilliams (2016) describing the dynamics involved in the
strain-induced frontogenesis process of a front (a) and cold filament (b), illustrating the along-
front/filament velocity at the surface and an overturning circulation in the interior.

The process involving the formation and sharpening of fronts is known as frontogenesis, and was

originally developed for the atmosphere, where they are critical for the understanding and prediction

of weather (e.g. Hoskins, 1982; Davies and Rossa, 1998). In the ocean, the mixed layer is weakly

stratified in the vertical, thus horizontal density gradients can become dominant, and strengthen to

form sharp fronts. Two primary mechanisms are found to onset frontogenesis: a density gradient

in the presence of an external strain field (e.g. mesoscale eddies), and vertical turbulent fluxes (e.g.

boundary layer turbulence).

Classic strain-induced frontogenesis theory was originally developed by Hoskins and Brether-

ton (1972) in a semigeostrophic framework, which assumes geostrophic balance in the along-front

direction, thus reducing to a 2D inviscid, adiabatic flow (i.e. no turbulence) in the cross-frontal plane.

Classic frontogensis theory is able to describe frontal dynamics at leading order, by solving for the

along-front current (at the top and bottom of the mixed layer) and a cross-frontal ageostrophic (i.e.

not in geostrophic balance) overturning circulation. However, it results in an infinitely narrow front

in a finite time, a nonphysical limit that does not comply with observations or numerical simulations.

Furthermore, semigeostrophy is found to be inaccurate for 3D flows such as elongated fronts where
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curvature matters or during late frontogensis when instabilities develop along the front (Rotunno

et al., 1994; Gent et al., 1994).

A different approach combines geostrophic and boundary layer theories, as expected for subme-

soscale fronts in the ocean surface boundary layer (McWilliams, 2016). Here, Ekman and thermal

wind are both assumed to be at first order, thus leading to a three-way balance between vertical

shear s(z) = ∂uH

∂z , the horizontal buoyancy gradient ∇Hb(z), and turbulent viscosity ν generated by

surface winds ∂2(ν s)
∂z2 ,

f ẑ× s = −∇Hb+
∂2(ν s)

∂z2
. (1.1)

This process of turbulence-induced frontogensis is also known as the Turbulent Thermal

Wind (TTW) balance, and was developed by McWilliams et al. (2015). TTW theory is able to de-

scribe fronts and filaments at scales much sharper than semigeostrophic theory, and more consistent

with the observed ocean submesoscale. However, it is very difficult to observe the strain field and

turbulent fluxes in the ocean, and observations of TTW are scarce. Regional ocean models have

been useful tools for studying TTW behavior in a near-realistic environment (e.g. Gula et al., 2014;

Dauhajre and McWilliams, 2018), and only recently have high resolution numerical simulations been

able to simulate the multi-scale TTW range. Sullivan and McWilliams (2018, 2019) are among the

first to simulate a dense filament undergoing TTW frontogensis in the presence of realistic surface

boundary layer turbulence.

Both approaches predict frontogenesis to proceed until disrupted by turbulent fluxes that arrest

the ever strengthening front. These turbulent fluxes can either be the result of frontal instabili-

ties or existing boundary layer turbulence from ocean surface processes such as winds, waves and

surface cooling (McWilliams, 2021). This thesis is rooted in understanding under what conditions

submesoscale frontal arrest is possible and at what scale.

1.2.3 Frontal Instabilities and Boundary Layer Turbulence

Wind Stress and Shear Turbulence

Wind stress along the ocean surface is the main cause for shear turbulence in the ocean surface

boundary layer. This is the dominant process generating turbulence in a stable or neutrally stratified

boundary layer, i.e. dominated by momentum fluxes rather than heat or buoyancy flux.

The friction velocity u∗ represents the characteristic velocity scale in the boundary layer given

from wind stress, and is derived directly from Ekman dynamics (Wyngaard, 2010),

u∗ =

√
|τ0|
ρ0

, (1.2)

where τ0 is the wind stress and ρ0 ∼ 1025kg m−3 is the reference density at the surface.

It is common in turbulence literature to describe how turbulent the flow is in terms of how high

is its Reynolds number Re = UL/ν, where U and L are characteristic velocity and length scales,

and ν typically represents molecular viscosity. However, the turbulence discussed here mostly refers
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to eddy fluxes, not molecular, and can be quantified in terms of an eddy viscosity ν = −u′w′/∂u∂z ,

and will therefore have a relatively low effective Reynolds number (where u′w′ is the mean vertical

momentum flux and ∂u
∂z is the mean horizontal shear).

Convection

During a diurnal cycle, the ocean surface is heated and cooled by latent and sensible heat, as well as

short and long-wave radiation. Most significantly, surface cooling combined with penetrating short

wave radiation leads to unstably stratified (cold over warm) waters, which will then drive convection.

This is essentially the classic convection case driven by Rayleigh Benard (or gravitational) instability

(Haine and Marshall, 1998; Fox-Kemper et al., 2020).

It is common for both buoyancy fluxes and wind stress to be present at the ocean surface. The

Monin-Obukhov (MO) length scale represents the effects of wind stress and convection within the

boundary layer, combined into one characteristic length scale ,

LMO = − u3
∗

κB0
, (1.3)

where u∗ is the friction velocity scale, B0 is the surface buoyancy flux (B0 > 0 for destabilizing

surface buoyancy flux), and κ = 0.4 is the Von Karman constant. The MO theory specifies whether

convective or shear turbulent conditions are favorable in the boundary layer. Specifically, z/LMO < 0

indicates convection and z/LMO > 0 indicates shear turbulence in stable stratification (Fox-Kemper

et al., 2020).

Similar to the friction velocity, the convective velocity w∗ represents the characteristic velocity

scale in a convective boundary layer. The scaling for w∗ is extended from the MO theory for a

convective boundary layer, and introduces an additional parameter for the boundary layer depth h

(Deardorff et al., 1970; Wyngaard, 2010),

w∗ = (B0h)1/3. (1.4)

The MO length scale can also be written in terms of w∗, which introduces a more intuitive interpre-

tation of estimating shear vs convective turbulence in the boundary layer,

LMO = −h
κ

u3
∗

w3
∗
. (1.5)

The friction and convective velocity scales are principal parameters in representing boundary layer

turbulence in climate models, as will be discussed in section 1.3.

Langmuir Turbulence

Waves are perhaps the most noticeable ocean surface phenomena, and are part of how boundary

layer theory in the ocean differs from the atmosphere. Although waves are important for air-

sea interactions by introducing bubbles and spray through wave breaking, here we focus on the

turbulence induced by their non-breaking dynamics (e.g. Sullivan and McWilliams, 2010; Cavaleri
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et al., 2012). Surface waves introduce an averaged velocity associated with the circular motion of a

fluid parcel carried by the waves. This is known as the Stokes drift, and is exhibited to be strongest at

the surface and decays with depth (figure 1.5). The interaction between surface winds and the Stokes

drift leads to the formation of windrows (displayed in figure 1.3), which are the surface convergence

zones of Langmuir circulation cells that generate Langmuir turbulence (Grant and Belcher, 2009).

Langmuir turbulence is typically confined to the top several meters, but its effects can penetrate

much farther, entraining and deepening the mixed layer base (Li and Fox-Kemper, 2017).

Figure 1.5: Schematic of the Stokes drift, which represents the drift of a fluid parcel due to circular
motion in the presence of winds and waves at the ocean surface (Thorpe, 2007).

The Langmuir number La2
t = u∗/us represents the ratio between the surface Stokes drift ve-

locity us and the friction velocity (McWilliams et al., 1997), and has numerous theoretical and

computational applications, as will be discussed in section 1.3.

Mixed Layer Instabilities

In addition to the standard ocean surface boundary layer turbulence, there exist a unique class of

instabilities that arise from the presence of horizontal density gradients in the mixed layer, such as

those introduced by submesoscale fronts.

The vertical isopycnals introduced by the front contain a source of available potential energy

(Eady, 1949; Stone, 1970). Illustrated in figure 1.6, baroclinic instability converts available potential

energy into kinetic energy in the form of eddies, acting to slump the front, bringing light water

over dense, and therefore having an overall restratifying effect (Lapeyre et al., 2006; Fox-Kemper

et al., 2008). Baroclinic instability also occurs on the mesoscale, but mixed layer instabilities are

constrained by the weak stratification in the mixed layer, and thus confined to the mixed layer depth

(Boccaletti et al., 2007).

Restratification can also occur after an initial geostrophic adjustment of the front, i.e. tilting

of the front while it attempts to reach a gesotrophically balanced state (Blumen, 1972; Ou, 1984;

Tandon and Garrett, 1994), yet mixed layer instabilities lead to stronger restratification, particularly

after the mixed layer eddies reach finite amplitude (Boccaletti et al., 2007; Fox-Kemper et al., 2008).



10

Figure 1.6: A temperature front (Co) on day 20 of a typical spindown simulation from Fox-Kemper
et al. (2008). H illustrates the mixed layer depth which enables the mixed layer instabilities to
develop, and the eddy streamfunction Ψ represents the restratification due to the slumping front.

Potential Vorticity and Symmetric Instability

Potential vorticity (PV) is a fundamental dynamical property in atmospheric and oceanic fluid

dynamics. The Ertel PV combines the two main drivers of planetary flow: rotation and stratification,

q = (ω + fk̂) · ∇b, (1.6)

where ω = ∇ × u is the relative vorticity, u is the velocity vector, fk̂ is the vertical planetary

rotation, b = −gρ/ρ0 is buoyancy, g being gravity acceleration, and ρ is the density (Charney, 1971;

Pedlosky et al., 1987).

In shallow flows such as submesoscale currents in the mixed layer, surface quasi-geostrophy (SQG)

has been found to be useful to describe flows beneath the surface, especially as satellite observations

and surface measurements are more widely available (e.g. LaCasce and Mahadevan, 2006; Chavanne

and Klein, 2016). Surface boundary conditions of the temperature and subsurface velocities are

approximated to invert the surface PV, which can be sufficient to prescribe the interior flow field

(e.g. Bretherton, 1966; Lapeyre and Klein, 2006).

Several instabilities arise when the PV takes the opposite sign of the Coriolis parameter, fq < 0.

Most relevant to ocean surface mixing is that of symmetric instability (e.g. Hoskins, 1974; Thomas

et al., 2013). The presence of a strong frontal horizontal buoyancy gradient, surface cooling and

winds in the along-front direction (down-front winds) will result in negative PV (Thomas, 2005)

which are favorable for symmetric instability. Waves can also affect the PV through the alignment

of the Stokes and geostrophic shears (Haney et al., 2015). Symmetric instability is sometimes also

referred to as slantwise convection, because it occurs when the direction of mixing slants along the

front (illustrated in figure 1.7).

Negative PV is also a signature of mode water (also known as eighteen degree water), that

represent an important pathway for heat and carbon from the ocean surface to the interior, and

even influence gyre-scale circulation (e.g. Wenegrat et al., 2018).
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Figure 1.7: Schematic of conditions favorable to the development of symmetric instability. Down-
front winds (thick arrow) drive an Ekman flow perpendicular to the wind vector and across the
front (horizontal arrows), carrying dense water over light water. The associated Ekman buoyancy
flux ( EBF > 0), in conjunction with atmospheric cooling ( B0 > 0), reduces the stratification near
the surface, destroys PV, and drives the fluid toward a symmetrically unstable state, leading to
enhanced turbulence along isopycnals (colored planes). Caption and figure adapted from Bachman
et al. (2017b).

For this reason, there is special interest to track the evolution of PV and study which processes

may lead to a negative sign,
∂q

∂t
= −∇ · [uq − ωD +∇b× F], (1.7)

where F and D are the frictional and diabatic fluxes which arise directly from the momentum and

thermodynamic equations respectively, (Haynes and McIntyre, 1987; Marshall and Nurser, 1992)

F =
∂u

∂t
+ u · ∇u +

1

ρ
∇P + fk̂ × u, (1.8)

D =
∂b

∂t
+ u · ∇b. (1.9)

These frictional and diabatic terms represent both molecular and turbulent fluxes, and are thus

key to connecting submesoscale dynamics with surface boundary layer turbulence. This method has

especially been instrumental in describing the effects of friction on frontogenesis, where wind stress–

based on its direction– induces an Ekman flow that can either reinforce or degrade stratification

in the mixed layer (e.g. Thomas and Rhines, 2002; Thomas and Ferrari, 2008; Crowe and Taylor,

2020).

Horizontal Shear Instability

Similar to Kelvin-Helmholtz instability, horizontal shear instability occurs where there is horizontal

shear across the interface between two fluids. The growth rate for horizontal shear instability is

characterized by a Richardson number below Ri < 0.25 (Stone, 1966). Horizontal shear instability

can form along the submesoscale front, due to concentrated shear, and has been shown to be the
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primary arrest mechanism for frontogenesis in several simulations (Taylor and Ferrari, 2009; Gula

et al., 2014; Sullivan and McWilliams, 2018, 2019).

1.3 Modeling Multiscale Interactions

1.3.1 General Circulation Models

General Circulation Models (GCMs) are limited in their ability to resolve the convoluted interactions

between the atmosphere, ocean, land and biology, over all relevant time and spatial scales. Hence,

they simulate these interactions by including as many processes as computational constraints permit,

while processes too small, fast, or complex are approximated through parameterizations. These re-

duced mathematical expressions capture the leading order physics, yet must remain computationally

efficient and commute with other components of the GCM.

Computational fluid dynamics models, which include GCMs, typically solve the equations of

motion for the mean field φ (e.g. Vallis, 2017), where · represents any resolved variable that is

advanced in time, e.g. velocity or tracers such as temperature and salinity. Deviations from the

mean are often noted by ·′, and they can affect the evolution of the mean field through forcing or

advection terms. A simplified example of what these equations may look like in a GCM are written

as,
∂φ

∂t
+ u · ∇φ = −∇ · u′φ′, (1.10)

where the term u′φ′ represents the unresolved fluxes of φ′.

Submesoscales and boundary layer turbulence tend to be on scales smaller than the grid used in

GCMs, even at the highest possible resolution (Dong et al., 2020). Accurate representation of these

processes is especially important for climate simulations as they determine the effective mixed layer

depth, through which even modest adjustments have a major impact on climate sensitivity (Fox-

Kemper et al., 2019; Hall and Fox-Kemper, 2021). To emphasize this point, figure 1.8 demonstrates

the wide range of possible mixed layer depths which result from different boundary layer mixing

schemes.

As turbulence mainly acts to stir and diffuse the fluid (Thorpe, 2005), two main parameterization

methods emerge to represent these effects in GCMs. Stirring tends to be represented by a bolus

velocity (uB) included as an advection term in the governing equations that are solved by the GCM

(Gent and Mcwilliams, 1990; Griffies, 1998). These velocities are given by a streamfunction (Ψ),

representing the submesoscale eddy fluxes produced by the restratifying effect of a slumping front

(also illustrated in figure 1.6),

w′b′
Eddy fluxes

= Ψ×∇Hb, uB
Bolus velocity

= ∇×Ψ
Streamfunction

. (1.11)

However, current submesoscale parameterizations have been shown to be too simplistic and

unfitting in many circumstances (e.g. Callies and Ferrari, 2018; Calvert et al., 2020), primarily due
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Figure 1.8: Monthly zonal mean mixed layer depth given by the different boundary layer mixing
schemes compared in Li et al. (2019).

to their strong dependence on frontal width, for which no scaling law exists to comprehensively

evaluate it, or its relationship to the turbulent processes that help set it.

The classic boundary layer turbulence closure involves a 1D (vertical) representation of the down-

gradient and non-local fluxes,

w′φ′ = K
∂φ

∂z
+ Γ, (1.12)

where K is the eddy diffusivity coefficient and Γ represents any non-local effects. These terms are

included as forcing terms in the governing equations that are solved by the GCM. Since b is resolved

by the model, the effort lies in estimating K and Γ to best represent the vertical mixing processes

in the upper ocean, which often depend on the turbulent velocity scales u∗, w∗ and an enhancement

factor E(La) to account for wave effects (e.g. Large et al., 1994; Li et al., 2019).

It is important to remember that parameterizations, by definition, are a simplified representation

of a complex process. Many of these parameterizations emerge from natural scaling laws, that are

then examined, tested and validated in high resolution numerical simulations, followed by extensive

sensitivity and bias evaluations in GCMs. However, it is still impossible to capture the entire

spectrum of possibilities, and will always result in some bias (even if minimal) when compared with

observations. In contrast, observations of processes in the ocean surface boundary layer are scarce,
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and many of these theories and concepts emerge from idealized simulations, and some bias may as

well be attributed to the compared observations. To conclude this point, GCMs are very useful tools

that simulate the climate system, yet do not attempt to resolve every process within the climate

system.

1.3.2 Large Eddy Simulations

In principal, there should be a clear scale separation between resolved and unresolved (parame-

terized) processes in models such as GCMs. Otherwise, the model will fall into the category of

Large Eddy Simulations (LES), where large eddies are resolved and a sub-grid closure is needed to

parameterize smaller eddies (Fox-Kemper et al., 2014).

The basic assumption in LES is that energy is injected at the largest scales, and cascades through

an inertial range to smaller scales (Smagorinsky, 1963). In a true direct numerical simulation,

the energy will eventually dissipate through molecular processes (Kolmogorov, 1941, 1991; Corrsin,

1951). In LES, an artificial scale-dependent dissipation is used to represent the transfer of energy

to those smaller scales hidden below the grid scale (e.g. Sullivan et al., 1994; Tennekes and Lumley,

2018) . This is best illustrated by the energy spectra, as shown in figure 1.9, where models such as

LES dissipate energy at some scale in the inertial range, and cap all smaller scale effects as subgrid

effects.

Figure 1.9: Illustration of the energy spectrum E(k) and inertial range for 3D turbulence, and how
models such as LES mimic dissipation below the grid scale (blue vs red vertical lines), where k is
the wavenumber. Adapted from Fox-Kemper et al. (2014).

LES are popular primarily due to their high resolution and ability to resolve non-hydrostatic

processes (i.e. vertical acceleration), which is necessary for processes with large vertical fluxes such

as the submesoscale and boundary layer turbulence (McWilliams, 2016; Fox-Kemper et al., 2020),

and for resolving their interactions with biogeochemistry (Smith et al., 2016; Taylor, 2016). As

observations are limited, LES have been especially useful in advancing the basic understanding

of these processes in an idealized setting and under a wide range of conditions (e.g. Grant and

Belcher, 2009; Hamlington et al., 2014; Haney et al., 2015; Li and Fox-Kemper, 2017; Sullivan and

McWilliams, 2018, 2019).
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1.4 Outline of Thesis

This thesis is focused on studying the interaction and behavior of submesoscales and boundary

layer turbulence using several theoretical and computational approaches. The main questions to be

addressed here include:

• Does the presence of turbulence affect the formation of fronts? How does it change in weak

and strong turbulent regimes?

• How can the interaction between submesoscales and boundary layer turbulence be described

from a dynamical perspective? Can these interactions be extended to numerical methods?

• Are there any aspects of these interactions that can impact their representation on a global

scale? Can we quantify these interactions and improve on existing parameterizations?

Chapter 2 introduces a theoretical framework to study the effects of turbulence on strain-induced

frontogenesis. The contribution of turbulence is most significant in the PV equation, through which

analytic and numerical results reveal valuable insights of the verity of ways turbulent fluxes can

affect the formation of fronts.

This approach was extended in chapter 3 to a more realistic environment, by analyzing a suite

of high-resolution turbulence-resolving LES, where submesoscales and boundary layer turbulence

interact freely. This analysis exposes severe limitations in existing techniques to predict PV in highly

turbulent regimes, and accurate diagnosis methods are presented for interpreting PV dynamics in

models such as LES.

Another more targeted set of LES is analyzed in chapter 4, in which a strain-induced front is

arrested by a variety of turbulent processes resulting from winds, waves, convection, and mixed layer

instabilities. These interactions are quantified by estimating turbulent properties and frontal width.

Results are also compared with TTW filament frontogensis LES from Sullivan and McWilliams

(2018, 2019).

In chapter 5 a new scaling law is derived for frontal width that combines the theory from chapter

2 with TTW theory, and insights from chapters 3 and 4. The new scaling is utilized to modify

the existing submesoscale parameterization, and is implemented in a GCM, where its impact and

sensitivity is evaluated.

Finally, chapter 6 summarizes the main conclusions of this thesis and discusses future work.



Chapter 2

A Perturbation Approach to

Understanding the Effects of

Turbulence on Frontogenesis

This chapter is primarily drawn from work published as: Abigail S. Bodner, Baylor Fox-Kemper,

Luke P. Van Roekel, James C. McWilliams, and Peter P. Sullivan. ”A perturbation approach to

understanding the effects of turbulence on frontogenesis.” Journal of Fluid Mechanics, 883, A25.

doi:10.1017/jfm.2019.804

2.1 Introduction

The classic–inviscid, adiabatic–theory (Hoskins and Bretherton, 1972; Hoskins, 1982) of frontal for-

mation, also referred to as frontogenesis, predicts that the cross-frontal scale becomes infinitely thin

in finite time. This unphysical outcome does not comply with observations, both in the ocean and

atmosphere (e.g. Pollard and Regier, 1992; Bond and Fleagle, 1985). Frontogenesis occurs in the

ocean mixed layer where stratification may be complex, especially including the mixed layer base

and connected upper pycnocline, and where the ocean surface is subject to atmospheric forcing by

winds and thermal variations, waves and wave breaking, as well as incoming and outgoing radiative

energy at short and long wavelengths. Thus, a variety of mixed layer instabilities or forced turbu-

lent mixing affects fronts, many at a scale consistent with the width of observed fronts (Sullivan

and McWilliams, 2018). However, no scaling law or uniform understanding of how arrest happens

over a variety of turbulent conditions exists, and present submesoscale parameterizations need such

a scaling (Fox-Kemper et al., 2011).

As fronts involve both density and velocity gradients, there are potential roles for both turbulent

momentum fluxes (usually simplified here as eddy viscosity) and turbulent heat fluxes (usually

simplified here as eddy diffusivity). It is not well understood what kinds of turbulent fluxes may

16
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halt frontogenesis and at what scale, and what kinds enhance it and at what rate. For example,

vertical mixing has been shown to be important for frontal formation (e.g. Thompson, 2000; Nagai

et al., 2006), whereas horizontal mixing is thought to play a role in the arrest process (Sullivan

and McWilliams, 2018). Boundary layer mixing, specifically vertical momentum flux, has also been

shown to incite frontogenesis through a process called Turbulent Thermal Wind (McWilliams et al.,

2015).

Much of the original theory of fronts was developed for the atmosphere, where they are critical for

the understanding and prediction of weather. For example, a number of atmospheric studies (Cooper

et al., 1992; Nakamura and Held, 1989; Nakamura, 1994; Xu et al., 1998) study frictional PV injec-

tion, boundary conditions, and nonlinear evolution in an evolving Eady (1949) wave, but they are

simulation-based while the theoretical perturbation approach taken here distinguishes the different

viscous and diffusive contributions and boundary condition effects plainly. Rotunno et al. (1994)

examine differences between the perfect semi-geostrophic equations and the primitive (effectively,

the hydrostatic, Boussinesq) equations, noting that both dissipative terms and non-semi-geostrophic

effects contribute. However, our target application is that of fully turbulent, nonhydrostatic, Boussi-

nesq arrest, of the kind studied using Large Eddy Simulations in Suzuki et al. (2016); Sullivan and

McWilliams (2018) and subsequent studies, where nonhydrostatic boundary layer turbulence arrests

frontogenesis within the upper ocean boundary layer. H̊akansson (2002) illustrates how sensitive

the atmospheric application is to the details of vertical friction and diffusivity. The oceanic appli-

cation requires a still broader consideration of the kinds of turbulence that are possibly significant.

While here the theory is illustrated with simple parameterizations of horizontal and vertical eddy

diffusivities. Directly comparable to the past atmospheric studies, the approach presented here is

readily extended to address the submesoscale (Fox-Kemper et al., 2011; Bachman et al., 2017b) and

Langmuir (Li et al., 2019) turbulence found to dominate oceanic boundary layer turbulence.

In this study, we present an analytic method based on perturbation analysis to account for

the effects of modest turbulent fluxes on frontal formation. While constant eddy diffusivity and

viscosity are utilized as concrete examples here, the approach is easily generalized to other more

realistic turbulence closures or to Large Eddy Simulation diagnostic analysis (an ongoing analysis

will be reported soon). A complementary diagnostic decomposition approach has recently been

proposed (McWilliams, 2017), emphasizing the attribution of causes of frontogenesis to their effects.

Here an asymptotic approach is taken rather than a dynamical decomposition, illuminating different

aspects of frontogenesis. In section 2.2 we review classic frontogenesis theory, present our asymptotic

method in 2.2.2, and the closed equation set of the modified solution, based on potential vorticity

fluxes and boundary conditions, in 2.2.3 and 2.2.4. Results are discussed in section 2.3, together with

an analysis concerning localized approximations in 2.3.1 and 2.3.2. Lastly, we conclude in section

2.4, followed by an outline for future work.
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2.2 Theory and Methods

The mathematical inviscid, adiabatic framework of strain-induced frontogenesis (Hoskins and Brether-

ton, 1972; Hoskins, 1982; Shakespeare and Taylor, 2013) describes the formation of fronts when

strained by a geostrophically-balanced strain flow, such as mesoscale eddies (or synoptic weather in

the atmospheric case). Shakespeare and Taylor (2013) (hereafter ST13) generalized the mathemat-

ical framework of Hoskins and Bretherton (1972) (hereafter HB72), to include fronts generated by

an unbalanced flow. We follow the formulation presented in ST13 for a rotating fluid in Cartesian

coordinates in an incompressible, hydrostatic, Boussinesq flow on an untilted f -plane. In the limit of

HB72, the equations reduce to the semi-geostrophic equations suited for describing the early stages

of strain-induced frontogenesis. Eddy viscosity and diffusivity are added as new forcing terms, but

otherwise this treatment and notation follows ST13.

The velocity and pressure terms are written as:

U = Ū + u(x, z, t) = −αx+ u(x, z, t),

V = V̄ + v(x, z, t) = αy + v(x, z, t),

W = 0 + w(x, z, t),

P = P̄ + p(x, z, t) = ρ0

[
−α2 (x2+y2)

2 + fαxy
]

+ p(x, z, t)),

B = 0 + b(x, z, t).

(2.1)

Where Ū , V̄ , P̄ are the background balanced, horizontal large-scale deformation fields and the as-

sociated pressure field respectively. The reference density is ρ0, f is the Coriolis parameter and

u, v, w, p, b are the laminar frontogenetic velocity, pressure, and buoyancy fields. As appropriate for

a mixed layer, upper ocean problem, weak background buoyancy stratification is assumed, so the

background pressure field can be thought to occur primarily by sea surface height anomalies. The

laminar frontogenetic fields are assumed to be nearly independent of the along-front direction y, so

only V̄ and P̄ vary in y. The strain rate α is taken as a constant, an approximation valid when α

represents much larger-scale features, such as mesoscale eddies, that do not vary over the confluence

region of the submesoscale front in question. Furthermore, the semi-geostrophic approximation re-

quires that α/f � 1, which can also be described as a small Rossby number approximation. Note

that y-invariance presumes that the laminar frontogenetic variables represent laminar perturbations

to the background flow. All turbulent contributions will be assumed to be scale-separated from

these laminar flows, and thus treated via parameterization: here eddy viscosity and diffusivity are

the explicit parameterization forms carried through the analysis, although generalizations are readily

handled with the same methodology. To review, the flow is decomposed as a sum of background

(capital letters), laminar frontogenetic (lower case), and turbulent (parameterized so not explicitly

part of u, v, w, b, p, and either frontogenetic or frontolytic) pieces.

It is useful to introduce a vector streamfunction, with a geostrophic (vertical) component1 Φ,

and an ageostrophic (along-front) component Ψ. The geostrophic streamfunction component is

1Sometimes called “velocity potential”, but better understood as the vertical component of the streamfunction.
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related to the pressure and horizontal geostrophic velocities by dividing into background and laminar

frontogenetic contributions Φ = φ̄+ φ(x, z, t),

φ̄ =
P̄

ρ0f
+ α2

(
x2 + y2

)
2f

= αxy, φ(x, z, t) =
p(x, z, t)

ρ0f
, (2.2)

∂φ̄

∂y
= −Ū , ∂φ̄

∂x
= V̄ ,

∂φ

∂y
= −ug = 0,

∂φ

∂x
= vg. (2.3)

While the ageostrophic, or “overturning circulation”, streamfunction component is related to the

ageostrophic laminar frontogenetic velocities Ψ = 0 + ψ(x, z, t),

∂ψ

∂z
= ua, − ∂ψ

∂x
= w = wa. (2.4)

Please note that to be consistent with ST13, we follow the left-hand-rule definition for the stream-

function, rather than the right-hand-rule as defined in HB72. Furthermore, here the term “sec-

ondary” is avoided as a description of the overturning circulation, as it is easily confused with the

order of the perturbation analysis. Likewise, the phrase “laminar frontogenetic” is preferred over

the more common “perturbation” velocity because it is easily confused with terms involved in the

perturbation method. As in HB72, the leading-order along-front laminar frontogenetic velocities are

purely geostrophic [v ≡ vg], and the cross-front laminar frontogenetic velocity is a combination of

geostrophic and ageostrophic components [u = ug + ua]. The background straining velocity is given

by φ̄ alone.

Similar to ST13, the governing equations for the 2D laminar frontogenetic response to the back-

ground flow can be expanded out from the definitions above, assuming hydrostatic, laminar flow.

Here we include the novel addition of an eddy diffusive flux F (b) and viscous flux F (u), F (v). For

now, these are written in a form amenable to accommodate most present parameterizations, in-

cluding spatial variation, nonlocal fluxes, and tensor character (Large et al., 1994; Griffies, 1998;

Fox-Kemper et al., 2008; Bachman et al., 2015, 2017b).

Du

Dt
− fv = αu− 1

ρ0

∂p

∂x
+∇ · F (u). (2.5a)

Dv

Dt
+ fu = −αv +∇ · F (v). (2.5b)

0 = b− 1

ρ0

∂p

∂z
(2.5c)

Db

Dt
= ∇ · F (b) (2.5d)

∂u

∂x
+
∂w

∂z
= 0 (2.5e)

Where b is the buoyancy and from (2.5c) and (2.2) we have the relation:

∂φ

∂z
=
b

f
. (2.6)
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The material derivative is defined as:

D

Dt
≡ ∂

∂t
+ (u+ Ū)

∂

∂x
+ w

∂

∂z
(2.7)

Equation (2.5e) will be automatically satisfied if the streamfunctions φ and ψ are chosen as the

prognostic variables instead of u, v, w.

For concreteness, we will assume in the following that the viscous and diffusive fluxes can be

written as horizontal and vertical fluxes, assumed to be down-gradient with constant viscosities and

diffusivities:

F (u) = x̂νH
∂u

∂x
+ ẑνV

∂u

∂z
, (2.8)

F (v) = x̂νH
∂v

∂x
+ ẑνV

∂v

∂z
, (2.9)

F (b) = x̂κH
∂b

∂x
+ ẑκV

∂b

∂z
. (2.10)

Consistent with assuming that the laminar fields do not vary in y, we assume that turbulent fluxes

are statistically homogeneous in y and thus the ŷ component can be ignored. One might be tempted

to suggest that molecular viscosity and diffusivity might be used here, but we will soon see that

asymptotic ordering demands an upper and a lower limit on Reynolds and Péclet number, so keep

in mind that these terms are intended as turbulence parameterizations.

Within the mixed layer, these fluxes are assumed to be a direct result of turbulence, whereas in the

very near-surface boundary they can be matched to applied wind shear (τ/ρ0) and thermodynamic

forcing (Q) via frictional and diabatic flux boundary conditions:

τx
ρ0

= ẑνV
∂u

∂z
(2.11a)

τy
ρ0

= ẑνV
∂v

∂z
(2.11b)

Q = ẑκV
∂b

∂z
(2.11c)

Penetrating solar fluxes can be accounted for, but are neglected here: all thermodynamic forcing is

taken to be at the near-surface.

2.2.1 Dimensionless expressions

Following ST13, we use the following scales to make the perturbation field equations dimensionless:

the horizontal and vertical buoyancy gradients (M2 = ∂b
∂y and N2 = ∂b

∂z , which is also the buoyancy

frequency squared), the horizontal and vertical length scales (L,H), and the strain and Coriolis rate

parameters (α, f). The dimensionless expressions for quantities of interest are given in table 1. As

in ST13, the vertical dimensionless coordinate ranges from 0 to 1, 0 being the bottom of the mixed

layer and 1 the surface. The cross-frontal coordinate is centered around the initial front maximum.

We focus on the semi-geostrophic limit for the background and laminar frontogenetic velocities,
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which implies that the along-front velocity is purely geostrophic, and it is scaled accordingly. The

cross-front horizontal velocity scaling is assumed to be consistent with the conversion of potential

energy being the primary source for the frontal overturning kinetic energy bH ∼ U2 (e.g. Suzuki

et al., 2016).

The dimensionless versions of equations (2.5b) and (2.5d) are, after reorganizing:[
∂

∂t
+ (Ro u+ γŪ)

∂

∂x
+Ro w

∂

∂z

]
v = − 1

Ro
u− γv +

(
Ro2

ReH

)
∂2v

∂x2
+

(
Ro2

ReV

)
∂2v

∂z2
(2.12a)

[
∂

∂t
+ (Ro u+ γŪ)

∂

∂x
+Ro w

∂

∂z

]
b =

(
Ro2

PeH

)
∂2b

∂x2
+

(
Ro2

PeV

)
∂2b

∂z2
(2.12b)

The dimensionless relations for φ, ψ, b and the velocities are:

u =
∂ψ

∂z
,

∂φ

∂x
= v, w = −∂ψ

∂x
,

∂φ

∂z
= b. (2.13)

Based on these scalings, the error made in assuming v is geostrophic rather than using all of (2.5a)

is O (Ro), following the approach to the semi-geostrophic equations of Hoskins (1975). This as-

sumption implies that if the turbulent flux terms are to contribute significantly when compared

to the neglected ageostrophic terms in (2.5a), at least one of ReH , Rev, P eH , or PeV should be

smaller than Ro, which is a small parameter. Thus, at least one dissipative term must arise as an

eddy parameterization, rather than through molecular values with Reynolds and Péclet much larger

than one. For the purposes of this paper, qualitative inferences of the effects of turbulent fluxes

are sought, but in ongoing work diagnosing Large Eddy Simulations, a comparison of the laminar

frontogenetic velocities to resolved turbulence is being evaluated directly.

Following (Hoskins, 1982), we take the z derivative of equation (2.12a) and the x derivative of

equation (2.12b), and using (2.13), reduce to one equation representing the instantaneous ageostrophic

streamfunction governed by the strain field, geostrophic field and turbulent flux terms:

∂2φ

∂z2

∂2ψ

∂x2
− 2

∂2φ

∂z∂x

∂2ψ

∂x∂z
+

(
∂2φ

∂x2
+

1

Ro2

)
∂2ψ

∂z2
=

− 2γ

Ro

∂2φ

∂x∂z
+

(
Ro

ReH

)
∂4φ

∂x3∂z
+

(
Ro

ReV

)
∂4φ

∂z3∂x
−
(
Ro

PeH

)
∂4φ

∂x3∂z
−
(
Ro

PeV

)
∂4φ

∂z3∂x

(2.14)

In ST13 and HB72 an analytic solution is obtained by assuming zero or uniform potential vorticity

(PV) everywhere in the domain. This class of solutions will be the zeroth-order starting point for

the perturbation analysis here.

2.2.2 Perturbation analysis

For a small term ε we use perturbation analysis to account for the effects of turbulence. We construct

the zeroth-order solution to contain all the leading order laminar frontogenetic dynamics described

in ST13 and HB72. Additionally, the background flow (i.e., Ū , V̄ ) is also part of the zeroth order,
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Symbol Scale

Buoyancy b M2L

Geostrophic velocity v HM2

f

Horizontal velocity u
√
M2LH

Vertical velocity w
√

M2H3

L

Time t 1
f

Background mean velocity Ū αL

Rossby number Ro
√

M2H
f2L

Froude number Fr
√

M2L
N2H

Deformation ratio γ α
f

Geostrophic streamfunction component φ M2LH/f

Ageostrophic streamfunction component ψ
√
M2LH3

Horizontal turbulent Reynolds number

(for horizontal eddy viscosity) ReH
vL
ν

Vertical turbulent Reynolds number

(for vertical eddy viscosity) ReV
vH
ν

Horizontal turbulent Péclet number

(for horizontal eddy diffusivity) PeH
vL
κ

Vertical turbulent Péclet number

(for vertical eddy diffusivity) PeV
vH
κ

Table 2.1: Dimensionless expressions for quantities of interest following ST13 framework in the
semi-geostrophic limit, which implies that the along-front velocity is purely geostrophic.
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so for the inviscid, adiabatic, zeroth-order limit a zero PV valid solution exists.

U = Ū + u = ε0(Ū + u0) + ε1u1 +O
(
ε2
)
,

V = V̄ + v = ε0(V̄ + v0) + ε1v1 +O
(
ε2
)
,

W = w = ε0w0 + ε1w1 +O
(
ε2
)
,

Φ = φ̄+ φ = ε0(φ̄+ φ0) + ε1φ1 +O
(
ε2
)
,

b = ε0b0 + ε1b1 +O
(
ε2
)
.

(2.15)

At the first order, the effects of turbulence (2.8)–(2.10) and the associated surface forcing (2.11a)–

(2.11c) on the laminar frontogenetic flow will be isolated and examined.

We will now study individually horizontal and vertical viscosity and diffusivity. For each case

the small perturbation parameter ε is defined by:

εHV = Ro
ReH

= EkH : Horizontal viscosity (HV),

εV V = Ro
ReV

= EkV : Vertical viscosity (VV),

εHD = Ro
PeH

= EkH
PrH

: Horizontal diffusivity (HD),

εV D = Ro
PeV

= EkV
PrV

: Vertical diffusivity (VD).

(2.16)

Where EkH = Ro
ReH

= ν
fL2 , EkV = Ro

ReV
= ν

fH2 and PrH = νH
κH
, P rV = νV

κV
are the horizontal and

vertical Ekman and Prandtl numbers. For small Ekman numbers and O (1) Prandtl numbers, these

terms are all expected to be small. However, depending on the details of the type of turbulence

approximated, it may be expected that they may not be the same size. We proceed asymptotically

by assuming they are all small and of equal order, and then after the asymptotic perturbation

expansion we can choose to individually neglect them.

Using the eddy viscosity and diffusivity parameterizations (2.8)–(2.10), these small parameters

appear before the terms of highest differential order. Hence, there will always be some small “fric-

tional sublayer” scale on which they are not small and they enlarge near the boundaries to satisfy

the boundary conditions (2.11a)–(2.11c). A similarity or asymptotic matching solution may thus

be more appropriate as an asymptotic approach in order to “magnify” the sublayer region and ex-

amine potentially leading order impacts outside the sublayer. However, other parameterizations of

turbulence differ in differential order, e.g., a Newtonian drag as used in some eddy-damping bound-

ary layer schemes (e.g., Parsons, 1969; Fox-Kemper and Ferrari, 2009) or Newtonian cooling as

sometimes used in air-sea damping schemes (e.g., Dijkstra and Molemaker, 1997), or linear drag as

through parameterized Ekman layer pumping (Twigg and Bannon, 1998; Boutle et al., 2015). Thus,

the detailed asymptotics within the frictional boundary layer will be specific to the differential form

of the parameterization–here eddy viscosity and diffusivity, but not generically those forms. Further-

more, the true ocean boundary has a wavy-frothy-bubbly sublayer for which there exist numerical

approaches but not analytic ones. For these reasons, the effects of eddy viscosity and diffusivity

in a specific frictional sublayer analysis are not the focus of this study. Rather, it is the intention

here that the singular perturbation implied by neglecting these highest-derivative-order terms (i.e.
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as ε → 0) be equivalent to the traditional solution of the classic inviscid, adiabatic frontogenesis

theory, and may be used as a guide to later analyze realistic turbulent frontal simulations.

Thus, (2.14) is solved assuming an ansatz of regular perturbation analysis, and that the solution

exists outside the frictional sublayer, affected only at first order by the turbulence there. We insert

(2.15) above into equation (2.14) found in the previous section and separate by order of ε.

Zeroth order: inviscid, adiabatic

This order is the traditional frontogenesis regime, as studied by HB72 and ST13. Typically, a

zero or uniform potential vorticity is assumed to arrive at a simpler solution. We will preserve

this assumption for the zeroth order, but it will be revisited in the context of turbulent fluxes

and potential vorticity anomalies and injection below. Additionally, to ensure consistency with the

limitation of the Hoskins (1975) semi-geostrophic assumption and asymptotic theory, we confine

this analysis to γ = O
(
Ro2

)
and Ro < ε < O

(
Ro−2

)
. However, as both Ro and ε must be small

parameters, a tighter bound actually applies: Ro < ε < 1. The zeroth order equation for the

streamfunction, equation (2.14), equivalent to HB72, is:

∂2φ0

∂z2

∂2ψ0

∂x2
− 2

∂2φ0

∂z∂x

∂2ψ0

∂x∂z
+

(
∂2φ0

∂x2
+

1

Ro2

)
∂2ψ0

∂z2
= − 2γ

Ro2

∂2φ0

∂x∂z
. (2.17)

ST13 introduced a new coordinate system, similar to the geostrophic momentum coordinate in

HB72:

X = eαt
(
x+

v0

f

)
, Z = z, T = t. (2.18)

This X coordinate is conserved for any value α and is referred to as the “generalized momentum

coordinate”. A similar expression for the vertical coordinate is desirable when the scale of gradient

sharpening in the vertical is comparable to the horizontal (e.g. McWilliams et al., 2009). Here

we assume frontal sharpening is dominated by the horizontal strain field, and thus strictly use the

horizontal form of the generalized momentum coordinate. Note that since ST13 solve the inviscid

non-diffusive case, this coordinate system is associated with the zeroth order solution.

The dimensionless form of this coordinate system is:

X = eγT
(
x+Ro v0

)
, Z = z, T = t. (2.19)

In this new coordinate system, which tracks the Lagrangian displacements in x, the dimensionless

material derivative reduces to
D

Dt
=

∂

∂T
+Ro w0 ∂

∂Z
. (2.20)

And the dimensionless Jacobian for this transformation is:

J = eγT
(

1− eγTRo∂v
0

∂X

)−1

. (2.21)

The solution for all the zeroth order terms, assuming zero PV, are given in ST13. The buoyancy

field is defined as:

b0(X,Z, T ) = B0(X) + Fr−2Z + ∆b0(X,Z, T ) (2.22)
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Where B0(X) is the initial imposed buoyancy field as a function of X, chosen to be B0(X) =
1
2erf

(
X√

2

)
. For simplicity, we take the HB72 scenario (for which v = vg) and the corresponding

solution from ST13 is the following:

u0 = −eγTRo B′0(X) (Ro w + (2Z − 1)γ) (2.23a)

w0 = Ro γ B′′0 (X)Z(Z − 1)e2γT

(
1−Ro eγT ∂v

0

∂X

)−1

(2.23b)

v0 = eγTRo B′0(X)

(
Z − 1

2

)
(2.23c)

Later it will be useful when using the zeroth order velocities to convert to coordinate system (2.19)

where the velocities are written explicitly and have relatively simple expressions.

The criterion in ST13 for frontal singularity is that the transformation no longer holds, i.e the

inverse of the Jacobian vanishes
(
J−1 = e−γT −Ro ∂v0

∂X

)
. This happens when B′′′0 (Xf ) = 0. For

the HB72 case, the singularity forms at the critical time of t = 19.8, and the Eulerian location of

this singularity is found to be:

xf = Ro
1√
2β

(Xf β +B′0(Xf )) (2.24)

Where β = −B′′0 (X) > 0. Note that we expect xf to appear in two locations: one at the surface,

cold-side corner of the front in the mixed layer (xfs) and the other at the base, warm-side corner of

the front (xfb).

Figure 2.1 illustrates the dynamical formation (in real space) of frontogenesis with the buoyancy

field, and the emergence of the along-front velocity and cross-frontal overturning streamfunction.

We follow ST13 in choosing Ro = 0.4, γ = 0.1 as an example for the HB72 case. As frontogenesis

progresses, the imposed strain enhances the buoyancy gradient, which, through thermal wind bal-

ance, strengthens the along-front shear (figure 2.2). A useful diagnostic measure for frontal tendency

is the Lagrangian evolution of the horizontal buoyancy gradient T 0
b = D

Dt
1
2

(
∂b0

∂x

)2

(Hoskins, 1982;

McWilliams et al., 2015), shown in figure 2.3. Positive frontal tendency coincides with the largest

buoyancy gradient, and in late frontogenesis a negative frontal tendency adjacent to the front max-

imum, contributes to the sharpening the front, eventually leading to singularity. An ageostrophic

overturning circulation appears in the cross-frontal plane, attempting to re-stratify the front, fur-

ther contributing to frontogenesis (figure 2.4). The positive overturning streamfunction in figure

2.4 indicates a counterclockwise overturning, which is in the direction to move buoyant water over

dense and stratify the frontal region. However, as the frontal region is somewhat wider than the

overturning, the upper left (upper, cold-side) and lower right (lower, warm-side) buoyancy gradients

are concentrated more than other regions of the front. Illustrated in the right panels of figures

2.2 and 2.4, as frontogensis progresses, the ageostrophic streamfunction strengthens and narrows,

and the along-front velocity gets pinched to two points at the top, cold-side corner and bottom,

warm-side corner of the frontal region of the mixed layer, and the buoyancy gradient strengthens

and isopycnals come closer together and tilt–especially in these two corners, consistent with the lo-

cations of maximum frontal tendency (figure 2.3). The zeroth order solution continues to strengthen
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Figure 2.1: Frontal formation of the dimensionless zeroth order buoyancy field (left), together with
the cross-frontal planes showing the along-front velocity v (middle), and overturning streamfunction
ψ (right). The cross-frontal, vertical and time axis correspond to the dimensionless x, z and t axis
respectively.

and narrow, and becomes singular at these two points within a finite time. In the following section,

the first order solution effects on this process are shown.

First order: turbulent fluxes

The first order equation for the streamfunction given by equation (2.14) will be slightly different,

depending on the type of forcing at hand:

∂2φ0

∂z2

∂2ψ1

∂x2
− 2

∂2φ0

∂z∂x

∂2ψ1

∂x∂z
+

(
∂2φ0

∂x2
+

1

Ro2

)
∂2ψ1

∂z2
=

− ∂2φ1

∂x2

∂2ψ0

∂z2
+ 2

∂2φ1

∂z∂x

∂2ψ0

∂x∂z
− ∂2φ1

∂z2

∂2ψ0

∂x2
− 2γ

Ro

∂2φ1

∂x∂z
+ F(φ0),

(2.25)
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Figure 2.2: Cross-frontal profiles of the zeroth order along-front velocity v0 (shading) at two times
defined as early frontogenesis (t = 5, left) and late frontogenesis (t = 18, right). Note the different
colorbar axes. Superimposed in black contours is the buoyancy field, with intervals of 0.1 in non-
dimensional units. Note the singularity developing during late frontogenesis. x and z are the
dimensionless cross-frontal and vertical axes, respectively, in real space.

Figure 2.3: Contours show buoyancy as in figure 2.2, shading shows the zeroth order frontal tendency
T 0
b .

Figure 2.4: Contours show buoyancy as in figure 2.2, shading shows the zeroth order streamfunction
ψ0.
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The different turbulent flux parameterizations arise as:

F(φ0) =



∂4φ0

∂x3∂z (HV)

∂4φ0

∂z3∂x (VV)

− ∂4φ0

∂x3∂z (HD)

− ∂4φ0

∂z3∂x (VD)

(2.26)

In our theoretical framework both surface boundary conditions and interior turbulent fluxes enter

at the first order and are functions of zeroth order terms. Thus (2.25) is an inhomogeneous (with

turbulent flux divergences as forcing), 2nd-order, linear (from perturbation method), partial differ-

ential equation (PDE) which is coupled for the unknown overturning and vertical streamfunction

perturbations ψ1, φ1 with non-constant coefficients, which are known functions of the zeroth order

solution. In addition to the limitations on ε and Ro, this analysis is also restricted to times of early

frontal formation, when ψ1 < O (1/ε) and the PDE (2.25) remains elliptic.

Note that the viscous terms are of opposite sign to the diffusive terms, but horizontal diffusivity

and viscosity have the same operator, as do vertical diffusivity and viscosity. Although (2.26)

suggests that diffusivity and viscosity may have opposite effects on frontal formation, an additional

equation and boundary conditions that differ between viscosity and diffusivity are required in order

to obtain the full uncoupled solutions for the first order overturning and geostrophic streamfunction

φ1, ψ1.

2.2.3 Potential Vorticity

Potential vorticity (PV), specifically Ertel PV, is a conserved quantity fundamental to geophysical

fluid dynamics, and has historically been immensely useful in understanding oceanic and atmo-

spheric dynamics (e.g. Rhines, 1986; Hoskins, 1991; Gill, 1982; Pedlosky et al., 1987; Salmon, 1998;

Kurgansky and Pisnichenko, 2000). PV is defined from the absolute vorticity (ω = fk +∇×u) and

buoyancy gradient:

q = (fk +∇× u) · ∇b (2.27)

Where u = (Ū + u, V̄ + v, w) are the background and laminar velocity fields. Note that turbulent

velocities are not included in this definition of PV, which is important in the interpretation of

the eddy parameterizations. Since the zeroth order PV is assumed to be zero as in traditional

frontogenesis theory, any PV in the perturbation system is associated with the first order and is a

result of turbulent fluxes and boundary injection. The dimensionless first order PV is:

q1

Ro2
=
∂v1

∂x

∂b0

∂z
− 2

∂v0

∂z

∂b1

∂x
+

(
1

Ro2
+
∂v0

∂x

)
∂b1

∂z
. (2.28)
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Or in terms of φ1,

q1

Ro2
=
∂b0

∂z

∂2φ1

∂x2
− 2

∂v0

∂z

∂2φ1

∂x∂z
+

(
1

Ro2
+
∂v0

∂x

)
∂2φ1

∂z2
. (2.29)

The PV equation (2.29), like (2.25), is also an inhomogeneous (the forcing here is the non-zero PV),

2nd-order, linear elliptic PDE for φ1 with non-constant coefficients which are functions of the zeroth

order solution. As the zeroth order solution is already known, then if given the strength of q1,

equation (2.29) can be inverted to find φ1. From this, ψ1 can be found using (2.25). So, if q1 is

known, then (2.29) and (2.25) are two coupled, linear PDEs in the unknowns φ1, ψ1.

The evolution of PV (which is just q1 as the zeroth order has zero PV) is determined by frictional

and diabatic forcing through the so-called J-equation, and can be written in terms of an advective

term, a frictional flux term and diabatic flux term (Haynes and McIntyre, 1987; Marshall and Nurser,

1992; Thomas, 2005; Benthuysen and Thomas, 2012; Wenegrat et al., 2018):

∂q

∂t
= −u · ∇q + (∇×Du) · ∇b+ ω · (∇Db) (2.30)

Where Du and Db are the frictional and diabatic flux divergences.

Since the zeroth-order PV is uniform, the total PV equation reduces to the evolution of the first

order PV.
∂q1

∂t
= −u0 · ∇q1 + (∇×D1

u) · ∇b0 + ω0 · (∇D1
b ) (2.31)

In the asymptotic framework, the frictional and diabatic fluxes appear only in the first order and

are functions only of known zeroth-order factors:

D1
u = ∇ · F (v0) (2.32a)

D1
b = ∇ · F (b0) (2.32b)

Likewise, the advection of the first-order PV is only carried by the known zeroth-order velocity:

(Ū + u0, V̄ + v0, w0).

The non-dimensional form of this equation is:

∂q1

∂t
= −

[
(Ro u0 + γŪ)

∂

∂x
+Ro w0 ∂

∂z

]
q1 +D(v0, b0) (2.33)

Where the frictional and diabatic flux effects on PV have been collected into

D(v0, b0) =



∂b0

∂x
∂3v0

∂x2∂z −
∂b0

∂z
∂3v0

∂x3 (HV)

∂b0

∂x
∂3v0

∂z3 −
∂b0

∂z
∂3v0

∂z2∂x (VV)

∂v0

∂z
∂3b0

∂x3 − ∂v0

∂x
∂3b0

∂x2∂z (HD)

∂v0

∂z
∂3b0

∂z2∂x −
∂v0

∂x
∂3b0

∂z3 (VD)

(2.34)
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2.2.4 Boundary Conditions and First-Order Solution Procedure

To evaluate first-order solutions for each of the frictional forcing cases, equation (2.33) is integrated in

time using the zeroth order terms from (2.22) and (2.23a)-(2.23c). During integration, the first-order

PV is calculated, advected, and accumulated.

The first order solution is next found, for every forcing case, by solving equations (2.25) and (2.29)

using the PV resulting from (2.33). By integrating equations (2.5a) and (2.5d), the vertical boundary

conditions are solved at each time. Explicitly, the vertical boundary conditions are calculated by

following the evolution of the first order buoyancy and cross-frontal velocity at the top and bottom

boundaries, for each forcing case:

b1 =
∂φ1

∂z
, b1

∣∣∣∣
z=0,1

=

∫ t

0

[
−u0 · ∇b1 − u1 · ∇b0 +∇ · F (b0)

]∣∣∣∣
z=0,1

dt (2.35a)

u1 =
∂ψ1

∂z
, u1

∣∣∣∣
z=0,1

=

∫ t

0

[
−u0 · ∇u1 − u1 · ∇u0 + γu1 +∇ · F (u0)

]∣∣∣∣
z=0,1

dt (2.35b)

q1

∣∣∣∣
z=0,1

=

[
Ro2 ∂b

0

∂z

∂2φ1

∂x2
− 2Ro2 ∂v

0

∂z

∂2φ1

∂x∂z
+

(
1 +Ro2 ∂v

0

∂x

)
∂2φ1

∂z2

]∣∣∣∣
z=0,1

(2.35c)

It is important to note that the fluxes producing PV in the preceding equations are surface turbulent

fluxes associated with frontal formation. At this time we do not consider external surface forcing,

such as wind stress, which has been shown to contribute additional interior PV (Thomas and Ferrari,

2008).

The horizontal boundary conditions assume the laminar frontogenetic fields vanish in the hori-

zontal, far from the front. Explicitly,

v1

∣∣∣∣
x→±∞

=
∂φ1

∂x

∣∣∣∣
x→±∞

= 0 (2.36a)

u1

∣∣∣∣
x→±∞

=
∂ψ1

∂z

∣∣∣∣
x→±∞

= 0 (2.36b)

q1

∣∣∣∣
x→±∞

= 0 (2.36c)

The initial conditions for all first order terms, which include the PV, ψ1 and φ1 are zero, assuming

turbulence and secondary circulations are negligible at t = 0 when the front is weak. More details

on the numerical methods used to illustrate the results in the following section can be found in

Appendix B.

2.3 Results

To quantify the effects turbulent fluxes may have on frontal formation, the first order frontal tendency

is a useful start, evaluated by:

T 1
b =

D

Dt0

(
∂b0

∂x

∂b1

∂x

)
+

D

Dt1

1

2

(
∂b0

∂x

)2

, (2.37)
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Figure 2.5: Total frontal tendency Tb = T 0
b + εT 1

b for each of the forcing cases, over a variety of ε
(shades of blue), evaluated at the surface, where the zeroth order frontal tendency maximum (black)
becomes infinitely strong. For each forcing case, the maroon line represents the ε for which Tb = 0.
The green vertical line represents the time where the limit of the perturbation approach is reached
for each forcing case: horizontal viscosity (t = 11.1), vertical viscosity (t = 8), horizontal diffusivity
(t = 8.4), vertical diffusivity (t = 9.1).
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Figure 2.6: Cross-frontal plane of the total frontal tendency Tb = T 0
b +εT 1

b during early frontogenesis
(t = 5) with the appropriate arrest ε for each forcing case: horizontal viscosity (ε = 0.25), vertical
viscosity (ε = 0.53), horizontal diffusivity (ε = 0.04), vertical diffusivity (ε = 0.51). Black ticks
indicate the location of the maximum zeroth order frontal tendency corresponding to that measured
in figure 2.5 and for the sense of where the front is strongest.
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Figure 2.7: Same as in figure 2.6 for the total along-front velocity v = v0 + εv1.
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Figure 2.8: Same as in figure 2.6 for the total streamfunction ψ = ψ0 + εψ1.
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where subscripts on the Lagrangian derivative operator indicate the order of the advecting velocities.

The total frontal tendency, i.e. Tb = T 0
b +εT 1

b , is sensitive to the choice of ε and the turbulent forcing

at hand. Presented in figure 2.5 are the total frontal tendencies for each of the forcing cases, over

a variety of ε (shades of blue), evaluated at the surface, where the zeroth order frontal tendency

maximum (black) becomes infinitely strong. For each forcing case, the maroon line represents the

ε for which Tb = 0. This is a major result of this study, as it implies that there exists a choice of

parameters, for each turbulent forcing case, that is able to temporarily resist the strengthening of

the front, i.e. lead to an arrest. It is important to note that ε is different for every forcing case,

as well as the length of time for which it is able to sustain an arrest. However, the limitations

of the perturbation theory are highlighted by the erratic behaviour of the solution at later times,

a reminder that this theory is valid only for early frontal formation while higher-order corrections

remain insignificant. In Figure 2.5, a green vertical line is used to indicate when higher order

terms begin to rival leading order terms–i.e., an estimate of the breakdown time of the perturbation

method.

A closer look reveals that horizontal turbulent forcing cases share similar properties, as do the

vertical. Both horizontal viscosity and diffusivity show a linear response in epsilon towards a weak-

ening of the total frontal tendency, i.e. as ε increases, Tb becomes more negative. Additionally,

the ε which enables an arrest is relatively small, only ε = 0.25 in the horizontal viscosity case and

ε = 0.04 in the horizontal diffusivity case. Vertical viscosity and diffusivity also can reduce the rate

at which frontal tendency grows, however larger values of ε are required to reach negative frontal

tendency. During late frontogenesis (near time 10), larger values of vertical diffusivity enhance the

rate of frontogenesis over the zeroth-order solution, with larger ε leading to faster frontal tendency

(although this effect occurs after perturbation theory is estimated to remain formally accurate).

To make early time frontal tendency negative, very large values of ε are needed with the vertical

operators. Furthermore, larger values of the arrest ε are found in the vertical cases, where ε = 0.53

in the vertical viscosity case and ε = 0.51 in the vertical diffusivity case. Indeed, Ro = 0.4 < ε < 1

is required by the asymptotics, so much larger ε are not accessible consistently. By contrast, very

small values of ε optimize arrest (as simulated in the perturbation theory) in the horizontal viscosity

(ε ≈ 0.25) and especially diffusivity (ε ≈ 0.04) cases. The perturbation assumption of Ro ∼ ε does

not apply for such small ε values, and these specific values are unlikely to be accurate (Barcilon,

1998; Bender and Orszag, 2013). However, even a small amount of horizontal diffusivity surely

affects frontogenesis strongly. In practice, even small amounts of horizontal numerical viscosity and

diffusivity will have a large impact on frontogenesis, consistent with other findings (see discussion

in McWilliams et al., 2009). Because numerical stability requires (horizontal) diffusivity and viscos-

ity to scale with (horizontal) resolution, much higher horizontal resolution is required to properly

capture frontogenesis numerically than one would naively expect based on assumed balances such

as Ro ∼ ε. Thus, recent oceanic large eddy simulations of frontogenesis (e.g., Suzuki et al., 2016;

Sullivan and McWilliams, 2018) are likely addressing a novel regime where horizontal fluxes may

contribute unlike in coarser hydrostatic models. Likewise, the results here that vertical turbulent



36

fluxes approach leading order to contribute to arrest–or even become frontogenetic as in the vertical

diffusivity near time 10, is likewise consistent with recent numerical analyses of the frontogenetic

Turbulent Thermal Wind effects.

To better understand the underlying dynamics of the possible arrest mechanism for each forcing

case, we next examine the cross-frontal planes of the total frontal tendency (Tb = T 0
b + εT 1

b , figure

2.6), along-front velocity (v = v0 +εv1, figure 2.7) and streamfunction (ψ = ψ0 +εψ1, figure 2.8). All

figures are displayed at non-dimensional time t = 5, and with the appropriate arrest ε for each forcing

case found in figure 2.5. Black ticks indicate the location of maximum zeroth order frontal tendency

corresponding to that measured in figure 2.5, and for the sense of where the front is strongest. All

forcing cases exhibit zero total frontal tendency at the location of the zeroth order maximum (figure

2.6), which is expected by choosing the arrest ε for each case. A demonstration of the arrest is also

apparent, for each forcing case, in the spreading and weakening of the along-front velocity at the

surface (figure 2.7).

However, in the zeroth-order solution illustrated in figures 2.2-2.4, the overturning streamfunc-

tion tended to focus the buoyancy gradients in two corner points, consistent with the locations of

maximum frontal tendency, and where eventually frontal singularities first develop. In the pertur-

bation solutions combined to first order in figures 2.6-2.8, the behaviour at these points is different

depending on which turbulent forcing case is examined.

1. Horizontal viscosity: the frontal tendency (figure 2.6) exhibits weak negative and positive

signals adjacent to the zeroth order frontal maximum, of opposite orientation to figure 2.3

during late frontogenesis. Furthermore, a negative streamfunction (figure 2.8) appears near

the surface, right of the region of maximum zeroth order frontal tendency, directing fluid and

gradients away from the front maximum. This supports the findings in figure 2.5, that the

contribution of horizontal viscosity at the first order tends to weaken the front.

2. Vertical viscosity: although weaker in magnitude, the frontal tendency (figure 2.6) in this

case is of similar orientation to the front maximum as in figure 2.3 during late frontogenesis.

Here, a negative streamfunction (figure 2.8) appears near the surface as well, but in opposite

configuration with respect to the front maximum when compared to the horizontal viscosity

case, thus directing fluid and gradients to concentrate toward the region of maximum zeroth

order frontal tendency. Although, at time t = 5 the total frontal tendency is near zero, the flow

indicates that vertical viscosity at the first order tends to enhance frontogenesis, consistent

with results from previous studies.

3. Horizontal diffusivity: the along-front velocity is relatively wide spread in figure 2.7 as com-

pared with the other cases, even for a relatively small value of ε. The streamfunction (figure

2.8) similarly is widespread, however the streamfunction reverses sign for increased ε, directly

opposing the zeroth order streamfunction (not shown). Interestingly, the frontal tendency in

this case (figure 2.5) does not resemble that of the horizontal viscosity case. Rather, it is of

the same configuration as vertical viscosity and diffusivity, which may explain the acceleration
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found in figure 2.5 approaching the perturbation limit at time t = 8.4. However, horizontal dif-

fusivity in figure 2.5 displays a weakening even for very small values of ε and thus, we conclude

that horizontal diffusivity, similar to horizontal viscosity, has mostly frontolytic characteristics.

4. Vertical diffusivity: similar to the vertical viscosity case, the frontal tendency here (figure

2.6) exhibits the same configuration as in figure 2.3. However, the streamfunction (figure 2.8)

displays a weak wider shape in the interior, yet is more concentrated near the surface. The

streamfunction shape does not reveal much intuition regarding the effects of vertical viscosity

on the flow field. For smaller ε, the streamfunction magnitude is stronger, and for larger ε

more concentrated at the surface (not shown). Figure 2.5 shows that as the perturbation limit

is approached at time t = 9.1, the total frontal tendency for all values of ε accelerate and

focus at the zeroth order value. The time this occurs is likely sensitive to parameters such as

Ro and γ. We conclude that vertical diffusivity, similar to vertical viscosity, is frontogenetic

based on the frontal tendency, yet not easily understood from the streamfunction flow field.

To summarize, the first-order solution is distinguished from the zeroth-order solution in two ways, by

the computed interior PV and through the altered boundary conditions that arise at first order. The

first order solutions examined in this section are surprisingly complex in comparison to the simple

reversal of signs in (2.34)–the solutions are not just mirror images because the surface boundary

conditions for momentum and buoyancy are not simply related even though the field equations are.

It is now natural to ask whether the solution is fully dependent on both or whether either the interior

PV or the surface conditions dominates over the other.

2.3.1 Surface Quasi-Geostrophy versus Interior Quasi-Geostrophy

In the mixed layer, surface quasi-geostrophic (SQG) dynamics (Lapeyre and Klein, 2006; Lapeyre

et al., 2006) sometimes dominate over interior quasi-geostrophic (IQG) dynamics forced by anomalies

in ocean interior PV (Klein et al., 2011), also called Charney (1971) QG dynamics (Bretherton,

1966; Capet et al., 2008b; Stamper et al., 2018). IQG has been shown in some simulations to

enhance frontogenesis over SQG-only upper ocean cases (Capet et al., 2016) can nonetheless exhibit

mesoscale strain-induced frontogenesis to some degree which is enhanced by submesoscales (Callies

et al., 2016). The relative contributions of the SQG system are more easily detected by remote

sensing (e.g., LaCasce and Mahadevan, 2006; Chavanne and Klein, 2016; LaCasce and Wang, 2015).

In an SQG system, surface buoyancy anomalies are used to generate an active boundary condi-

tion, while the interior PV is taken to be uniform and inert (Blumen, 1978). The full flow field is

obtained by using the PV invertibility principle (Hoskins et al., 1985), with the active buoyancy field

providing the boundary conditions for the inversion. In the IQG system, the boundary conditions are

simplified by neglecting buoyancy anomalies and flow dynamics are assumed to be driven solely by

interior quasi-geostrophic PV anomalies (QGPV). Two interesting byproducts of the perturbation

analysis framework are that the first order Ertel PV, as ordinarily used in traditional frontogenesis

literature, is locally equivalent to QGPV at that order, and that the impact of the first-order solution
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can be uniquely and completely decomposed into SQG effects and IQG effects (figures 2.9 and 2.10).

Turbulent closures affect surface buoyancy quite differently from interior PV, so: are the effects on

frontal formation by interior PV comparable to surface turbulent fluxes?

The PV in (2.29), together with the buoyancy boundary condition on φ in (2.35a) and (2.36a),

can thus be constructed from a combination of the interior QGPV, which in isolation drives the

IQG system, and added delta functions based on surface buoyancy to replace the buoyancy boundary

condition (Bretherton, 1966), which in isolation drive the SQG system (more details in Appendix B).

The surface delta boundary conditions are explicitly calculated by following the evolution of the first

order buoyancy and cross-frontal velocity at the surface, for each forcing case:

b1 =
∂φ1

∂z
, b1 =

∫ t

0

[
−u0 · ∇b1 − u1 · ∇b0 +∇ · F (b0)

]
δ(z − 0) dt (2.38a)

u1 =
∂ψ1

∂z
, u1 =

∫ t

0

[
−u0 · ∇u1 − u1 · ∇u0 + γu1 +∇ · F (u0)

]
δ(z − 0) dt (2.38b)

A delta function for the bottom boundary condition is used as well, although this has little

effect on the end result. These are essentially identical to the full first order boundary conditions

(2.35a)-(2.35b).

Figures 2.9 and 2.10 show the cross-frontal planes of the first order along-front velocity v1 and

streamfunction ψ1 at time t=5 for all forcing cases, calculated from the full system (a)-(d), the IQG

system (e)-(h), the SQG system (i)-(l), and their sum (q)-(t). Subfigures (m)-(p) will be discussed

in the following subsection.

To obtain the along-front velocity, we solve a linear PDE in φ1, and thus expect the sum of the

SQG and IQG systems to be similar to that of the full system. For all forcing cases, the full and SQG

systems in figure 2.9 are characterized by negative velocity, centered at the surface and decreasing

with depth. On the other hand, the IQG system shows a significantly weaker velocity, with a dipole

shape (or double dipole in the vertical cases). Hence, for the along-front velocity, representing the

geostrophic field, the SQG system appears to capture most elements of the complete solution.

Unlike the equation for φ1, the streamfunction ψ1 has a forcing term that cannot be easily

attributed to SQG or IQG dynamics, as it is governed by zeroth order terms. For illustration

purposes, we divide this forcing term into surface and interior domains (more details in Appendix B),

and solve for the SQG and IQG systems separately. The first order streamfunction exhibits different

behaviour for each forcing case in figure 2.10. The full solution for the horizontal and vertical

viscosity cases is focused near the surface, whereas in the horizontal and vertical diffusivity cases

the streamfunction is centered in the interior. Furthermore, unlike figure 2.9, the IQG system is

comparable in magnitude in the horizontal cases, yet weaker in the vertical cases. The sum of the

SQG and IQG systems is very similar to the complete system in all cases, however only in the

horizontal viscosity case does the IQG system contribute significantly in the interior.

Thus, given surface turbulent fluxes, the first order correction of the along-front velocity and

geostrophic potential can be found to a good approximation merely from surface conditions, using

SQG theory in this classic strain-induced frontogenesis case. The overturning streamfunction and
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ageostrophic field reveal a more complex dependency on interior fluxes, which by affecting interior

PV, may be important for a complete solution below the surface. This implies that parameterizations

that affect the surface buoyancy will have a larger impact on frontal structure than those that affect

interior PV or the rate of PV injection.

2.3.2 Point Source Surface Quasi-Geostrophy

In the SQG framework, we followed Bretherton (1966), and used delta functions in z to replace

the surface buoyancy boundary conditions. The success of this approach in capturing much of the

full frontogenesis impacts on along-front velocity highlights the importance of surface buoyancy

gradients. We now examine a further simplification of buoyancy that is severely focused in the

horizontal direction as well to see how much of the effect is retained. During frontogenesis, the

buoyancy has a sharp, and sharpening, gradient over the frontal domain. As the buoyancy singularity

is approached, the cross-frontal buoyancy gradient ∂b1

∂x may be approximated by a delta function in

the cross-frontal direction, corresponding to the location of maximum frontal tendency, and buoyancy

gradients elsewhere being neglected. Using this assumption, a simplified boundary condition for the

geostrophic potential φ1 is a Heaviside function in x and a delta function in z:

φ1(z = 0) =

φ1
maxδ(z − 0) x > xfb

φ1
minδ(z − 0) x < xfb

(2.39a)

φ1(z = 1) =

φ1
maxδ(z − 1) x > xfs

φ1
minδ(z − 1) x < xfs

(2.39b)

The cross-frontal points where the buoyancy gradient is localized are denoted by xfs, xfb which

represent the location of the front nose at the surface (fs) and bottom (fb) of the mixed layer

respectively.

The motivation for considering such simplifications is Green’s functions theory, as a full flow

field solution exists for φ1 and ψ1 even if only a point source buoyancy gradient is prescribed (e.g.

Harnik and Heifetz, 2007). An example analytic procedure for finding the first-order solution to

(2.25), using delta function approximations and Green’s function theory, is given in Appendix C.

Figures 2.9 and 2.10 (m)-(p) show results for the SQG systems with point source surface condi-

tions. In all forcing cases, the along-front velocity and streamfunction are very similar to the full

SQG system solutions in (i)-(l), especially near the surface.

In conclusion, the SQG geostrophic potential, which contributes most of the along-front veloc-

ity, can be reconstructed by surface conditions highly localized near the front maximum. From a

parameterization or numerics development perspective, it is the method of regularizing–or keep-

ing finite–the buoyancy gradient very near the maximum gradient surface expression of the front

that will dominate the fidelity of a strain-induced frontal simulation, rather than turbulent fluxes

elsewhere or the broad-scale injection of PV.
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Figure 2.9: Cross-frontal planes of the first order along-front velocity v1 at time t=5 for all forcing
cases, calculated from the full system (a)-(d), the IQG system (e)-(h), the SQG system (i)-(l),
the SQG system with a point source approximation (m)-(p), and the sum of the SQG and IQG
systems(q)-(t). Note that for plotting purposes the IQG system is multiplied by a constant.
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Figure 2.10: Same as in figure 2.9 for the first order streamfunction ψ1. Note that for plotting
purposes also here the IQG system is multiplied by a constant.
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2.4 Summary and Discussion

In this study, an asymptotic approach estimates the leading order correction of turbulent fluxes to

classic theory for strain-induced frontogenesis. The system described by classic theory may capture

the leading order dynamics, but it is shown here that turbulent fluxes are likely a key secondary

component missing in aligning theory with observations and model simulations, especially in the

ocean where submesoscale fronts typically coexist with boundary layer turbulence, but also in lower-

level atmospheric fronts. Here the effects of turbulent surface and interior fluxes of buoyancy and

PV were isolated and examined.

The uncoupled first-order solutions for the along-front geostrophic velocity and ageostrophic

overturning streamfunction are obtained by inverting the modified semi-geostrophic frontogene-

sis equation together with the first non vanishing-order PV equation. By differentiating between

horizontal and vertical eddy viscosity and diffusivity which, in reality, might be associated with

parameterizations of mixed layer instabilities, boundary layer turbulence or numerical artifacts as

simulated fronts approach singularity, an early understanding of the different impacts of these dissi-

pative operators on fronts is gained. It is found that horizontal viscosity and diffusivity readily act

to weaken the front, and thus are key to understanding frontal arrest, consistent with the arresting

role of horizontal shear instabilities found by Sullivan and McWilliams (2018). Vertical viscosity

and diffusivity, by contrast, act only to slow strengthening of the front at first, and later vertical

diffusivity accelerates frontogenesis resembling Turbulent Thermal Wind theory (McWilliams et al.,

2015; McWilliams, 2017; Crowe and Taylor, 2018).

As the full first-order solution depends on both turbulent boundary conditions and injected

interior PV, a decomposition of the results into surface quasi-geostrophic (SQG) and interior quasi-

geostrophic (IQG) subsystems isolates the contributions to the full solution. In most forcing cases,

it is found that SQG dynamics are able to capture most of the along-front velocity and overturning

streamfunction features, whereas IQG dynamics have a small contribution. The point source forcing

indicates that only a small surface region near the front is needed. In the case of horizontal viscosity,

the ageostrophic overturning circulation is only fully reconstructed by including both the SQG and

IQG systems. Due to the nature of frontal dynamics, features tend to be localized where the

front is strongest. By considering only a point source buoyancy gradient boundary condition, a

good approximation to the full SQG response for both the along-front geostrophic velocity and

overturning ageostrophic streamfunction was obtained. In a recent paper, Wenegrat et al. (2018)

show that boundary layer turbulence can generate a source of PV at the surface, similar in magnitude

to PV fluxes from wind and surface buoyancy fluxes (Thomas, 2005). It is presently unclear whether

our conclusions for the SQG and IQG systems hold true in the presence of strong surface forcing such

as downfront wind forcing, or realistic boundary layer turbulence. However, the same perturbation

methods can be used while including wind forcing in (2.13), and many of the LES being analyzed

include winds.

Furthermore, the asymptotic method presented in this study is derived from the semi-geostrophic

equations presented in HB72, implying that the Rossby number is smaller than 1. However, in the
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submesoscale regime, both inertial and rotational forces are important and so the Rossby number

is Ro ∼ 1 (e.g. McWilliams, 2016). Additionally, semi-geostrophic theory has been shown to be

inconsistent with Ro ∼ 1 (Barkan et al., 2019) and curved fronts (Gent et al., 1994). The expansion

parameter ε is taken to be constant, however the realistic form is highly uncertain as it represents

parameterized effects of turbulent fluxes in the submesoscale regime. The modified theory presented

here merely acts as a framework to study the effects of turbulent fluxes during early frontal formation,

while the semi-geostrophic assumptions and asymptotic approximation still hold.

It is intended that this framework be utilized in concert with submesoscale simulations with

more realistic turbulence parameterizations or resolved turbulence to highlight important regions

or aspects of such simulations. At present, Large Eddy Simulations (Moeng, 1984; McWilliams

et al., 1997) are able to resolve the submesoscale dynamics and boundary layer turbulence that

motivates this theory. An examination of simulations similar to those studied in Hamlington et al.

(2014); Smith et al. (2016); Suzuki et al. (2016) but including strain-inducing eddies are ongoing.

In all runs, a confluent region produces strong frontogenesis, but the cross-frontal scale halts at a

finite width. The eventual target is finding quantitative predictions for frontal width, strength, and

persistence in the presence of realistic turbulent fluxes.
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Chapter 3

A Breakdown in Potential

Vorticity Estimation Delineates the

Submesoscale-to-Turbulence

Boundary

This chapter is primarily drawn from work published as: Abigail S. Bodner and Baylor Fox-

Kemper. ”A Breakdown in Potential Vorticity Estimation Delineates the Submesoscale-to-Turbulence

Boundary in Large Eddy Simulations.” Journal of Advances in Modeling Earth Systems 12.10 (2020):

e2020MS002049.

3.1 Introduction

Potential Vorticity (PV), the fundamental correlation between vorticity and stratification, is a key

active variable of quasigeostrophic theory, and one of the most widely used properties in large-

scale oceanic and atmospheric dynamics (Pedlosky, 2013). PV is conserved via material advection

for adiabatic and inviscid flows (or nearly so for atmospheric and oceanic flows), is invertible in

quasigeostrophic flows to govern the subinertial flow, is the critical parameter governing stability

in symmetric instability (Hoskins, 1974), and even when not materially conserved the evolution of

PV is tractable via frictional and diabatic fluxes (Haynes and McIntyre, 1987; Marshall and Nurser,

1992; Thomas, 2005). The central question to be addressed here is: Does 3D turbulence, when partly

resolved in a Large Eddy Simulation, count as material advection of PV or a frictional and diabatic

process?

Different flow scales exhibit different properties. Large and slow flows tend to be governed

44
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by strong stratification and planetary rotation, however as smaller, faster scales are approached –

from mesoscale to submesoscale to 3D turbulence – inertial forces come to dominate as the flow

passes through isotropic turbulent properties before finally reaching the Kolmogorov (1941, 1991)

and Batchelor (1959) scales, where molecular motions are sufficiently dominant as to restrain the

production of variance through (continuum) turbulence. As model capacities are increasing, multi-

scale simulations now have the ability to partially resolve 3D turbulence together with larger scale

flows. Since PV is strongly dependent on stratification and rotation, the question arises as to its

robustness in an isotropic turbulent regime–where all mean vector quantities tend to zero because no

particular directions or vectors are allowed in isotropic statistics–and mean buoyancy gradients (i.e.,

stratification) and mean vorticity (i.e., rotation) are zero or at best ephemeral and only partially

resolved in Large Eddy Simulations (LES).

In this study we demonstrate that PV holds different scale-dependent statistics as a 3D turbulent

regime is approached, than those expected from larger mesoscale and submesoscale dynamics, and

this statistical transition may effectively delineate the small-scale boundary of the submesoscale: the

smallest scale of classic geophysical fluid dynamics where influences of rotation and stratification are

strong. Hamlington et al. (2014) define the small-scale end of the submesoscale as the scale where

nonhydrostatic effects become dominant, which is a definition based on the asymptotic behavior of

reduced equations consistent with the change in PV statistics, but the latter delineation is easily

detected as a statistical and dynamical marker of this scale.

Section 3.2 introduces the theory and behavior of PV in the 3D turbulence regime using spectral

analysis, and the implications of these results are presented in section 3.3 using multiscale simulations

which span the submesoscale and 3D turbulence regime. The consequences of Reynolds averaging

are discussed in section 3.4, and this analysis is implemented in section 3.5 to obtain an accurate

PV–along with its governing equations consistent with the needs of large-scale PV analysis–by pre-

filtering the velocity and buoyancy fields. Discussion and conclusions are presented in section 3.6.

3.2 Potential Vorticity and Spectral Analysis

Ertel Potential Vorticity, q, in nonhydrostatic, Boussinesq approximation fluids, is usefully defined

by the product of the buoyancy gradient and total vorticity (Pedlosky, 2013):

q = (f + ω) · ∇b. (3.1)

The relative velocity vector is u, ω = ∇×u is the relative vorticity and f is the planetary vorticity, b

is the buoyancy anomaly. The buoyancy is related to the potential temperature field θ by b = −gαθ
under a constant salinity linear equation of state in oceanic flows or an anelastic approximation

in atmospheric conditions, g being gravity acceleration and α the thermal expansion coefficient.

This simplified form is that of the model studied here, although a more complete discussion of PV–

including methods for treating nonlinear equations of state, background stratification gradients, and

non-aligned rotation and gravity vectors–can be found in Fox-Kemper (2018).
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The key utility of PV comes from two aspects: its material conservation and the invertibility of

PV and buoyancy to find the balanced velocity fields (McWilliams, 2006). At the mesoscale, subin-

ertial unbalanced motions are weak, so geostrophic turbulence (Rhines, 1979) is governed entirely by

the advection of PV and buoyancy by the turbulent flows, which in turn then provide the turbulent

flows from the PV and buoyancy distributions through invertibility. Large-scale PV dynamics are

key to understanding the general circulation and stratification (Haynes and McIntyre, 1987; Marshall

and Nurser, 1992). At the submeoscales the Rossby number is larger, so unbalanced motions such as

internal waves are strong enough to have unbalanced velocities that rival the balanced velocity field

and may nonlinearly interact (Bakas and Farrell, 2009), so submesoscale turbulence is a complicated

combination of wavelike and geophysical turbulence (McWilliams, 2016). Yet, many submesoscale

features such as fronts, filaments, and eddies have strongly constrained motions where PV dynamics

remain relevant (Thomas and Lee, 2005; Thomas, 2005; Thomas and Ferrari, 2008; Thomas, 2008;

Wenegrat and McPhaden, 2016; Siegelman, 2020). Obviously, even as models resolve smaller and

smaller phenomena in larger and larger domains, retaining a dynamical equivalent of submesoscale,

mesoscale, and large-scale PV is critical to linking these theoretical analyses to interpretation of the

latest model.

A second important theoretical result regarding PV is that its material conservation in inviscid,

adiabatic flow extends to the full Navier-Stokes equations if diffusion and viscous transfers are

correctly interpreted (Pedlosky, 2013; Haynes and McIntyre, 1987; Bachman et al., 2017a). Of

course, in realistic geophysical contexts stratification and rotation effects are leading order on the

length and time scale of tens of kilometers and days and are negligibly small at scales approaching

the (Kolmogorov, 1941, 1991) and (Batchelor, 1959) time and length scales. Thus, these scales are

typified by order one Reynolds and Péclét numbers, but huge Rossby and Froude numbers, thus

most of the motions at these dissipative scales is unbalanced and not predictable by PV inversion.

The variance of PV can be studied by examining the power spectral density of its components

across scales (following Frisch, 1995, among others). Namely, key quantities to examine are the

isotropized (i.e., integrated over all angles spanning a horizontal plane and including the polar co-

ordinate metric factor) power spectral density of kinetic energy E, potential energy B, enstrophy Z

and potential enstrophy Q, which upon integration over wavenumber magnitude are proportional to

the horizontal area-integrated-and-squared velocity, buoyancy, buoyancy gradient, vorticity, poten-

tial vorticity, and tracer concentration respectively. It should be noted that here horizontal power

spectra and scales are emphasized, as most of the flows under consideration are tranversely isotropic–

i.e., strongly anisotropic in the vertical versus horizontal directions but approximately isotropic in

the horizontal over all scales, due to the vertical alignment of gravity and planetary rotation (for

simplicity the simulations are on a non-tilted f-plane). Only at the smallest resolved scales does a

3D isotropic spectrum become useful. The spectral density of a passive tracer C with concentration

c will also be discussed later. For brevity, the power spectral density will just be referred to as the
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spectrum below, and their relation to area-integrated variance can be written out explicitly as:

∫ ∞
0

E(κ)dκ ∝
∫

u · u dxdy, (3.2a)∫ ∞
0

B(κ) dκ ∝
∫
b2dxdy, (3.2b)∫ ∞

0

G(κ) dκ =

∫ ∞
0

κ2B(κ) dκ ∝
∫
|∇b|2dxdy, (3.2c)∫ ∞

0

Z(κ)dκ =

∫ ∞
0

κ2E(κ)dκ ∝
∫

(∇× u) · (∇× u) dxdy, (3.2d)∫ ∞
0

Q(κ) dκ ∝
∫
q2dxdy, (3.2e)∫ ∞

0

C(κ)dκ ∝
∫
c2dxdy. (3.2f)

Note that a Cartesian x − y domain and Fourier transform are assumed, again anticipating the

model discretization to be analyzed. A proportionality is assumed between the integral of each

power spectrum and the physical space area integral, because there are a variety of conventions as

to how to choose the units of the power spectrum and thus the coefficient of proportionality may

vary by convention. This proportionality holds under all conventions, however. In this manuscript,

following Hamlington et al. (2014), after consistent normalization by the right hand side of equations

(3.2a)-(3.2f), all comparable power spectra are rescaled by a convenient factor (often the value of

the spectrum evaluated at the lowest wavenumber), which eliminates any ambiguity in definitions

of the coefficients of the power spectra. This normalizing factor will be made explicit in each figure.

At the smallest scales between the Nyquist wavenumber (1/2 the sampling rate or π/∆x in

angular units) and 1/
√

(2) times it, the grid-scale acts as a filter introducing horizontal anisotropy

affecting the diagnosed isotropized spectrum. However, it will be seen in the LES that the spectral

effects of the subgrid scheme used in the model (Sullivan et al., 1994) extend to even larger scales.

Likewise, at the largest scales, the square domain size affects the potential isotropy of the lowest

wavenumbers and the wavenumber resolution of spectra in different directions.

By differentiation, the enstrophy (vorticity) spectrum is related to the kinetic energy (velocity)

spectrum by Z(κ) = κ2E(κ) (Kraichnan, 1967), and the buoyancy gradient spectrum is related to

the buoyancy spectrum by κ2B(κ) (Fox-Kemper et al., 2011). Note that the terminology here is

somewhat inconsistent as enstrophy and energy are squared quantities while buoyancy gradient and

buoyancy are not. For consistency, one could refer to the set (3.2a)-(3.2f) as the velocity, buoyancy,

buoyancy gradient, vorticity, potential vorticity, and tracer spectra, or the kinetic energy, enstrophy,

buoyancy variance, and buoyancy gradient variance, potential enstrophy, and tracer concentration

variance spectra. Here we will use preferentially use the former set which is more concise on most

occasions here, but in all cases the list (3.2a)-(3.2f) indicate the correct formulation.

In the mesoscales, the interior or Charney (1971) quasi-geostrophic regime where potential vor-

ticity dynamics are best understood and are expected to govern spectra, the potential vorticity,
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buoyancy, and velocity spectra all scale as κ−3, which means that the buoyancy gradient and vortic-

ity spectra scale as κ−1. The QG turbulence velocity spectra in this regime closely resemble those

of 2D turbulence (Kraichnan, 1967), but of course 2D turbulence does not have stratification or

PV (e.g. Fox-Kemper and Menemenlis, 2008; Bachman et al., 2017a). Surface quasi-geostrophy has

a more complex spectral dependence and interpretation (Callies and Ferrari, 2013; Bodner et al.,

2020).

In near-surface submesoscale simulations and observations, buoyancy and velocity spectra all

scale as κ−2 (Capet et al., 2008c; Callies and Ferrari, 2013; Chereskin et al., 2019) . Thus, the

buoyancy gradient and vorticity spectra are white, scaling as κ0 (Fox-Kemper et al., 2011).

However, in isotropic 3D turbulence with weak temperature gradients or passive scalar gradients,

the Kolmogorov (1941)-Corrsin (1951) scalings for buoyancy and velocity spectra all scale as κ−5/3.

The Ozmidov (1965) scale is generally taken as the scale at which energy density is high enough

that buoyancy stratification can be considered weak in this sense. Many oceanographers prefer the

Thorpe (1977) scale in identification of near-surface overturning and mixing (Dillon, 1982), but here

the focus on cascade theories makes the Ozmidov scale much more natural. Thus, the buoyancy

gradient and vorticity spectra are taken to scale as κ1/3 on scales finer than the Ozmidov scale.

Since PV is the co-variance of the vorticity and buoyancy gradient, these scaling properties also

extend to the PV field, where we expect a slope ranging between κ1/3 (effectively assuming that

buoyancy behaves as a passive scalar stirred by dominantly unbalanced motions) and κ2/3 (when the

buoyancy gradient and vorticity are perfectly correlated–e.g., motion dominated by PV inversion).

These observations are not new, and have been discussed in several other studies (see e.g., Herring

et al., 1994; Kunze, 2019, and references therein). However, here the emphasis is the significance

of a positive slope which is terminated at the grid-scale of a Large Eddy Simulation, which implies

that the smallest scales contain the largest variance per unit wavenumber and are likely to dominate

the integrated vorticity, buoyancy gradient, and especially PV variance. This somewhat familiar

property of PV has important implications to the study of turbulent fluxes in LES, as will be

explained below.

3.3 Modeled Potential Vorticity in Multiscale Simulations

Hamlington et al. (2014) and Suzuki et al. (2016) describe simulations that are either interpreted as

extremely high resolution submesoscale simulations or extremely large domain nonhydrostatic Large

Eddy Simulations (LES) of boundary layer turbulence, where rotation and stratification become

dominant at the largest scales (see also: Taylor and Ferrari, 2011; Skyllingstad and Samelson, 2012;

Whitt and Taylor, 2017; Matheou et al., 2017; Callies and Ferrari, 2018; Pham and Sarkar, 2018;

Sullivan and McWilliams, 2018). Hamlington et al. (2014) and Suzuki et al. (2016) describe LES

of the spindown of a temperature front in the presence of submesoscale eddies, winds, and waves

and these simulations are analyzed here. The surface wave-averaged Boussinesq equations with

and without Stokes drift wave forcing are solved to simulate the interactions between submesoscale
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Figure 3.1: Plane view of a snapshot of the near-surface (z = −3m) temperature anomaly θ−θ after
the development of submeosocale instabilities. Where θ = 290.16K is the background temperature
field.

processes and boundary layer turbulence, including Langmuir turbulence. Figure 3.1 illustrates a

snapshot of the temperature field anomaly θ − θ near the surface (z = −3m) after the development

of submeosocale instabilities, where θ = 290.16K is the background temperature field.

Importantly for this study, these simulations span over three decades of horizontal resolution,

allowing roughly a decade of classic submesoscale turbulence – exhibiting a quasi-balanced regime

scaling of E(κ), B(κ) ∝ κ−2 – and a near-decade of boundary layer turbulence – exhibiting a

Kolmogorov-Corrsin like scaling of E(κ), B(κ) ∝ κ−5/3 (circularly integrated spectra shown in

Fig. 3.2). In these simulations, the mixed layer is found to be 50m in some regions, and shallower

in others. Here we choose to examine the spectral properties at three different depths: near surface

(z = −3m), within the mixed layer (z = −25m), and below the mixed layer (z = −60m).

The Ozmidov (1965) wavenumber,

kOz = (N3/ε)1/2 (3.3)

and ε are shown in figure 3.3 for the No-Stokes drift simulations, where ε is the dissipation rate and

N is the Brunt-Väisälä frequency. These simulations use the Sullivan et al. (1994) subgrid scheme

with an explicit dependence on the estimated dissipation rate ε, thus ε can be calculated from the

prognostic subgrid turbulent kinetic energy which is then used to calculate kOz. The black circles

in Fig. 3.3 mark the depths of the spectra displayed in Fig. 3.2. As depth increases, the Ozmidov

length scale decreases, indicating that the transition to 3D turbulence is found at smaller scales,

as expected below the mixed layer, declining fast below z = −50m. The Ozmidov wavenumber,

thus estimated, proves to be a good approximation of when the u, v, w components of the velocity
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Figure 3.2: Circularly integrated spectra of the velocity vector (u, v, w) normalized by the z = −3m
values of the Eu(kmin) and buoyancy field b normalized by Eb(kmin), examined at depths: near
surface (left, z = −3m), within the mixed layer (middle, z = −25m), and below the mixed layer
(right, z = −60m). Dashed lines denote the k−5/3 slope (light grey) and k−2 slope (dark gray)
for reference. The shaded region is taken as the cutoff scale of 3D turbulence at 400m in the
decomposition described in section 3.4.

spectra attain a similar magnitude and behavior, a necessary criterion for isotropy. Note that at

z = −60m the Ozmidov length scale is at roughly 8m, closely approaching the grid scale of 4.5m,

and the interpretation of the 3D turbulence regime, especially with regard to gradients, is likely to

be inaccurate. Also note that at the near-surface z = −3m location, near-surface suppression of the

vertical velocity magnitude is apparent even below the Ozmidov scale, which is perhaps a deficiency

of the LES (Ducros et al., 1998) or a sign of the similarity scaling enforced by the Sullivan et al.

(1994) scheme. In any LES, isotropization is unlikely to be fully realized, and the resolution of this

particular model is marginal as an LES to accomodate the large domain (Van Roekel et al., 2012),

nonetheless it is anticipated that the PV dynamics that occur in this model will be mostly generic

due to the theoretical considerations from the previous section.

A critical modeling viewpoint is that in LES, or more generally modeling of flows without a scale

separation between parameterized unresolved phenomena and the grid scale, is meaningful only when

the resolved flow variables are dominated by the larger eddies or larger, resolved scales of the power

spectrum, or are at least uniformly distributed across spectral space–i.e., a white power spectrum. If

the smaller-scale end of the variable in question dominates, then an “ultraviolet catastrophe” occurs

wherein the most important variability in that variable is contributed from the flow that occurs

on scales smaller than the resolution, and any deficiencies of the subgrid scheme contaminate the

basin-integrated variance of this variable at leading order (3.2a)-(3.2f).

The components of the vorticity and buoyancy gradient spectra are shown in Fig. 3.4. These

components are not yet isotropic, nor are they all oriented at a positive slope. The aforementioned

limited resolution beyond the Ozmidov scale is one reason for this, as is the fact that a deliberate

effort in subgrid modeling is required to have good spectral properties in these quantities near the
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Figure 3.3: Depth profiles of the dissipation rate ε (left) and Ozmidov scale wavenumber kOz (right).
Black circles mark the three depths shown in figure 3.2.

grid-scale (Johnson and Meneveau, 2018). Harcourt et al. (2002) suggest some remedies involving

improved LES filtering that may also improve the spectral behavior of velocity gradients near the

gridscale that were not utilized in these simulations. However, even with these deficiencies, the PV

spectrum still reveals the issue at the center of this study.

The spectrum of PV, i.e. the product of spectral quantities in Fig. 3.4, is shown in Fig. 3.5. At all

depths, at least one of the PV components in Fig. 3.4 display a positive slope nearing the smallest

scales, as expected to occur when sufficiently below the Ozmidov scale. At the larger scales the

near surface spectra displays a relatively flat slope, as expected for the submesoscale range (Capet

et al., 2008b). These spectral properties (flat at large scales, positive near the highest wavenumber)

extend to the total PV spectra shown in Fig. 3.5. Note that the PV is a convolution between

the vorticity and buoyancy gradient when computed in wavenumber space, which highlights the

correlation between these fields and may well vary across scales, so this result is not trivial.

The limited extent of the positive slope in this marginal resolution LES is theoretically pre-

dicted to extend up to the Kolmogorov microscale at least for the vorticity and buoyancy gra-

dients independently if not for the PV (Johnson and Meneveau, 2018; Corrsin, 1951), which is

κK =
(
ν3

ε

)1/4

≈ 4mm for this simulation. At that scale, turbulent production of vorticity variance

is matched by molecular viscous dissipation. By comparing this scale to the approximately 4m

horizontal resolution of this model, if the spectrum of PV continues to scale near k1/3, then the

spectrum of PV will be 20 times higher at κK than it is at the grid-scale here. If the correlation

between vorticity and buoyancy gradients persists (leading to a spectrum proportional to k2/3) then

the spectrum will be 460 times larger at κK than at this models’ grid-scale. Fig. 3.5 includes also

the spectra of the Stokes drift forced runs where small-scale vertical transport and mixing, due to

the induced Langmuir turbulence, is 4 times greater (Hamlington et al., 2014). For these runs much

of the variance is located at smaller scales and within the mixed layer even surpasses that of the
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Figure 3.4: Circularly integrated spectra of the buoyancy gradient components normalized by
Ex·∇b(kmin) (top panels) at z = −3m and vorticity components normalized by Ex·ω(kmin) at
z = −3m (bottom panels), at the same depths shown in Fig. 3.2. Here, dashed lines denote the
k2/3 slope (light grey) and k1/3 slope (dark gray) for reference. Shaded region is the same as in
Fig. 3.2.

larger scale. We would expect similar results if finer resolution Stokes-free runs had been available,

resolving further into the 3D turbulence regime.

As discussed above, in interior QG simulations, the buoyancy gradient and vorticity spectra

scale as κ−1, and for near-surface submesoscale, the spectra are white, scaling as κ0. However in

boundary layer LES simulations, the Kolmogorov-Corrsin scalings of the buoyancy gradient and

vorticity spectra scale as κ1/3: an ultraviolet catastrophe in both fields. LES is inconsistent if

unresolved turbulence dominates over turbulence at the grid-scale, i.e., when unresolved statistics

dominate those of resolved Large Eddies that dominate many statistics of the turbulence. In this

case, the PV over all resolved scales cannot be meaningfully examined, because the PV variance is

dominated by unresolved scales, and even the resolved PV variance is dominated by scales that are

contaminated by spurious subgrid scheme effects. Johnson and Meneveau (2018) argue that this

effect can be ameliorated for the velocity gradients, e.g., near grid-scale vorticity statistics can be

improved through reworking LES subgrid schemes, but so far no such scheme has been developed

to affect both buoyancy and momentum equations in such a way as to produce the correct near

grid-scale behavior of PV.

However, LES are valuable because they do a good job of predicting large-scale momentum and
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Figure 3.5: Same as in figure 3.4 for PV in the Stokes drift forced case (light magenta) and No
Stokes drift case (dark magenta). Thin lines denote the sharp cutoff pre-filtered PV and dotted lines
denote the Gaussian pre-filtered PV for both cases, as discussed in section 3.5. Shaded region is the
same as in Fig. 3.2. All spectra are normalized by Eq(kmin) at z = −3m of the No Stokes case.

buoyancy variability–i.e., that of the “large eddies”. As PV is a derived quantity–with a dynamical

equation formed by differentiation and combination of the buoyancy and momentum equations–if

the buoyancy and momentum are pre-lowpass-filtered before calculating the PV field and its budget,

then that system can be meaningfully related to the submesoscale and mesoscale PV budgets. Fur-

thermore, by locating the filter scale as to average and smooth over all variability with Kolmogorov-

Corrsin scalings, evaluating the pre-filtered velocity and pre-filtered buoyancy will exclude all of the

variability in this regime and the problematic PV variability. Thus, pre-filtering of the velocity and

buoyancy up to the largest scale of the boundary layer turbulence is required for PV dynamics in

LES to be meaningful.

3.4 Pre-filtering and Reynolds Averaging

In discrete spectral space a Reynolds average or smoothing filter can be constructed from using

summation over resolved scales from the largest wavenumber based on the basin dimension to a

cutoff wavenumber K (Frisch, 1995; Buzzicotti et al., 2018). In complex topography or heterogeneous

flows, spectral transforms are not convenient, so a variety of other filtering approaches can be taken

(with important caveats, Aluie et al., 2018; Bachman et al., 2017a; Hudgins et al., 1993). Defining
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an average based on this cutoff,

EK ≡
1

2
u<K · u

<
K =

1

2

∑
κ≤K

∣∣û<K∣∣2 , (3.4a)

BK ≡
1

2

∣∣b<K∣∣2 =
1

2

∑
κ≤K

∣∣∣b̂<K∣∣∣2 , (3.4b)

QK ≡
1

2

∣∣q<K∣∣2 =
1

2

∑
κ≤K

∣∣q̂<K∣∣2 , (3.4c)

CK ≡
1

2

∣∣c<K∣∣2 =
1

2

∑
κ≤K

∣∣ĉ<K∣∣2 , (3.4d)

where ·̂ denotes the discrete (horizontal) Fourier transform, and κ =
√
k2 + l2 is the wavenumber

magnitude. The essential aspect of this work is noting that because PV is the product of the vorticity

and buoyancy gradient, and thus inherently nonlinear, the calculation of PV does not commute with

averaging, and thus the spectra of PV are nontrivially related to the spectra of vorticity variance

and buoyancy gradient variance.

By differentiation, the enstrophy spectrum is related to the energy spectrum, and the buoyancy

gradient spectrum is related to the buoyancy spectrum.

ZK ≡
1

2

(
∇× u<K

)
·
(
∇× u<K

)
=

1

2

∑
k≤K

κ2
∣∣û<K∣∣2 . (3.5a)

1

2

∣∣∇b<K∣∣2 =
1

2

∑
κ≤K

κ2
∣∣∣b̂<K∣∣∣2 . (3.5b)

This result will not be sensitive to the details of the filtering scheme in the mesoscale regime, where

even the enstrophy and buoyancy gradient spectra are expected to be dominated by large scales;

in the submesoscale and 3D turbulence regimes the choice of spectral filter will affect the result

(Buzzicotti et al., 2018).

Note that the buoyancy gradient, vorticity, and velocity do not have a mean value in isotropic

3D turbulence, as by definition an isotropic flow implies that there is no statistically meaningful

directionality of any mean field:

∇b = 0, ∇× u = 0, and u = 0, but ∇× u · ∇b 6= 0. (3.6)

Thus, mean values of these fields will vanish, allowing LES to predict their larger scales without

undue contamination by isotropic small-scale turbulence. However, due to the nonlinearilty of PV,

their contribution to the PV does not vanish and may dominate the small- and even large-scale PV

variance.

It is important to note that for the small-scale contributions to dominate the variance of a field,

its small-scale spectrum must be both blue and deep–i.e., spanning a sufficient range of scales–so as

to have sufficient variance per unit wavenumber at small scales to dominate the overall contribution
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to integrals such as (3.2c)-(3.2e). The present theory of rotating, stratified turbulence in seawater

anticipates no meaningful deviations from the cascade behavior at scales slightly smaller than the

Ozmidov scale where isotropization occurs (in flows where N > f) and those near the Kolmogorov

scale where viscosity becomes dominant (for fluids where viscosity is larger than diffusivity), so if the

spectrum is blue just beyond the Ozmidov scale then it is expected to remain so until the molecular

viscosity takes over near the Kolmogorov scale (Kunze, 2019).

Note that to be consistent with Reynolds averaging, here the simulations are processed using a

sharp cutoff with no dealiasing (Orszag, 1971) rather than a smoother roll-off, to preserve (i) the

idempotent property that defines a Reynolds average, · = · and ·′ = 0 where overbar indicates an

average and primes denote the perturbation from the average, and (ii) the property that temporal

and spatial derivatives commute with the cutoff filter. An example of a smooth Gaussian filter will

be presented in the following section for comparison.

However, to retain the generality of the equations, we will avoid assuming that the averaging or

filtering operation is a Reynolds average or that the spatial derivatives commute with the filter. This

involves using the total turbulent stress divergence form ∇ · uu−∇ · u u rather than the Reynolds

stress divergence ∇ ·R ≡ ∇ ·u′u′. If the filter commutes with differentiation but is not idempotent,

then the total turbulent stress tensor that results includes the Leonard stress (L ≡ u u − u u)

of resolved-but-turbulent motions, the cross stress (C ≡ u′ u + uu′), and the Reynolds stress

contributions (Leonard, 1975). In practice, only the Leonard stress will be explicit, as much of the

cross and Reynolds stresses will be parameterized in LES. The same approach is taken with the

buoyancy fluxes.

The filter will be assumed to commute with time derivatives, but the commutation of the filter

with spatial derivatives will not be assumed, which is difficult to achieve in practice–a sharp spectral

cutoff does so, as does an ensemble average. Instead, only one additional constraint on the filter will

be required, which is

∇×∇P = 0. (3.7)

Where P is the pressure. It will also be assumed that

∇ · u = 0, (3.8)

which makes the pre-filtered PV materially conserved in absence of dissipation as well as conserved

in flux form. Note that (3.7) and (3.8) are much less restrictive than assuming that all derivatives

commute with the filter.

With these definitions in mind, the consideration of the pre-filtered PV equation begins with the

buoyancy and momentum equations.
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3.5 Pre-filtered Potential Vorticity

The Boussinesq governing equations for the momentum and buoyancy are

∂u

∂t
+∇ · (uu) + f × u =

Du

Dt
+ f × u = − 1

ρ0
∇P + bk + F, (3.9a)

∂b

∂t
+∇ · (ub) =

Db

Dt
= D. (3.9b)

F and D are the frictional and diabatic terms respectively, which in an LES-like model are the

parameterized unresolved turbulent fluxes (e.g. Moeng, 1984; Deardorff, 1980) and in DNS are

molecular viscosity and diffusivity. f is the Coriolis parameter vector, which is not required to be

vertical or constant in space, although it will be both in the simulations analyzed and assumed

to be slowly varying enough that it is unaffected by averaging. Consistent with the Boussinesq

approximation, it is also assumed that ∇ · u = 0.

Forming the vorticity equation and the gradient of the buoyancy equation from (3.9a)-(3.9b),

the PV equation is formed first by multiplying these times the appropriate factors.

∇b · D(∇× u + f)

Dt
=∇b · ((∇× u + f) · ∇u +∇× (bk) +∇× F) ,

=∇b · [(∇× u + f) · ∇u] +∇b · {∇ × F} .
(3.10a)

(∇× u + f) · D(∇b)
Dt

= −∇b · [(∇× u + f) · ∇u] + {∇ × u + f} · ∇
(
Db

Dt

)
,

= −∇b · [(∇× u + f) · ∇u] + {∇ × u + f} · ∇D,
(3.10b)

and summing to form the product rule, which cancels out the vortex stretching term in square

brackets, leaving behind the forcing terms in curly brackets,

Dq

Dt
= ∇b · D(∇× u + f)

Dt
+ (∇× u + f) · D(∇b)

Dt
= {∇ × F} · ∇b+ {ω + f} · ∇D. (3.11)

It will also be assumed that ∇ × k = 0, which is true in flat domains where k (the direction of

gravity) is spatially constant and on a sphere where k is radially oriented, to make ∇b · ∇ × (bk) =

∇b · (b∇× k) = 0.

To summarize, the resulting Boussinesq PV equation is

∂q

∂t
+∇ · (uq) =

Dq

Dt
= (∇× F) · ∇b+ (ω + f) · (∇D) (3.12)

Which can also be written as

∂q

∂t
= −∇ · J (3.13)

Where J = uq − F × ∇b − (f + ω)D are the “J-fluxes” of PV. In both forms of the PV equation,

the PV evolves according to both the frictional and diabatic effects, F, D, and the advective fluxes,
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uq, but only in (3.13) is it apparent that all of these effects can be written in flux form (Haynes and

McIntyre, 1987; Marshall and Nurser, 1992).

However, in the 3D turbulence regime, the curl of the momentum equation and the gradient

of the buoyancy equation are dominanted by the gridscale noise, so the resulting PV equation is

contaminated. By contrast, the pre-filtered PV is constructed from the pre-filtered velocity and

buoyancy fields, to avoid the ultra-violet catastrophes.

q̃ ≡ (∇× u + f) · ∇b (3.14)

Note that q̃ 6= q, as the velocity and buoyancy are filtered before forming q̃, whereas q is filtered

after the PV is formed from the unfiltered fields. As PV is a nonlinear combination of buoyancy

and momentum, these operations do not commute. Also as PV is nonlinear, care to avoid aliasing

unresolved buoyancy gradient or vorticity wavenumbers into the resolved range when calculating the

pre-filtered PV is needed, dealiasing of quadratic nonlinearities is guaranteed if the filter eliminates

1/3 or more of the resolved wavenumbers (Orszag, 1971). However, the pre-filtering advocated from

a physical perspective goes far beyond this numerical constraint: in the simulations analyzed the

optimal filter wavenumber is near the 15th out of 2049. As with kinetic energy of filtered fields

(Aluie et al., 2018), an exact budget for the pre-filtered PV can be constructed and analyzed.

Fig. 3.6 shows a plane view of the near-surface PV before and after pre-filtering of the velocity

and buoyancy fields using a sharp cutoff filter and a standard Gaussian filter with the same cutoff

scale at 400m. Highlighted by the shaded region in Figure 3.5, the cutoff scale is 400m, chosen here

to correspond with the loss of hydrostatic balance found in Hamlington et al. (2014) which also

corresponds to the scale of change in slope in gradients in Figure 3.4 and change in slope of PV near

the surface and within the mixed layer (Fig. 3.5). The unfiltered PV is contaminated by small scale

variance that distracts from the larger scale features which appear after the pre-filtering is applied

(thick vs thin and dotted lines in Fig.3.5). The advantages of choosing a sharp cutoff are discussed

in the previous section, yet one disadvantage is the ringing effect as evident in Fig. 3.6 which is

otherwise smoothed by the Gaussian filter. In the Stokes drift forced case, where small scale mixing

is very intense near the surface, the PV is contaminated heavily at all scales. The pre-filtered PV

in Fig. 3.5 exhibits a flat slope throughout most of the submesoscale. This particular property of

Stokes forced mixing will be examined more carefully in a future study. Furthermore, the transports

of the unfiltered PV cannot be obtained cleanly from the model, as will be shown next.

The filtered versions of the momentum and buoyancy equations (3.9a) and (3.9b) are

∂u

∂t
+∇ · (u u) + f × u = − 1

ρ0
∇P + bk + F−∇ · (uu) +∇ · (u u) = − 1

ρ0
∇P + bk + F+,

(3.15a)

∂b

∂t
+∇ · (ub) = D −∇ · (ub) +∇ ·

(
ub
)

= D+, (3.15b)
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Figure 3.6: Plane view of a snapshot of the near-surface (z = −3m) PV field without pre-filtering
of the velocity and buoyancy fields (left), and after using a sharp cutoff filter (center) and Gaussian
filter (right) on the buoyancy and velocity fields separately before calculating the PV as in (3.14).
The cutoff scale here is 400m which corresponds to the shaded regions in Fig. 3.2,3.4 and 3.5.

where the superscript plus symbol indicates the frictional and diabatic effects including the total

turbulent stress and total turbulent buoyancy flux and any potential non-commutation of filter and

spatial derivatives. It is assumed that temporal and spatial derivatives commute with the filtering

operation, which also guarantees that ∇ · u = 0. Following the same procedure as that to form

(3.12), but using (3.15a)-(3.15b) in place of (3.9a)-(3.9b), the pre-filtered PV equivalent of (3.12) is

∂q̃

∂t
+∇ · (uq̃) =

Dq̃

Dt
=
(
∇× F+

)
· ∇b+ (ω + f) · ∇D+, (3.16)

where D
Dt includes advection by u only. Equation (3.16) can also be written in flux form,

∂q̃

∂t
= −∇ ·

[
uq̃ − F+ ×∇b− (f + ω)D+

]
. (3.17)

Note that no commutation of spatial derivatives and averages is assumed in this derivation (only ∇·
u = 0), and the pre-filtered PV equation (3.16) has the expected form of a PV conservation equation,

with the “frictional” and “diffusive” operators (that actually also contain turbulent transports):

F+ = F−∇ · (uu) +∇ · (u u) , (3.18a)

D+ = D −∇ · (ub) +∇ ·
(
ub
)

(3.18b)

As (3.16) and (3.17) have the expected form, the pre-filtered PV behaves as expected for all geophysical

applications. These are the operators that need to be assessed in LES to understand PV injection

at the surface, not just the molecular or subgrid friction and diffusion. It is worthy to note that if

the filtering operator is standard Reynolds averaging, equations (3.18a)-(3.18b) arrive at a similar

expression as in Keyser and Rotunno (1990), following the original work by Staley (1960) and Shapiro
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(1976, 1978). However, our emphasis here is on the particular application in the Kolmogorov regime

using LES, which is not addressed by the previous authors.

The J-fluxes as written in (3.17) remain meaningful if the dissipative operators in (3.18a)-(3.18b)

are used, and even though F, D, ∇ · (uu), and ∇ · (ub) may be noisy, they are of exactly the form

solved for by the modeled momentum and buoyancy equations at full resolution, including any

oddities of discretization, dealiasing, etc. Under the pre-filtered PV approach, these noisy terms

are never converted into J-fluxes before filtering, which leads to large aliasing contaminating even

the large-scale J-fluxes (Fig. 3.7). To remove aliasing that will arise in calculating the advective

J-fluxes (including the implied cubic nonlinearity in PV and energy budgets), the filter wavenumber

should be half of the cutoff wavenumber (which is π over the gridscale) or below, equivalent to a

smoothing operator over 4∆x or greater. This rule is stricter than filtering at the wavenumber that

is 2/3 of the cutoff wavenumber allowed under quadratic nonlinearity, equivalent to smoothing over

3∆x or greater for quadratic nonlinearity (Orszag, 1971). By contrast, if one tries to calculate the

advective J-fluxes that result from simply averaging (3.12), i.e.,∇ · uq and∇ · u ([∇× u + f ] · b), the

calculation involves differentiating a triple-correlation that the model never predicts directly, is noisy,

and depends on scales outside of those resolved in an LES–i.e., aliasing–to a degree not managed by

normal dealiasing filters because it is a cubic instead of a quadratic nonlinearity, requiring filtering

of not just 1/3 of resolved wavenumbers, but 1/2 (Orszag, 1971). Fig. 3.7 shows that even the large-

scale J-fluxes are contaminated by aliasing between the small-scale and unresolved modes. Likewise,

the frictional J-fluxes involve products of buoyancy gradients, vorticity, with noisy frictional terms

which are not consistent with the discrete model prognostic equations.

3.6 Discussion and Conclusions

To meaningfully study PV in LES, via material conservation or via J-fluxes, a pre-filtered PV

as in (3.14) with a physically-selected filter scale ≥ 4∆x is the most meaningful quantity, as it

avoids spurious effects, aliasing, and noise. Momentum and buoyancy fluxes on scales below the

submesoscale, including those of 3D turbulence, should be treated alongside parameterizations of

momentum and buoyancy fluxes and bundled into the frictional and diabatic terms: F+,D+ as

written in (3.18a)-(3.18b). By this method, correct interpretations of the PV evolution equations,

(3.12)-(3.13), Kelvin’s circulation theorem, the impermeability theorem (Haynes and McIntyre, 1987;

Marshall and Nurser, 1992), and PV invertibility on the scales where it is the dominant constraint

will be recovered.

In interior QG simulations, the PV, buoyancy, and velocity spectra all scale as κ−3, which means

that the buoyancy gradient and vorticity spectra still scale as κ−1, and so are well-behaved even

without filtering. Note that if the 3D turbulence scale is not resolved (e.g., in a hydrostatic general

circulation model), the turbulent parameterizations F and D already contain the correct terms

without additional pre-filtering. Thus, the distinction between the full PV and pre-filtered PV is

not important in interior QG.
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In near-surface submesoscale simulations, buoyancy and (horizontal) velocity spectra all scale as

κ−2. Thus, the buoyancy gradient and velocity gradient spectra are white, scaling as κ0. However,

the vertical vorticity spectrum is likely to resemble the interior QG scaling even as the surface

velocity divergence spectrum does not (Callies and Ferrari, 2013; Rocha et al., 2016; Chereskin

et al., 2019), which means that PV may be slightly red and thus meaningfully calculated without

pre-filtering, although pre-filtering may still be desired to reduce aliasing in calculating advective

terms. The parameterizations of boundary layer turbulence in such models are included in the

dissipative terms.

In Direct Numerical Simulations the molecular viscous and Kolmogorov and Batchelor scales are

thoroughly resolved (with at least 4 gridpoints). In this case pre-filtering across the dissipative scales

will not affect the result (e.g. Herring et al., 1994), and cubic nonlinearity de-aliasing will suffice.

In boundary layer LES simulations, the Kolmogorov-Corrsin scalings for buoyancy and velocity

spectra all scale as κ−5/3, and the turbulence is isotropic. Thus, the buoyancy gradient and vorticity

spectra scale as κ1/3: an ultraviolet catastrophe in both fields. Furthermore, LES is inconsistent with

the assumption that no important turbulence effects occur at scales near to or finer than the grid-

scale. In this case, the full PV over all resolved scales cannot be meaningfully examined, because its

variance is dominated by unresolved scales and its advective J-fluxes are dominated by triple correla-

tions that depend on unresolved scales (Leonard, 1975; Clark et al., 1979). Even though backscatter

parameterizations may improve velocity gradient statistics (Johnson and Meneveau, 2018), they have

not been designed to correctly inject PV variance (if this is indeed possible). However, averaging or

filtering the PV affects interpretation (Keyser and Rotunno, 1990). Thus, for the case of the Ham-

lington et al. (2014) and Suzuki et al. (2016) and related LES-including-submesoscale simulations,

a course for how to manage the interpretation of potential vorticity analysis covering the transition

from the submesoscale to the boundary layer scalings emerges. Pre-filtering of velocity and buoy-

ancy up to the O(H) scale, i.e., the largest scale of the boundary layer turbulence, is required before

calculation of the PV, and here a meaningful construction of the resulting PV dynamics is given in

(3.16)-(3.17). Although alternative expressions of PV may be useful for diagnostic purposes (e.g.

Morel et al., 2019), pre-filtering is still necessary to avoid contamination from the smallest scales

in either diagnostic method. In other circumstances, it may be more convenient to estimate this

scale by the Ozmidov scale, by where the unfiltered PV spectrum inflection point lies, by the scale

where nonhydrostatic effects (i.e., acceleration terms in the vertical momentum equation) become

pronouced, by where the aspect ratio of motions in 3D is order one, or by where the u, v, w spectra

all converge and then proceed on smaller scales with a k−5/3 slope. Particular classes of less well-

understood turbulence, such as that emanating alongside coherent structures (Taylor and Ferrari,

2009) or forced toward anisotropy by convection (Rincon, 2006), stratification (Kunze, 2019), or

Stokes forces as in Langmuir turbulence (Hamlington et al., 2014; Suzuki and Fox-Kemper, 2016),

merit a variety of these checks be made during the selection of a filter scale or procedure. Indeed, in

Hamlington et al. (2014), the agreement among estimates of the isotropization scale differs between

the simulation including Stokes forces and one without it (e.g., Fig. 3.5).
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While the Boussinesq equations with buoyancy have been used here in the tradition of oceanic

boundary layer LES (e.g. McWilliams et al., 1997), there is no reason why atmospheric boundary

layer LES (e.g. Matheou et al., 2017) or cloud-resolving LES (e.g. Yamaguchi et al., 2017) would

not also suffer the same issues with identifying the relevant PV dynamics or energy budgets. Other

issues have been identified with PV intended to be used for atmospheric turbulence simulations

(Herring et al., 1994), but here the focus is the method for producing the pre-filtered PV, why it is

the right choice, and its evolution equations.
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Figure 3.7: Same as in Fig. 3.5 for the J-flux spectra in the No Stokes drift case. Shown is the total
J-flux (top row) and its components: qu (second row), F×∇b (third row), and (f + ω)D (bottom
row). Thick lines denote the unfiltered spectra, thin lines the sharp cutoff pre-filtering and dotted
lines the Gaussian pre-filtering as described in section 3.5. All spectra are normalized by Ex·J(kmin)
at z = −3m.



Chapter 4

Arrest of Frontogenesis by

Submesoscales and Boundary

Layer Turbulence

This chapter is in preparation for submission as supporting material for the publication: Abigail

S. Bodner, Baylor Fox-Kemper, Leah Johnson, Luke P. Van Roekel, James C. McWilliams, Pe-

ter P. Sullivan, & Paul S. Hall. ”Modifying the Mixed Layer Eddies Parameterization to Include

Frontogensis and Frontal Arrest by Boundary Layer Turbulence.” (chapter 5).

4.1 Introduction

Frontogenesis occurs near the ocean surface, where forcing and stratification are complex. Winds,

waves, and thermodynamic forcing contribute to boundary layer stratification and turbulence (Price

et al., 1986). While the idealized model of Hoskins and Bretherton (1972) describes accurately many

aspects of frontogenesis, it predicts frontal singularity in finite time. This is an unphysical outcome,

so processes that arrest the front must appear in nature.

There are various instabilities that populate the upper ocean, due to the effects of winds, waves

and stratification, that may affect the evolution of fronts: gravitational instability or pure convection

(Haine and Marshall, 1998); symmetric instability (SI), which mixes along isopycnals in the presence

of down-front winds and negative potential vorticity (PV) (Hoskins, 1974; Thomas et al., 2013;

Bachman et al., 2017b); mixed layer baroclinic instability, which acts to restratify the mixed layer by

slumping buoyancy gradients from horizontal to vertical (Boccaletti et al., 2007; McWilliams et al.,

2009; McWilliams and Molemaker, 2011); Langmuir turbulence, which creates convergence zones at

the ocean surface and contributes to upper ocean mixing (McWilliams et al., 1997; Hamlington et al.,

2014; Suzuki et al., 2016); horizontal shear instability due to the sharpening front itself (Sullivan

63
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and McWilliams, 2018, 2019); and other mixing, wave breaking, and topographic effects (Garrett

and Loder, 1981; Thompson, 2000; Teixeira and Belcher, 2002; Nagai et al., 2006; Sullivan et al.,

2007; Gula et al., 2016). Some of these phenomena require horizontal gradients such as a front to

exist (e.g., symmetric instability or baroclinic instability), while others are related more generally to

surface forcing (e.g., boundary layer turbulence). Each of these instabilities may be recognized by

characteristic energy sources, scale, and dependence on favorable stratification or shear conditions. In

the ocean, observations are unable to simultaneously and conclusively isolate this set of constraints,

so novel theoretical and modeling approaches are useful to study these processes and how they

interact in a more idealized setting.

Submesoscale and boundary layer turbulence can be differentiated by their energetic properties

(e.g. Hosegood et al., 2006; Haney et al., 2015), nonhydrostatic effects (Hamlington et al., 2014) and

even dynamical properties such as PV (Bodner and Fox-Kemper, 2020). Large Eddy Simulations

(LES) are useful numerical tools. In particular, they can resolve 3D turbulent processes such as non-

hydrostatic effects which are fundamental for submesoscale currents and boundary layer turbulence.

As computational capabilities have increased in recent years, several other studies have modeled the

multiscale interactions between submesoscales and boundary layer turbulence.

Skyllingstad and Samelson (2012) studied the interaction between mixed layer baroclinic eddies

(MLE) and small-scale turbulence using a nonhydrostatic LES of a warm filament in the presence

of Langmuir turbulence, focusing primarily on the transfer of energy between MLE and boundary

layer turbulence. Hamlington et al. (2014) studies the weak interaction limit between boundary layer

turbulence and submesoscale eddies, and the associated instabilities that arise from this interaction.

They compare cases of shear turbulence driven by wind stress, with Langmuir turbulence driven by

wind and wave effects. Haney et al. (2015) focus more specifically on how wave effects can alter the

PV field and promote certain instabilities along a submesoscale front. Suzuki et al. (2016) identifies

a strain-induced front in a subdomain from the Hamlington et al. (2014) LES, and investigates what

energizes and torques the submesoscale front in the presence of waves. Crowe and Taylor (2020)

study the evolution of an idealized turbulent-induced (turbulent thermal wind, TTW) submesoscale

front under varying wind stress and buoyancy flux conditions.

In chapter 1 (and in Bodner et al. (2020)), the effects of turbulence on frontogenesis were explored

in a theoretical framework, using a perturbation method applied to the semigeostrophic equations.

These assumptions imply the solution is valid for scales larger than ocean submesoscales and in

a weak turbulence regime. PV dynamics were found to be central to this theory, primarily by

connecting frontal dynamics with turbulence through the frictional and diabatic fluxes. However,

this theory breaks down in a more realistic environment, such as the LES discussed in chapter 3

(and Bodner and Fox-Kemper (2020)), where boundary layer turbulence can no longer be assumed

to be a small correction to submesoscale frontal dynamics. Nonetheless, the tendency of the different

turbulent processes and their effects on frontogenesis are found to be consistent with other studies

of frontal evolution, such as McWilliams (2017) and Sullivan and McWilliams (2018, 2019), where it

is found that vertical turbulent fluxes help lead to frontogensis, and horizontal processes can arrest
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or contribute to its decay. Note that vertical and horizontal instabilities will lead to isotropic 3D

turbulence, which will serve both roles eventually. Although many studies investigate the interaction

between submesoscales and boundary layer turbulence, few focus on the mechanism of frontogenetic

arrest, what are the turbulent properties of frontal arrest and what direct effect these may have on

frontal width.

In this chapter, a suite of high resolution LES are presented and analyzed, where they capture

the multiscale character of strain-induced frontogenesis, as it interacts with different instability

and mixing mechanisms such as: wind forcing and waves, mixed layer instabilities, convection and

symmetric instability. In all runs, after instabilities have saturated, the cross-frontal scale halts at

a constant width and does not become infinitesimally thin, as theory would predict.

A description of the simulations forced by different turbulent processes is given in section 4.2,

analysis methods for averaging, determining frontal width and boundary layer depth are described in

section 4.3. Results are shown in section 4.4 and compared with those from Sullivan and McWilliams

(2018, 2019) in section 4.5. Summary and discussion are given in section 4.6

4.2 Numerical Simulations

The simulations used in this study were designed to generate strain-induced fronts in a way that

could approach equilibrium (frontogenetic arrest), influenced by small scale processes such as mixed

layer instabilities (MLI), convection (equivalent to symmetric instability in the presence of a front),

wind stress and waves (Stokes drift), all these forcings combined and none at all.

They are based on the National Center for Atmospheric Research (NCAR) LES (Moeng, 1984),

and solve the wave-averaged Boussinesq (WAB), or Craik–Leibovich, equations (McWilliams et al.,

1997; Sullivan et al., 2007), which reduce to the standard momentum and thermodynamic equations

without waves, i.e. when the Stokes velocity is equal to zero.

The domain size is 20km in the horizontal and 200m in the vertical, with 1024× 1024× 256 grid

points in each direction respectively. All cases constituted of an initial frontal buoyancy gradient,

set to equal the Coriolis parameter squared ∆b/∆X = f2, where f = 7.2722× 10−5s−1 and a strain

field achieved by four imposed mesoscale (barotropic) eddies with a strain rate of 2× 10−6, where b

is buoyancy, X is the cross-frontal length scale and f is the Coriolis parameter. The depth of the

frontal zone was set to 75m, the background stratification is N2 = 10−6s−2 and background mean

temperature is set to θ0 = 293.15Ko.

The NCAR LES is a pseudo spectral code in the horizontal, which means the horizontal derivative

terms are computed in spectral space and the vertical derivatives by finite difference. The imposed

mesoscale eddies were set spectral space by restoring the velocity and temperature to the first

wavenumber (and the mean), which maintained the straining field. Additionally, physical space

restoring was imposed on the temperature around the boundary such as a sponge layer (even though

they are periodic). This was found to be necessary to preserve the sharpness of the front until

equilibrium. There was also physical space restoring of temperature and momentum near the bottom
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Case Bu uS τ w′b′0 S0

– [m/s] [m−1s−2kg] [m2s−3kg] [m2s−3kg]

Convection 1 – – 4.76× 10−6 −4.28× 10−5

Small MLI 2.88× 10−3 – – – –

Stokes and Wind 1 0.02 1 – –

No Forcing 1 – – – –

All Forcing 2.88× 10−3 0.02 1 4.76× 10−6 −4.28× 10−5

Table 4.1: LES parameter configuration for the different simulation cases.

to prevent wave reflection from the hard boundary and pollution of the simulation.

The Burger number Bu = (Ld/L)2 represents the ratio between the mixed layer deformation ra-

dius Ld and the maximum possible frontal width L, which is the distance between the two mesoscale

eddies. The Burger number parameter is used as a proxy for the generation of MLE, which is based

on the fastest growing mode from the linear instability theory developed by Boccaletti et al. (2007).

This essentially prescribes how how many linear eddies can fit within the front in the initial state.

MLI are a unique class of baroclinic instability that develop across the front in a weekly stratified

mixed layer. In the absence of a prescribed mixed layer, baroclinic instability will extend until the

bottom of the pycnocline, as in the mesoscale. Thus, the Burger number is set to 1 for Wind+Stokes,

convection/SI and no forcing cases, as there is no mixed layer prescribed and no MLE expected to

develop. In the the MLI and All Forcing cases, an initial mixed layer depth of 50m is prescribed,

and the Burger number is set to 0.00288 which reflects that the linear eddies can become 17% of

the size of the front, simulating how smaller MLEs interact with the strain-induced front.

Wind and wave effects are included by adding surface wind stress τ = 1 and a Stokes surface

velocity us = 0.02 that decays with depth. Here, both winds are waves are aligned and are in the

cross-front y direction.

In the convection case, surface cooling is given by surface buoyancy flux w′b′0 = 4.76× 10−6 and

short wave solar radiation penetrates and heats from below S0 = −9× w′b′0 = −4.28× 10−5. This

is essentially classic convection driven by Rayleigh Benard instability. Note that surface cooling

in the presence of a front will result in negative PV. Thus, these conditions are also favorable for

symmetric instability (SI) and this case will be referred to as convection/SI.

The all forcing case includes MLI, waves, wind stress and convection combined, and so all pa-

rameters are tuned on. In the no forcing case, only the Burger parameter is equal to 1, and the rest

of the parameters are turned off. To ensure that frontal width did not depend on resolution, and

that frontal arrest in fact results from the presence of turbulence, the no forcing case only exhibits

the sharpening front and no additional turbulence. In this basic case, the front was found to sharpen

to the point where small scale diffusivity became leading order, and was verified in several high and

low resolution simulations (not shown).

A summary of these key parameters specified for each case is given in table 4.1.
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4.3 Analysis

4.3.1 Averaging

Since the fronts in these simulations are not purely in one direction, and exhibit curvature due to

the confluence of the straining eddies, it is not simple to average in the along-front direction. Hence,

to perform the along-front average, we seek to average over lines that follow the fluid motion e.g.

the strain field. To do so, we first identify the confluent sub-domain, which is where the front is

strained by the imposed eddies. This is approximately the middle quarter of the domain, and is

about 10km in both x, y directions. An example of this region is demonstrated by the 3D cube of

the temperature anomaly field in the left panel of figure 4.1.

Within this confluent sub-domain, we are interested in identifying the region of frontogenetic

arrest. First, we time average all available snapshots for each case after reaching an equilibrated

state. Next, the pressure lines (shown in the right panel of figure 4.1) are smoothed by applying

a Gaussian filter (overlaid black contours in figure 4.1). The smoothed pressure lines represent the

Lagrangian coordinates for the straining front. For each field (e.g. temperature and velocities) we

convert to the new coordinate system of smoothed pressure lines in the along-front direction. We

examine the along-front direction and identify when the cross-front temperature gradient remains

unchanged, this region is defined as the arrest region. In most runs the arrest region is about the

top third of the confluent region, which is demonstrated by fairly straight lines in the smoothed

along-front pressure lines in figure 4.1. Over this region, we smooth each field in the along-front

(along-pressure) direction and obtain the mean fields (denoted by ·). Figures 4.2-4.6 show the 2D

cross-frontal profiles of the temperature anomaly field θ − θ0, the along-front velocity u, cross-front

velocity v and vertical velocity w.

The perturbation flux terms are defined as the deviation from the mean by using the same method

as in Bodner and Fox-Kemper (2020), where, as an example for the vertical flux, w′b′ = wb − w b.

Note that · is not specific to the averaging operator, and can be used across the different type of

simulations. This is also consistent from a Reynolds averaging perspective over the pressure lines

averaging method.

The turbulent kinetic energy (TKE) and its budget are useful to consider the main drivers of

turbulence in a system,

DE

Dt︸︷︷︸
change in TKE

= −u′w′ · ∂u

∂z︸ ︷︷ ︸
shear production

+ w′b′︸︷︷︸
buoyancy production

− ∂

∂z

(
w′E +

1

ρ
w′p′

)
︸ ︷︷ ︸

transport of TKE

− ε︸︷︷︸
Dissipation

. (4.1)

Where E = 1
2 (u2 + v2 + w2) is the TKE; ρu′w′ are the components of the Reynolds stress

vector and ∂u
∂z the mean shear, indicating the production of TKE due to shear in the mean current;

w′b′ is the turbulent buoyancy flux indicating production or destruction of TKE through buoyancy

forces; w′E is the turbulent energy flux and w′p′ is the pressure work flux i.e. transport of TKE

due to turbulent fluctuations of the vertical velocity w′ and pressure p′; ε is the dissipation rate
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Figure 4.1: An example of the confluent sub-domain of the strain-induced front for the convection/SI
case (left), and a plane view of the pressure field (contours), overlaid by the smoothed pressure lines
(black) over which the along-front smoothing is calculated to obtain the mean variables displayed
in figures 4.2-4.6 (right).

due to viscosity indicating destruction of TKE due to viscosity, evaluated by ε = ν
(
∂u
∂z

)2
(Sullivan

et al., 1994; Grant and Belcher, 2009). The cross–frontal TKE field and vertical profiles of the TKE

production and dissipation terms are shown in figures 4.7-4.11.

4.3.2 Determining frontal width

There is no clear definition in the literature for how to calculate frontal width, or how it commutes

with the turbulence that sets it. Most studies approximate the buoyancy or temperature gradients

across the front (e.g. Crowe and Taylor, 2020), others estimate it by a region of maximum vertical

vorticity (e.g. McWilliams, 2017), or rather the extent of the overturning circulation (e.g. Suzuki

et al., 2016). Similar to how the mixed layer depth is defined, there are likely several algorithms

and each may prove appropriate under different circumstances.

As fronts are typically characterized by a temperature gradient at the surface, here we utilized this

feature and set a quantifiable criteria for frontal width. The top 5m surface average is calculated for

the temperature gradient, and the maximum gradient is evaluated and considered to be the sharpest

point of the front. We estimate three possible frontal widths based on their distance from the front

maximum, which corresponds to the width of 1%, 10%, 50% of the maximum temperature gradient.

These estimates of frontal width are represented by black bars on the temperature anomaly profiles

in figures 4.2-4.6, and their respective frontal width Lf is listed in the figures and in table 4.2. Note

that the importance of being consistent with the exact definition of frontal width is demonstrated

by how Lf varies widely between 1% and 50% of the surface temperature gradient maximum.
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Case L1%
∇θ L10%

∇θ L50%
∇θ

Convection 137 1074 5313

Small MLI 352 1797 5234

Stokes and Wind 371 1250 3398

No Forcing 898 2832 6582

All Forcing 98 430 3652

Table 4.2: Estimated frontal widths (in meters) for each case, based on the distance from the front
maximum determined by 1%, 10%, 50% of the maximum temperature gradient.

Figure 4.2: Cross-frontal mean fields for the convection/SI case: temperature anomaly θ − θ0 (top
left), along-front velocity u (top right), cross-front velocity v (bottom left) and vertical velocity w
(bottom right). Black bars and the Lf values below the mean temperature panel correspond to L1%

∇θ,

L10%
∇θ and L50%

∇θ from table 4.2.

4.3.3 Other relevant parameters

Several other dimensional and dimensionless parameters give insight to flow and turbulent properties

of each case.

First, there are three different layers to diagnose:
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Figure 4.3: Same as in figure 4.2 for the MLI case.

1. Mixed layer depth Hθ: defined as the depth of maximum vertical temperature gradient as

suggested by (Li et al., 2019), averaged over the maximum frontal region corresponding to the

frontal width of L1%
∇θ.

2. Mixed layer depth based on PV (Hq) which is similar to Hθ in most cases, except for the

convection/SI case, where it expected to be deeper because PV is homogenized by SI. Here we

follow Hamlington et al. (2014) and define the depth at which PV exceeds the critical value of

qc = 8× 10−11s−3.

3. Mixing layer (or boundary layer) depth h: depth at which the majority action of turbulence

has occurred. Specifically, we define this as the average depth of active turbulent fluxes over

the frontal region, i.e. depth of 90% of total TKE.

The along-front mean velocity characteristic scale U , is calculated by the surface averaged (top

5m) along-front velocity, averaged once more over the arrested frontal region. The Rossby number

can then be estimated by Ro ≡ U
fLf

, using the sharpest frontal width Lf = L1%
∇θ for each case. The

turbulent Richardson number Ri ≡ N2h2/U2 is estimated from the shear within the boundary layer
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Figure 4.4: Same as in figure 4.2 for the mixed layer instability for the Stokes+wind case.

(not the mixed layer), i.e. ∂u/∂z ∼ U/h. This is primarily because we are focused on understanding

the turbulent effects on frontal arrest, which come in through the boundary layer depth.

In standard fluid dynamics, several dimensionless parameters are used to measure the scale of

turbulent forces relative to inertial or planetary forces. The most common is the Reynolds number,

which represents the ratio of inertial forces to viscous forces Re = UL/ν, for a turbulent viscosity ν,

the Ekman number represents the ratio of viscous forces to rotation Ek = Ro/Re = ν/h2f , and the

Prandtl number represents the ratio of viscous forces to diffusive forces Pr = ν/κ for a turbulent

diffusivity κ (Vallis, 2017).

If we assume eddy viscosity and diffusivity turbulence closures such as,

u′w′ = −ν ∂u

∂z
, u′v′ = −ν ∂u

∂x
, w′b′ = −κ∂b

∂z
, (4.2)

we can define the Ekman, Reynolds and Prandtl numbers as,

Ek ≡ u′w′

hfU
, Re ≡ U2

u′v′
, P r ≡ hN2u′w′

Uw′b′
. (4.3)

Where the flux terms u′w′, u′v′, w′b′ are taken as a single values, estimated by a double average over

the frontal region and top 5m.
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Figure 4.5: Same as in figure 4.2 for the all forcing case.

A summary of the values of these parameters for each case is given in table 4.3, and the results

are discussed in the following section.

4.4 Summary of Results

As demonstrated in table 4.3, the Rossby number in all cases is O(1), as expected for the subme-

soscale. The Ekman number is very small in all cases, but this is likely related to how u′w′ are

calculated: in a standard Ekman layer, the Ekman depth scales with the wind stress– i.e. is di-

rectly related to u′w′– and thus Ek is expected to be close to 1. However, here we want to remain

consistent among all cases for which we defined the boundary layer in terms of the TKE, and not

the Ekman layer depth. Furthermore, the Ekman number (as well as the Reynolds and Prandtl

numbers) may be sensitive to the domain over which we are averaging the flux terms, but as will be

shown in the following chapter, it is most important to remain consistent.
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Figure 4.6: Same as in figure 4.2 for the no forcing case.

Figure 4.7: Cross-frontal mean total TKE for the convection/SI case (left), and its TKE production
and dissipation terms (right) averaged over the frontal region. The vertical gray line and the cor-
responding value of h below illustrate the boundary layer depth estimated by the depth over which
90% of the TKE has occurred. In the right panel, b prod. and shear prod. refer to the buoyancy
and shear production terms from the TKE budget, respectively.
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Figure 4.8: Same as in figure 4.7 for the MLI case.

Figure 4.9: Same as in figure 4.7 for the Stokes and wind case.

Figure 4.10: Same as in figure 4.7 for the all forcing case.

4.4.1 Convection/Symmetric Instability Case

Aside from the no forcing case, the convection/SI case results in the sharpest frontal width, with

L1%
∇θ = 137m. However, the front has a large spread, and becomes quite wide if L50%

∇θ = 5313m is

used instead (top left panel in figure 4.2). The along-front velocity u is strongest at the surface,
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Figure 4.11: Same as in figure 4.7 for the no forcing case.

Case h Hθ Hq U Ek Ro Ri Re Pr

Convection/SI 92.96 115.79 121.33 0.05 0.02 5.40 2.98 12.81 1.17

Small MLI 89.06 103.41 106.44 0.03 0.01 3.14 7.27 15.10 11.29

Stokes and Wind 16.40 14.45 18.375 0.03 0.08 1.44 0.17 3.43 0.70

No Mixed Layer 14.06 – – 0.03 0.01 4.89 0.16 23.54 0.26

All Forcing 33.59 49.21 51.56 0.07 0.17 1.05 0.23 17.01 1.98

Table 4.3: Estimate of simulation parameters over arrest region: boundary layer depth h, mixed
layer depths defined by temperature and PV criteria Hθ,q, along-front characteristic velocity scale

U , turbulent Ekman number Ek ≡ u′w′

hfU , Rossby number Ro ≡ U
fLf

, turbulent Richardson number

Ri ≡ N2h2/U2, turbulent Reynolds number Re ≡ U2

u′v′
and turbulent Prandtl number Pr ≡ hN2u′w′

Uw′b′

.

with a maximum value of 0.05 (top right panel in figure 4.2). The cross-frontal velocity v is mostly

positive at the bottom right of the panel, and negative at the top, corresponding to the top and

bottom of the mixed layer, and hinting of an overturning circulation associated with frontogenesis

(bottom left panel in figure 4.2). There are also strong vertical velocities near the front maximum

which may be enhanced by the overturning circulation and vertical heat fluxes (bottom right panel

in figure 4.2). Note that the vertical velocity field is quite noisy, which might be partially due to

fluctuations in the along-front direction as a result of the along-front smoothing operator.

We find that in the convection/SI case there is a tilted mixed layer bottom, because of the

asymmetry due to frontogenesis, which is further enhanced by vertical turbulenct fluxes. In this

case we re-scale the vertical coordinate as z/H, where H is the mixed layer depth. In boundary

layer turbulence Monin-Obukhov theory, each column is independent of its neighboring coordinates.

By re-scaling z, we make the cross-frontal region consistent across y (the cross-frontal axis) and

examine turbulent properties across this region.

As expected, the mixed layer depth using the PV criteria is deeper than that using the tem-

perature criteria (table 4.3), primarily because PV is homogenized during the process of SI (which
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mixes along isopycnals). The Rossby number and Richardson numbers are O(1) which are expected

for submesoscales and symetric instability (e.g. Thomas et al., 2013). The Prandtl number is larger

than 1, indicating that convective turbulence is at similar magnitude to shear at the surface, as is

also expected in this convective case.

The total TKE is fairly spread out, but strongest near the front maximum (left panel of figure

4.7), giving a boundary layer depth of h = 93m. The TKE budget (right panel of figure 4.7) confirms

that buoyancy production is the main source of TKE. There is non-zero shear production that may

be instantaneous or associated with frontogenesis. Note that we do not expect to form a closed

budget, as these profiles are not averaged over the full domain and sponge layers are no included in

the budgets.

4.4.2 (Small) Mixed Layer Eddies Case

The features in the cross-frontal profiles of temperature and velocities in the MLI case (figure 4.3) are

very similar to those in the convection/SI case. However, in this case, the front is wider and the along-

front and vertical velocities are weaker. The cross-front velocity exhibits similar frontogenesis-like

features, with negative velocity of the top left corner and positive on the bottom right, attempting

to slump the front. In the MLI case, the boundary layer depth and mixed layer depths are a little

shallower than in the convection/SI case. The Richardson number is still O(1) but fairly large,

indicating this is a different regime.

MLIs have an overall restratifying effect, and so are expected to have large and positive heat

flux, w′b′. This is confirmed by the strong positive buoyancy production term in the TKE budget

shown in figure 4.8. The large Prandtl number probably represents the vertical momentum fluxes

near the surface, which may be associated with frontogenesis or the MLEs. There is also a small

contribution from the shear production, which may be attributed to the interactions between the

MLE and fronts (Haney et al., 2015), alternatively, this may also be associated with frontogenesis.

Furthermore, MLI are growing in magnitude, carrying away the extracted potential energy to be

dissipated elsewhere in the flow. This explains why the buoyancy production terms is much larger

than dissipation in this location, i.e. far from equilibrium.

4.4.3 Wind and Stokes Force Case

This case presents very effective surface mixing, as the mixed layer appears to be very well mixed,

visible by the vertical density lines near the surface and uniform TKE in figures 4.4 and 4.9. The

Stokes + wind case has the smallest boundary layer and mixed layer depths ∼ 15m, and all velocities

appear to be confined to this small layer. The cross-frontal velocity v exhibits opposite signs to those

in the convection and MLI cases, yet is consistent with the shear driven by the winds and waves at

the surface in the y (cross-frontal) direction. However, the vertical velocity signs are consistent with

what is expected for the frontogenetic overturning circulation. Interestingly, the location of the front

maximum appears to have drifted to the left, which may be a result of frontogenesis interacting with
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the winds and waves.

The TKE budget is consistent with the standard shear driven mixing budget, where all the

production in the mixing layer can be attributed to shear. Buoyancy appears to be dissipating

energy below the mixed layer, which may be attributed to internal waves, and can be interpreted as

vertical stratification being removed by dissipation, i.e. entrainment. Note that the magnitude of

the shear production terms and total TKE is at least one magnitude larger than in all other cases.

4.4.4 All Forcing Case

The all forcing case is very similar to the Stokes+wind case but on a larger magnitude. The mean

fields in figure 4.5 exhibit a well mixed layer, although it extends deeper, and the frontal width

in this case is widest, where even the narrowest estimate gives a frontal width of L1%
∇θ = 898m.

Additionally, the vertical velocity in this case is very noisy, possibly due to the intense mixing by all

forcings combined. The TKE budget in figure 4.10 exhibits the strong shear production and mixing,

but on a larger magnitude than in the pure Stokes and wind case. Even though MLI and surface

cooling are forcing this case as well, and produce TKE through the buoyancy production term, the

total buoyancy production is negative because winds and waves are dominating.

4.4.5 No Forcing Case

The no-forcing no-mixed layer case arrives at the sharpest frontal width, with L1%
∇θ = 98m, but

with a very wide spread giving an estimate of L50%
∇θ = 6582. Furthermore, there are characteristics

of frontogenesis both in the velocity profiles and the TKE budget (shown in figures 4.6 and 4.11).

However, the TKE is orders of magnitude smaller than in all other cases, since there is no turbulence

included in the simulations.

4.5 Arrested Filament Frontogenesis

Sullivan and McWilliams (2018, 2019) (SM hereafter) conducted similar experiments for a range of

LES, simulating a filament with varying surface forcing conditions. Specifically, they examined the

process of frontal formation, arrest and decay of a turbulent-induced (TTW) cold filament in the

presence of wind stress, convection and waves.

Here we compare the strain-induced results discussed above with the seven cases analyzed in SM:

C denotes simulations with surface cooling; N,E denote simulations driven by down-filament and

cross-filament winds respectively; and lower case n, e denotes the same for the direction of surface

waves. An example of a typical simulation is shown in figure 4.12 for the E+e case, which displays

the vorticity and all velocity fields. Note that although the filament exhibits fluctuations in the

along-front direction (visible in the vertical velocity in figure 4.12, panel c), averaging in the along-

front direction in these simulations simply requires averaging in y. An example of the cross-filament

temperature field, after an along-front averaging, is given in the bottom right panel of figure 4.13 for
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Figure 4.12: The cross-filament variation of the average vertical vorticity normalized by the Coriolis
parameter 〈ζ〉/f (red) and average cross-filament Lagrangian current 〈uL〉/u∗ (black) shown in panel
(a), the average along-filament current 〈v〉/u∗ normalized by the friction velocity scale u∗ = 0.01m/s
(cyan) in (b). The vorticity and currents are near the water surface z ∼ −5m. Instantaneous down-
welling velocity w/u∗ < 0 in a horizontal plane at z = −10.5 m, (c). Results are for simulation E+e
from SM. Figure and caption are adapted from Sullivan and McWilliams (2019).

the pure convection case (C). Figures 4.13 and 4.14 display the upper 5m average of the temperature

anomaly in the cross-filament direction for all cases during the time of peak frontogenesis, identified

by maximum vertical vorticity in Sullivan and McWilliams (2018).

We use the same method as in the strain-induced LES to determine frontal width, by estimating

the distance between 1%, 10%, 50% of the maximum temperature gradient and the front maximum.

However, since this is a filament, which can also be described in a sense as two symmetric fronts (e.g.

figure 1.4), this results in two frontal widths, on both sides of the front maximum. All estimates are

listed in table 4.4, and the corresponding sharper estimates (which tend to be on the left side) are

those displayed in the figures.

The boundary layer here is estimated using the maximum gradient method, which searches for

the maximum temperature gradient along each vertical column, and averaged over the sharpest



79

Figure 4.13: Upper 5m average of the temperature anomaly in the cross-filament direction for the
SM cases associated with convection: C+e (top left), C+n (top right), C (bottom left) and a typical
cross-filament profile of the temperature anomaly in the pure convection case (bottom right). The
Black bars in the surface temperature plots and Lf , h listed below correspond to sharper values of
L1%
∇θ, L

10%
∇θ and L50%

∇θ , and the boundary layer depth, as listed in table 4.4.

frontal region. For each case the boundary layer depth is listed in the figures, and in table 4.4. This

is essentially similar to the method used to calculate the mixed layer depth in the strain-induced

LES above, which was found to be in the same order of the boundary layer depth in most cases.

Many interesting interactions between boundary layer turbulence and filament frontogenesis are

documented by SM. Most importantly for our purposes, and as may be expected, filament TTW

frontogenesis results in narrower frontal widths than in the strain-induced cases above. Winds and

waves affect the symmetry of the frontal width, as well as the spread among the different estimates,

e.g. L1%
∇θ vs L50%

∇θ . SM find that filament arrest is induced by horizontal shear instability that

generates horizontal momentum flux. This is consistent with some of the arrested strain-induced

frontogenesis LES (specifically when winds and waves are present), for which the Richardson number

is found to be below 0.25, indicative of horizontal shear instability.
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Figure 4.14: Similar to figure 4.13 for the SM wind cases: N (top left), N+n (top right), E (bottom
left), E+e (bottom right).

4.6 Summary and Discussion

Theoretical work on frontogenesis has been useful in understanding why there are so many fronts

and filaments in the ocean and atmosphere, but it has been less successful in predicting the scale at

which these fronts will appear in realistic environments. Observations have shown that many ocean

fronts occupy the submesoscale range of scales–roughly 100 m to 10 km–yet models of fronts almost

always arrive at widths determined by the grid scale or sub-grid parameterizations rather than

resolved phenomena. Thus, the discretized form of the singularities of frontogenesis theory (Hoskins

and Bretherton, 1972) appear in models as well. Such singularities are an unphysical outcome, and

do not resemble observations without unrealistically large diffusivity and viscosity (e.g. Nakamura,

1994; Blumen and Piper, 1999).

To better understand the mechanisms that enable frontogenetic arrest, a suite of LES span-

ning the submesoscale and into the boundary layer turbulence scale are carried out and analyzed.

These simulations produce a strain-induced front in the presence of realistic surface forcing to isolate
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Case L1%,l
∇θ L1%,r

∇θ L10%,l
∇θ L10%,r

∇θ L50%,l
∇θ L50%,r

∇θ h

C 38.08 45.41 43.94 48.33 128.90 131.83 74.68

C + e 33.69 83.49 36.62 147.94 48.59 641.60 75.51

C + n 270.99 499.51 278.32 518.55 3178.7 568.35 75.55

N 24.90 445.31 27.83 609.37 36.62 1463.4 73.11

N + n 216.79 235.83 253.41 246.09 733.88 279.78 78.89

E 314.94 802.73 369.14 899.41 530.27 1951.2 75.38

E + e 165.06 219.72 175.78 492.18 272.46 1359.4 78.21

Table 4.4: As in table 4.2 for the SM cases. The first three columns represents the estimated frontal
widths (in meters) on the left and right sides (noted by l, r superscripts), based on the distance from
the front maximum determined by 1%, 10%, 50% of the maximum temperature gradient; The last
column is the boundary layer depth.

control parameters and study their ability to arrest the front. It is found that a variety of bound-

ary layer processes–winds and waves, convection, and mixed layer instabilities–may compete with

frontogenesis.

To generate statistics, the simulations are averaged in time and over smoothed pressure lines

that follow fluid motion in the along-front direction. An arrested frontal width is identified for each

case and its width is approximated by distance from the maximum temperature gradient, which is

defined as the front maximum. Three widths are identified as the distance between the 1%, 10%, 50%

temperature gradient from its maximum. The boundary layer depth was defined as the depth at

which 90% of the TKE has occurred. The no forcing case exhibits the sharpest frontal width, which

emphasizes that in the absence of turbulent forcing, frontogenesis will proceed until artificial grid

scale effects arrest the front.

The energy sources for each run are very different, and the TKE budget production and dissi-

pation terms are analyzed for each case. In the MLI and convection/SI cases, buoyancy fluxes are

important which also corresponds to Ri > 1 (but still order 1). In other cases, shear is more impor-

tant than buoyancy which results in Ri < 0.25. The Stokes+wind case has strong shear production,

so much so that it is the dominant source of TKE in the all forcing case as well.

Finally, we compare with cold filament turbulent-induced frontogenesis simulations by Sullivan

and McWilliams (2018, 2019) in the presence of winds, waves and convection. Frontal width was

computed for all cases, where it is found to arrive at much sharper scales than those in the strain-

induced simulations. In the following chapter these results will be utilized to test a new scaling for

a turbulent-dependent frontal width.



Chapter 5

Modifying the Mixed Layer Eddies

Parameterization: Frontal Width

Determined by Boundary Layer

Turbulence

This chapter is in preparation for submission as: Abigail S. Bodner, Baylor Fox-Kemper, Leah

Johnson, Luke P. Van Roekel, James C. McWilliams, Peter P. Sullivan, & Paul S. Hall. ”Modifying

the Mixed Layer Eddies Parameterization to Include Frontogensis and Frontal Arrest by Boundary

Layer Turbulence.”

—————————————————————–

5.1 Introduction

Many aspects of submesoscales and boundary layer turbulence were discussed in previous chapters,

and all have relevant impacts on local and global scales. However, the most direct impact of these

processes on the climate system is through the mixed layer, and how the mixing-restratification

balance at the surface helps determine its depth.

In General Circulation Models (GCMs), the restratification process associated with subme-

soscales is represented by the mixed layer eddies (MLE) parameterization, which captures the effects

of baroclinic mixed layer eddies that form along submesoscale fronts in a weakly stratified background

state i.e. the mixed layer (Nurser and Zhang, 2000; Boccaletti et al., 2007; Fox-Kemper et al., 2008).

The MLE parameterization is given in the form of an eddy-induced overturning streamfunction,

which represents the slumping of the front and release of available potential energy (always positive,

82
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i.e. restratifying). The streamfunction produces fluxes and an eddy induced velocity (uMLE) which

are solved by the GCM,

u′b′ = ΨMLE ×∇b, uMLE = ∇×ΨMLE . (5.1)

Fox-Kemper et al. (2008) derive the theory for the MLE parameterization and arrive at the

following formula for the MLE streamfunction ΨMLE ,

ΨMLE = Ce
H2∇Hbz × z

|f |
µ(z) (5.2)

Where H is the mixed layer depth, f the Coriolis parameter, ∇Hb
z

is the depth averaged horizontal

buoyancy gradient over the mixed layer, 0.06 ≤ Ce ≤ 0.08, and the vertical structure function is

approximated by:

µ(z) = max

(
0,

[
1−

(
2z

H
+ 1

)2
][

1 +
5

21

(
2z

H
+ 1

)2
])

(5.3)

Which causes the parameterization to vanish below the mixed layer, i.e. when z < −H.

Implementing the parameterization in coarse resolution climate models introduces a grid scale ∆s

and a frontal width Lf parameter. These arise from statistically estimating the number of unresolved

fronts in a single grid cell by applying the submesoscale spectral slope of k−2 (Fox-Kemper et al.,

2011). Thus, the MLE streamfunction that is solved by GCMs is given by,

Ψ = Ce
∆s

Lf

H2∇Hb
z × z√

f2 + τ−2
µ(z) (5.4)

The substitution of f →
√
f2 + τ−2 has often been used to renormalize across the equator, when

τ ∼ h/u∗ is available instead, where h and u∗ are the boundary layer depth and friction velocity

(also defined in table 5.1).

The parameter for frontal width has traditionally been a constant in some models (e.g. Modular

Ocean Model, MOM) taken as some value in the range Lf = 500m− 2km , whereas in other models

(e.g. Parallel Ocean Program, POP) it has been taken as:

Lf = max

(
NH

|f |
,
∇Hb

z
H

f2
, Lf,min

)
(5.5)

where Lf,min is an artificial limiter to ensure stability, NH/f is the mixed layer deformation radius,

which were based on estimates of frontal width suggested by observations and geostrophic frontal ad-

justment theory (e.g. Tandon and Garrett, 1994; Hosegood et al., 2006). Furthermore, stratification

is not a robust measurement in most GCMs, and accurately defining N from boundary layer mixing

schemes can be difficult (e.g. Li et al., 2019). This is a primary reason for the second formulation

in (5.5), which anticipates the deformation radius after geostrophic adjustment has occurred (i.e.,

assumes Ri = N2f2/|∇Hb
z|2 ∼ 1).

However, over the past decade, several studies have shown these assumptions to be overly re-

strictive on the one hand, as argued by Calvert et al. (2020) that due to a natural cancellation of
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the NH/f formulation, the cutoff Lf,min is not needed. On other hand, this scaling has been shown

to be too simplistic, especially in the presence of surface forcing, such as winds and convection (e.g.

Mahadevan et al., 2010; Callies and Ferrari, 2018).

In chapter 2 and Bodner et al. (2020) the effects of turbulence on frontal formation were explored

in a theoretical framework in the quasi-geostrophic limit. Vertical turbulent fluxes were found to

enhance frontogensis whereas horizontal fluxes are able to oppose it. In the submesoscale limit, a

Turbulent Thermal Wind (TTW) balance has been found to be a useful framework for understanding

the onset of frontogenesis in the presence of boundary layer turbulence. In this framework, vertical

turbulent fluxes incite frontogensis whereas shear instability is responsible for the arrest process

(McWilliams et al., 2015; Sullivan and McWilliams, 2018, 2019). These studies have set the scene

for a more physically based estimate of frontal width, one that incorporates the complex interactions

between fronts and boundary layer turbulence that help set this scale. In this study we develop and

test a new scaling motivated by these principals.

Section 5.2 presents the new frontal width scaling that relates Lf with surface forcing parame-

ters. Based on TTW theory, this scaling highlights key aspects of frontogenesis and frontogenetic

arrest. Section 5.3 tests the new scaling using the estimates from the Large Eddy Simulations (LES)

described in chapter 4 and data from the General Ocean Turbulence Model (GOTM). Results and

impacts of the new parameterization implemented in the Community Earth System Model (CESM)

are discussed in section 5.4. Summary and discussion are given in 5.5.

5.2 A new scaling for frontal width

Following McWilliams et al. (2015), we define the horizontal shear vector as

s(z) =
∂uH
∂z

(5.6)

In the TTW balance, the horizontal buoyancy gradient ∇Hb(z), balances the shear term together

with the viscous term ∂2(ν s)
∂z2 generated by surface wind stress τs:

∇Hb = −f ẑ× s +
∂2(ν s)

∂z2
. (5.7)

The buoyancy gradient variance equation for |∇Hb|2 can be extended from the TTW balance

equations, where all cross terms cancel out due to vector identities,

|∇Hb|2 = |f ẑ× s|2 +

∣∣∣∣∂2(ν s)

∂z2

∣∣∣∣2. (5.8)

We next use scale analysis to explore this equation and the horizontal scale that sets this three-

way balance.

The Buckingham Pi theorem helps establish the potential relationship among a set of dimensional

parameters. The number of dimensional parameters can be reduced by converting to dimensionless

parameters and making appropriate empirical assumptions. A total of 10 dimensional parameters
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Vertical momentum flux u′w′ Mean horizontal velocity U

Vertical buoyancy flux w′b′ Turbulent friction velocity u∗ =
√
τ/ρ

Coriolis parameter f Turbulent convective velocity w∗ = (B0h)1/3

Mixing layer depth h Brunt-Väisälä frequency N

Mixed layer depth H Frontal width Lf

Table 5.1: Dimensional parameters. Note that we do not need any of the thermal expansion pa-
rameters β or g, because they are represented by w∗ and N . We are also assuming that Stokes drift
is not a different scaling from u∗ (i.e., fixed turbulent Langmuir number for fully-developed waves).
The molecular viscosity νm and diffusivity κm can be suppressed assuming Re = Uh/νr � 1 can
neglect νm and Pe = w∗h/κm � 1 (e.g. Bodner and Fox-Kemper, 2020).

Rossby number Ro ≡ U
fLf

Richardson number Ri ≡ N2h2/U2

Turbulent Ekman number Ek ≡ u′w′

hfU Turbulent Prandtl number Pr ≡ hN2u′w′

Uw′b′

Horizontal velocity ratio U/u∗ Turbulent velocity ratio u∗/w∗

Mixing vs mixed layer ratio h/H Aspect ratio h/Lf

Table 5.2: Dimensionless parameters, as in chapter 4

with fundamental dimensions of length and time (table 5.1) gives a total of 10-2=8 dimensionless

parameters (table 5.2).

Thus, we seek a function, F in the form of,

0 = F(Ro,Ri,Ek, Pr, U/u∗, u∗/w∗, h/H, h/Lf ), (5.9)

which is equivalent to finding Lf as a function of all other parameters.

In the MLE-TTW framework, we insist that all theories for submesoscales and boundary layer

turbulence be consistent.

In the boundary layer, the turbulent convective velocity is defined as,

w∗ = (B0h)1/3 (5.10)

where B0 = gβQ∗ is the surface buoyancy flux (B0 > 0 for destabilizing conditions), g is gravity

acceleration, β the thermal expansion coefficient and Q∗ is the kinematic surface heat flux. And the

turbulent friction (i.e., shear) velocity is defined as,

u∗ =

√
|τ0|
ρ0

, (5.11)

where τ0 is the wind stress and ρ0 is a reference density. A general horizontal shear will scale as ,

∂u

∂z
∼ U

h
(5.12)

Where h is the boundary layer depth, purposely left unspecified for now. It follows that the shear

production scales as,

u′w′ · ∂u

∂z
∼

u∗
2 U
h if w∗ = 0,

w∗2 Uh if u∗ = 0.
(5.13)



86

In cases forced with both convection and stress, boundary layer mixing schemes such as the K-

Profile Parameterization (KPP; Large et al. (1994)) and the energetics based planetary boundary

layer scheme (ePBL; Reichl and Hallberg (2018)) tend to use u′w′ = (m∗u∗
3 + n∗w∗

3)2/3. In

Reichl and Hallberg (2018), m∗, n∗ have specific formulas given by boundary layer turbulence. For

simplicity, here we use their approximate average values, m∗, n∗ ≈ 0.5, 0.066, however this analysis

can easily be extended to include their space and time dependent values (as calculated in the GCM).

Thus, for an eddy viscosity closure,

u′w′ = −ν ∂u

∂z
, (5.14)

and following the definition in chapter 4, the turbulent Ekman number can be written as,

Ek ≡ u′w′

hfU
∼ (m∗u∗

3 + n∗w∗
3)2/3

hfU
. (5.15)

We define the buoyancy scaling by vertical stratification, which can be related to the Richardson

number as,

b ∼ N2h = Ri · U
2

h
. (5.16)

By setting s ∼ U
h , b ∼ Ri · U

2

h and ν ∂u∂z ∼ (m∗u∗
3 + n∗w∗

3)2/3, the TTW buoyancy variance

equation (5.8) can now be written as,

|∇Hb|2 = |f ẑ× s|2 +

∣∣∣∣∂2(ν s)

∂z2

∣∣∣∣2
→ Ri2 · U2

f2L2
f

= 1 +
(m∗u∗

3 + n∗w∗
3)4/3

U2h2f2

(5.17)

Notice that U2/f2L2 is the Rossby number squared, and the last term on the right hand side is

the Ekman number squared. So equation (5.17) can also be written as,

Ri2Ro2 = 1 + Ek2 (5.18)

For this three-way balance to hold, the following conditions need to be met,

1. Ek2 = O(1)

2. Ri2Ro2/Ek2 = O(1)

3. Ri2Ro2 = O(1)

This reflects the fact that in the submesoscale, both boundary layer turbulence theory and geostrophic

theory balance simultaneously, which is also the essence of TTW theory. In the submesoscale, the

Rossby and Richardson numbers are O(1). However, the first condition requires that they also vary

together. This can be written as:

Ro ·Ri = c1 (5.19)
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Where c1 is a constant and is O(1). Note that in the original MLE parameterization, Lf is the

deformation radius which obeys Bu = Ro2 ∗Ri = 1, which is different than this result.

From the second condition, h emerges as proportional to the Ekman depth,

i.e. h ∝ (m∗u∗
3+n∗w∗

3)2/3

fU , or h = c2
(m∗u∗

3+n∗w∗
3)2/3

fU , where c2 = O(1).

Expanding the third condition gives:

RiRo

Ek
=

1

c3
→ Ri · U

fL
=

1

c3
· (m∗u∗

3 + n∗w∗
3)2/3

Uhf
→ L = c3 ·Ri ·

U2

(m∗u∗3 + n∗w∗3)2/3
· h (5.20)

Where c3 is a constant and is O(1).

Thus, for this three-way balance to hold, the following scaling for Lf emerges:

Lf = CL ·
(m∗u∗

3 + n∗w∗
3)2/3

f2
· 1

h
(5.21)

Where, CL = c22 · c3 · Ri ≡ O(Ri), which will be set to Ri = 0.25, representing the arresting

mechanism of horizontal shear instability (discussed in more detail in section 5.3).

In the Buckingham Pi framework this can be written as:

0 = F(Ro,Ri,Ek, u∗/w∗, h/L). (5.22)

Thus, the Prandtl number and mixed layer depth parameters emerge as auxiliary to this thought

process, and the frontal width is entirely independent of them. This is different than the previous

form of frontal width which included the dependence on H and N .

Furthermore, as we will be making some assumptions about Ro,Ek,Ri and their relationships,

it may be more intuitive to understand the scaling for frontal width as,

Lf = F(u∗, w∗, f, h), (5.23)

where all of these terms are readily available in most GCMs.

Including the new scaling for Lf in the streamfunction expression (5.4) yields,

Ψ = Ce
∆s

Lf

H2∇bz × z√
f2 + τ−2

µ(z) ⇒ Cr
∆s|f |hH2∇bz × z

(m∗u∗3 + n∗w∗3)2/3
µ(z) , (5.24)

where Cr = Ce/CL.

Note that in this new formula, τ is no longer required in the denominator because the f term

cancels out. This is an important improvement not only because it eliminates an artificial pa-

rameter, but also because the new parameterization naturally vanishes at the equator, where the

submesoscales are resolved (e.g. Dong et al., 2020). Furthermore, Lf no longer includes N2, which

is not a robust measurement amongst most models.
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5.3 Proof of concept

5.3.1 Testing in Large Eddy Simulations

We utilize results from the two types of LES discussed in chapter 4, e.g. turbulence-induced and

strain-induced frontogenesis, to test the new Lf under various surface forcing conditions (u∗, w∗),

the boundary layer depth (h) and the Coriolis parameter (f). For all runs we use the average values

for m∗, n∗ = 0.5, 0.066 from Reichl and Hallberg (2018).

In the turbulent-induced filament frontogenesis cases from Sullivan and McWilliams (2018, 2019)

(SM hereafter), the parameters used for surface forcing are u∗ = 0.01 m/s and w∗ = 0.0137m/s,

the Coriolis parameter is f = 7.81 × 10−5 s−1. and for each case we use the boundary layer depth

found in chapter 4. To account for the effects of waves, we include the adjustment of Eu∗, where E
is the enhancement factor based on Van Roekel et al. (2012), which best predicts vertical diffusivity

and is most appropriate for our TTW based theory (Li and Fox-Kemper, 2017),

E =
√

1 + (3.1La)−2 + (5.4La)−4. (5.25)

Where the coefficients used here are consistent with the case for aligned winds and waves, and the

Langmuir number in SM is given as La = 0.32. Note that the enhancement factor is only applied

to u∗, as Li and Fox-Kemper (2017) found it was less significant for w∗.

Of the strain-induced LES runs, we include only the convection/SI, Stokes+wind and all forcing

cases (which also include small MLE). This is because the pure mixed layer instability case and the

no forcing case are not forced with u∗, w∗, necessary to compute the new frontal width scaling. In

the Stokes+wind case, u∗ =
√
τ0/ρ0 = 0.001 m/s and we apply the enhancement factor Eu∗ using

the Langmuir number La =
√
u∗/us = 0.223 where us = 0.2 m/s. In the convection/SI and all

forcing cases, we have penetrating short wave solar radiation in addition to surface cooling. Thus, we

use the formula from equation (8) in Mironov et al. (2002), which combines them into a convective

velocity scale wR,

wR = [−(h− δ)BR]1/3, (5.26)

where δ is the depth at which the vertical temperature gradient is zero (i.e. maximum), and h is

the boundary layer depth.

Horizontal shear instability is found to be associated with frontogenetic arrest, where Ri < 0.25

in most strain-induced cases in chapter 4 and as discussed in Sullivan and McWilliams (2018, 2019)

and Bodner et al. (2020). Hence, we set the Richardson number in the frontal width scaling to

match the frontogenetic arrest physics: Ri = 0.25. Furthermore, as shown in table 5.3 the constants

c1, c2, c3 are confirmed to be of order 1 in the strain-induced LES. Thus, we choose to set the

constant CL = Ri = 0.25.

Figure 5.1 is a log-log plot of the measured L1%
∇θ frontal width found in chapter 4 compared with

the Lf prediction based on the new scaling (5.21), using the appropriate u∗, w∗, h, f for each case,

and constants set to m∗,= 0.5, n∗ = 0.066, CL = 0.25. This demonstrates that the new Lf scaling

predicts values on the same order of the measured frontal width in all cases. This also implies that
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c1 c2 c3

Convection/SI 1.12 6.65 0.13

Stokes and Wind 0.64 0.82 1.88

All Forcing 2.76 3.38 0.10

Table 5.3: Estimate of parameterization constants given from strain-induced runs

even in the strain-induced frontal cases TTW balance holds to some degree. It is important to note

that this is in no way a proper validation of the scaling. To improve on this would require a series of

simulations (which are extremely computationally expensive), varying one parameter at a time over

several orders of magnitude. Here we demonstrate plausibility over a range of available simulations.

Figure 5.1: Log-log plot of the measured L1%
∇θ frontal width found in chapter 4 compared with the

Lf prediction based on the new scaling (5.21), using the appropriate u∗, w∗, h, f for each case, and
constants set to m∗,= 0.5, n∗ = 0.066, CL = 0.25. Gray error bars represent the measured frontal
width given by L10%

∇θ .

5.3.2 Estimates from the General Ocean Turbulence Model

The General Ocean Turbulence Model (GOTM) is typically used as a stand-alone model for studying

dynamics of boundary layers in natural waters. Using mooring data available from the Monsoon

Intra-seasonal Oscillations in the the Bay of Bengal project (MISO-BOB), the GOTM model is forced

with 16 months of observed surface fluxes, giving u∗ and w∗. GOTM estimates the boundary layer

depth using the CVmix turbulence scheme which is based on the KPP parameterization, similar to
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Figure 5.2: Lf (m) estimated from GOTM in the Bay of Bengal using u∗, w∗ and CVmix to
determine h.

the way it would be computed in a GCM (e.g. Large et al., 1994; Van Roekel et al., 2018; Li et al.,

2019).

Figure 5.2 displays the range of Lf from (5.21) given by the GOTM data input. Although there

is likely seasonality and other variability that might impact this distribution, the results are in the

range of what may be expected from a submesoscale frontal width, centered around 500m, or more

generally on the order of O(1)km (e.g. Lucas et al., 2016).

5.4 Implementation

We next implement the new MLE parameterization formula given by equation (5.24) in CESM2.1.3-

POP, where the parameters u∗, w∗, h are all readily available from KPP, and are used for (5.24). Here

as well, we set the constants m∗,= 0.5, n∗ = 0.066, CL = 0.25, and all other parameters are already

available within the existing MLE parameterization scheme. Thus, the MLE parameterization is

modified via the Lf parameters at no additional computational cost to the model.

The new parameterization was tested in two types of simulations: a global fully coupled simula-

tion and a CORE-v2 forced ocean simulation, which covers forcing data from 1948-2009 (Large and

Yeager, 2009). The fully coupled model was run for 100 years for both the new and control versions

of the MLE parameterizations. The forced model was run for five cycles at a total of 310 years.

The mixed layer depth climatology was obtained by averaging over the last 20 years of the coupled
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simulation and last cycle in the forced simulations.

Figures 5.3 and 5.4 show the mixed layer depth during summer and winter in both hemispheres

respectively, from observations given by the de Boyer Montégut et al. (2004) dataset updated to

include Argo data up to 2012, compared with the control and new parameterization for both the

coupled and forced simulations.

Most importantly, the results appear to be qualitatively similar in all simulations, and resemble

observations. This is primarily to show the sensitivity of the mixed layer depth to the new param-

eterization, that changes are non zero, and the parts in the world that exhibit these changes are

climatically important. The differences in mixed layer depth between the control and new param-

eterization are highlighted by the zonal average at the top right panel of figures 5.3 and 5.4, and

in figures 5.5 and 5.6 for the coupled and forced simulations, respectively. These reveal that in the

coupled simulations, the new parameterization leads to deeper mixed layer depth in the southern

ocean, and a shallower mixed layer depth in the equator and Indian Ocean. In the forced simulations,

the southern ocean is less apparent but here again there is a significant reduction in the equator,

where reducing the bias has been difficult to achieve with boundary layer mixing schemes (e.g. Li

et al., 2019).

5.5 Summary and Discussion

Submesoscales and boundary layer turbulence are instrumental in modulating the transfer of heat,

momentum, carbon and other properties, between the atmosphere and ocean interior. Accurate

representation of these processes in models is crucial, yet they tend to be on scales smaller than

the grid used, even at the highest possible resolution. The current Mixed Layer Eddies (MLE)

parameterization represents the restratification process of adjusting submesoscale fronts, but it has

been shown to be too simplistic and unfitting in circumstances where the frontal width effects are

impactful.

Here we present a new scaling law that relates frontal width with boundary layer turbulence by

building on the Turbulent Thermal Wind (TTW) balance. The new frontal width scaling utilizes

variables from boundary layer turbulence schemes u∗, w∗, h which are readily available in most

climate models. Furthermore, it eliminates the need for an artificial parameter τ which was designed

to prevent singularities near the equator in the previous version, and it avoids the dependence on

N2 which is not always easily diagnosed in GCMs.

The new scaling also depends on the local Rossby, Ekman and turbulent Richardson numbers.

Several physical assumptions were made to reduce the number of dependent variables, of which the

Rossby and Ekman numbers are assumed to be 1, as expected for the submesoscale. The Richardson

number is set to 0.25, representing the arrest by horizontal shear instability.

Using the suite of the Large Eddy Simulations (LES) presented in chapter 4, we test this new

scaling over a variety of turbulent processes resulting from winds, waves, and convection that lead

to arrested submesoscale fronts and filaments. The predicted frontal width from the new scaling
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is found be in the same order of the measured frontal width for all cases. Additionally, boundary

layer data from the General Ocean Turbulence Model (GOTM) in the Bay of Bengal was used to

estimate the possible range for the new frontal width scaling, which was found to be consistent with

the submesoscale range of O(1)km.

The new scaling for frontal width is implemented in the MLE parameterization and tested in

forced and coupled CESM2.1.3-POP simulations, where climate sensitivity was primarily estimated

through the impact on the mixed layer depth. Since the new parameterization depends on surface

forcing, there is merit in both types of simulations: the coupled simulations has active feedback

with the atmosphere, which come back through u∗ and w∗ by changing mixed layer depth and sea

surface temperature. The forced simulations are useful for model-observation comparison, as they

are forced by observational measurements. However, the CORE-v2 dataset used here is inferior to

the newer JRA55-do dataset which has recently been shown to reduce bias in mixed layer depth

(Tsujino et al., 2020). Thus, future work will also include testing the new MLE parameterization in

a JRA55-do forced simulation for a more robust comparison with observations.

The MLE streamfunction is stronger for sharper fronts, i.e for smaller Lf . The frontal width

range found by the GOTM data in the Bay of Bengal demonstrates that the new scaling is able to

arrive at smaller Lf than predicted by the previous version. This will enhance the restratification

effect, which is especially important in regions where there is still a bias towards deeper mixed layer

depths (e.g. equator). Indeed, this is perhaps the most significant result of the new parameterization

found in both the forced and coupled simulations.

The LES analysis has demonstrated how important wave effects are, and that an enhancement

factor is necessary to account for the higher diffusivity and mixing due to Langmuir turbulence.

This enhancement factor is also available in turbulent mixing schemes in CESM and future work

will include incorporating the effects of Langmuir turbulence in the MLE parameterization. It can

be expected that the contribution of Langmuir turbulence will be most significant in the southern

ocean, where wave swells tend to be large (Young, 1994; Belcher et al., 2012). However, we do not

expect this to affect much the equator where waves are relatively calm.

It is important to emphasize that this study is primarily to prove plausibility, and a proper

parameter analysis needs to be performed in order to validate the parameterization with simulations

that are specifically designed for it. As shown in chapter 4, fronts can also be arrested by other type

of turbulence not captured in the TTW framework (e.g. smaller MLEs without surface forcing).

Furthermore, the stress imposed by wind effects can either lead to sharpening or spreading of the

front depending on the wind direction, which is not accounted for in this framework. Recent work by

Crowe and Taylor (2020) developed a scaling for an equilibrated buoyancy gradient that relates fronts

and surface forcing with TTW theory in the low Rossby limit. A more comprehensive parameter

search is needed to validate and compare our results with other scalings for frontal widths under

different regimes (e.g. Mahadevan et al., 2010; Wenegrat et al., 2018; Crowe and Taylor, 2020).
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Figure 5.3: Global maps of mean mixed layer depth during summer in the Northern Hemisphere
(July-September) and Southern Hemisphere (January-March) from: observations given by the
de Boyer Montégut et al. (2004) dataset updated to include Argo data up to 2012 (top left), zonal
average of all simulations (top right), new Lf vs control in the coupled simulations (middle panels)
and forced simulations (bottom panels) .
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Figure 5.4: Same as figure 5.3 during winter in the Northern Hemisphere (January-March) and
Southern Hemisphere (July-September).
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Figure 5.5: Differences between new Lf and control in the coupled simulations during summer and
winter in both hemispheres, as in figure 5.3. Note the different colorbars to emphasize regional
variability.

Figure 5.6: Same as in figure 5.5 for the forced simulations.



Chapter 6

Conclusions

The dynamic interplay between ocean submesoscales and boundary layer turbulence is investigated

in this thesis using several theoretical and computational methods. The process of frontal formation,

known as frontogenesis, and how it arrests before reaching singularity, is found to be strongly linked

to the presence and properties of boundary layer turbulence. This thesis demonstrates that these

effects are key to better understanding the dynamics of each regime separately, and how they vary

together under the same framework. Furthermore, one of the major accomplishments of this work

is quantifying these interactions to represent their effect in global circulation models (GCMs). The

following section 6.1 summarizes the most significant results and conclusions from this thesis. Plans

and suggestions left for future work are given in section 6.2.

6.1 Summary and Implications

• This thesis distinguishes what aspects and theories of potential vorticity (PV) are valid in

the submesoscale, where stratification and rotation still govern flow dynamics to some extent,

compared with a 3D turbulent regime, where isotropic turbulent properties govern the flow

and any rotation or stratification are considered instantaneous. PV and PV fluxes are found

to be instrumental in the theoretical framework presented in chapter 2, through which an

analytic result is found when including turbulent fluxes in the semi-geostrophic equations

posed by Hoskins and Bretherton (1972). Furthermore, surface quasi-geostrophy (SQG) has

been argued to be a useful framework to decipher submesoscale fluid motion below the surface

(e.g. Lapeyre and Klein, 2006; LaCasce and Mahadevan, 2006). This was found to be consistent

with the theoretical framework in chapter 2, where surface PV fluxes, even if only given at

one location where the front is strongest, are sufficient in most cases to describe the entire

flow field associated with frontogenesis. However, chapter 3 revealed the limitations of PV in

highly turbulent regimes, where large variance in rotation and stratification are exacerbated by

subgrid closures in models such as Large Eddy Simulations (LES), where 3D turbulence is only

partially resolved. This ultraviolet catastrophe penetrates PV dynamics and contaminates PV

96
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fluxes as well, unless carefully treated by proper filtering. This discovery further highlights

that not only are submesoscales and boundary layer (3D) turbulence distinct in scale, but also

exhibit distinct dynamical properties.

• In both weak and strong turbulent regimes, the effects on frontogenesis and frontogenetic arrest

are found to be significant. Chapter 2 focuses on the early frontogenesis stage, where in the

presence of a strain field, the effects of turbulence are still considered small compared to the

leading order dynamics. In this framework turbulence plays an important role in determining

how sharp the front can get and at what rate. It is found that all turbulent processes are able

to arrest the front at early stages, however horizontal turbulent fluxes, which may represent

processes such as horizontal shear, can completely diffuse the front, whereas vertical fluxes,

which may represent convection for example, tend to contribute to frontal sharpening. This

is somewhat confirmed by the LES analyzed in chapter 4, which represent a more realistic

turbulent regime during late frontogenesis, when the front and turbulence have equilibrated and

settled on an arrested scale. All cases analyzed demonstrate an arrested front resulting from

a variety of turbulent processes such as winds, waves, convection and mixed layer instabilities.

The scaling law in chapter 5 is based on turbulence-induced frontogenesis by turbulent thermal

wind balance (TTW), and is found to predict a frontal width that is on the same order as

estimated directly from the simulated arrested fronts. This demonstrates that vertical fluxes

can also play a role in the formation of the front, even in strain-induced simulations.

• As mentioned above, a common thread throughout this thesis is that vertical turbulent fluxes,

such as those expected near the ocean surface, are found to be significant in all forms of analy-

sis. This further confirms that TTW theory is a useful framework to understand submesoscale

fronts and their interaction with vertical turbulent fluxes in the ocean surface boundary layer.

Furthermore, horizontal fluxes, and presumably horizontal shear, is one of the primary arrest

mechanisms in both strain and turbulent-induced frontogenesis. These aspects of frontal for-

mation and arrest help determine the effective frontal width. The scaling for frontal width

described in chapter 5 builds on these findings and provides a formula based on TTW and a

Richardson number reflective of horizontal shear. The new scaling links turbulent properties

computed by vertical mixing schemes with the mixed layer eddies (MLE) parameterization in

GCMs, which is found to have successful preliminary results in sensitivity and bias reduction

of the mixed layer depth in key regions of climatic importance. The full impact on the climate

system and future work to improve this parameterization is discussed further in the following

sections.
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6.2 Future Work

6.2.1 Dominant frontal arrest mechanism

Although this thesis concluded that the most relevant arrest mechanism is horizontal shear instabil-

ity, it also showed evidence that other turbulent processes can arrest the front (e.g. small MLE), and

some observations also indicate frontogenetic arrest without specific mechanism (e.g. Ledwell et al.,

1993; Kersalé et al., 2016). The analysis in chapter 4 highlighted that among the possibilities are

horizontal shear instability, convection and symmetric instability, mixed layer eddies on a smaller

scale, wind shear and wave effects. Dong et al. (2020, 2021) estimate the scale of symmetric and

mixed layer instabilities globally, yet on a local scale it is presently unclear if one dominates over

the other and if one is more likely to occur if both conditions are favorable.

The Richardson number parameter in the new frontal width scaling is representative of the

arrest mechanism. If the front is arrested before reaching horizontal shear instability, the Richard-

son number could be on order 1 or larger, which may result in frontal widths much larger than

currently predicted. Furthermore, if symmetric instability is an important arrest mechanism, it is

expected that the MLE parameterization commute with the symmetric instability parameterization

and mixing properties given by Bachman et al. (2017b).

Finally, the new scaling for frontal width was tested using LES of arrested filament frontogensis,

which was treated as a two-sided front for the purposes of this thesis. However, the dynamics of

filaments have been shown to be different in several aspects, especially in the presence of winds and

waves (e.g. Suzuki et al., 2016; Sullivan and McWilliams, 2018, 2019). The current MLE param-

eterization represents the restratifying process of a slumping front, yet MLE may also form along

submesoscale filaments if there is sufficient available potential energy stored in the vertical isopyc-

nals. How significant this is, how likely this occurs in nature and whether the MLE parameterization

need to be modified to include these effects is left for future work.

6.2.2 Further improvements on the Mixed Layer Eddies Parameterization

Most of this section is based on personal communication with Alistair Adcroft (GFDL) and Baylor

Fox-Kemper regarding implementing the new version of the MLE parameterization in MOM6.

Future versions of CESM will primarily include the Modular Ocean Model (MOM6) developed

by GFDL. This model includes the ePBL mixing scheme which allows the use of the precise values

of m∗, n∗ in the frontal width scaling, as well as the standard u∗, w∗, h as in the current KPP-based

version. Including these parameterizations will be an improvement on the current version, which

only uses the average values from Reichl and Hallberg (2018).

In MOM6 the mixed layer depth H is currently calculated as a resetting running mean of the

boundary layer h, with a time-scale longer than a day. This captures the rapid deepening and shoals

more slowly so the restratification can continue working at depth.

To avoid instantaneous restratification or hypersensitivity to boundary layer turbulence on

shorter timescales, it may be desirable to form the ratio expression r∗ = h/(m∗u
3
∗ + n∗w

3
∗)

2/3 and
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run it through a filter 〈r∗〉. h and (m∗u
3
∗+ n∗w

3
∗)

2/3 should (in theory) vary together, so combining

them into a ratio expression could also help with any arising singularities. h is time evolving, thus

this type of filtering helps avoid sensitivity to instantaneous changes in surface forcing, yet will not

affect the MLE streamfunction as Fox-Kemper and Ferrari (2009) demonstrated the MLE outlive

changes in vertical mixing that occur on a diurnal cycle . Furthermore, defining minimum values

for u∗, w∗ to ensure the model remains stable in the weak turbulence regime can be done by using

values appropriate for molecular turbulence (of water) e.g. [u3
∗]min ∼ 1e− 9 as a lower limit, which

is the absolute smallest fronts can get. A possible time average filter is of the timescale for evolution

of the turbulent kinetic energy (TKE) and heat flux budgets, which can be estimated from the ratio

of the eddy diffusivity or viscosity to the TKE: tf ≈ κ/TKE or tf ≈ ν/TKE (Wyngaard, 2010).

In ePBL, the TKE is explicitly predicted as are the instantaneous κ and ν. Finally, the effects of

waves should be included through the enhancement factor for u∗ and is also available from the ePBL

scheme (Reichl and Li, 2019). This will complete the link between frontal width and all types of

surface forcing (e.g. winds, waves, convection) in the scaling law derived in chapter 5. Estimating

the full impact on the climate system is left for future work, as will be explained in the following

section.

6.2.3 Effects on Climate

Quantifying the sensitivity of any process to perturbations in local and global climate, and how

this change may return to affect the general climate is complex and depends nonlinearly on other

components of the climate system. Chapter 5 focuses on the effects of the new MLE parameterization

on the mixed layer depth, which gives the most direct impact on climate sensitivity (e.g. Tsujino

et al., 2020; Hall and Fox-Kemper, 2021). However, there are several other metrics of significant

broader climatic impacts that should be evaluated. These include air-sea fluxes and gas exchanges

such as CFCs for the impact on the biogeochemical cycle, surface and subsurface tracers such as

temperature and salinity, “ideal age” for the effect on ventilation pathways of different water masses

below the mixed layer, and on the global scale through the meridional overturning circulation, deep

water formation and average global temperatures.

Finally, these metrics and the results presented in chapter 5 should be extended to a more

comprehensive study, where model bias and sensitivity are compared with observations in a multi-

model multi-resolution experiment that may include: coupled and JRA55-do forced simulations

from CESM-MOM6, CESM-POP, GFDL-MOM6. Efforts to implement new versions of the MLE

parameterization in these models is ongoing.

6.2.4 Atmospheric boundary layers and frontogenesis

Much of the dynamical processes studied in this thesis are translatable to the atmosphere under a

certain parameter range (e.g. Hoskins and Bretherton, 1972; Vallis, 2017; Fox-Kemper et al., 2020).
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Thus, it is expected to ask whether the conclusions found in this thesis can be relevant for atmo-

spheric fronts and atmospheric boundary layer turbulence. It is argued in chapter 3 that there is a

larger physical range that separates boundary layer turbulence from atmospheric mesoscales (which

correspond to oceanic submesoscales), especially since much of the atmospheric flow can be approx-

imated using quasi-geostrophic theory. However, these may become more significant during strong

storms, or when air flows is governed by boundary conditions such as topography or anomalously

warm or cold waters (e.g. Schneider et al., 2003). If such interactions do arise, the effects of humidity

should be incorporated in the current framework, as well as understanding whether these interactions

are significant, quantifiable, and if they are resolved in climate models due to their larger scale.



Appendix A

Code and Data

Samples of the code and data used to generate results presented in this thesis can be found in the

Brown Digital Repository, under the following link: https://doi.org/10.26300/sf8w-0045
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Appendix B

First Order Solution Numerical

Scheme

B.1 Parameters

• Dimensionless time (t) range is [0, 19.8] where the zeroth order vanishes according to ST13.

• Dimensionless cross-frontal (x) range is [−2.5, 2.5].

• Dimensionless vertical (z) range is [0, 1].

• γ = 0.1.

• Rossby number Ro = 0.4.

• The Froude number is calculated by Fr = Ro
Bu where Bu = 0.1 following ST13.

B.2 First Order Solution

• The zeroth order solution is calculated with equations (2.22) and (2.23a)-(2.23c), which serve

as inputs for the consecutive steps.

• The PV is calculated by integrating the PV evolution equation (2.33) using Forward Euler

method for the first three time steps after which the 3rd order Adam-Bashforth explicit method

is used. The zeroth order solution is used to calculate the advection and and flux terms at

every time step.

• In the SQG simulation the PV is taken to be zero.

• The five point stencil method is used to invert, at every time step, the second order partial

differential equation for φ1 (2.29), using inputs from the zeroth order solution and the PV.
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• A similar method is used for ψ (2.25), using inputs from the zeroth order solution and φ1.

B.3 Boundary conditions

For the simulations presented in this paper we do not include fluxes induced by wind shear and

thermodynamic forcing.

The boundary conditions for ψ1 are given by the integrating the cross-front momentum equation

(2.5a). We use Forward Euler method for the first three time steps after which the 3rd order Adam-

Bashforth explicit method is used. The streamfunction is evaluated at every time step by (2.4). The

zeroth order solution is used as input for the zeroth order advection and the total flux terms. The

first order advection terms are evaluated at every time step with the explicit method.

The boundary conditions for φ1 is given by the integrating the thermodynamic equation (2.5d)

by the same method as for ψ1, where the geostrophic potential is evaluated at every time step by

(2.6).

In the IQG simulation the boundary conditions for φ1 are taken to be trivial ∂φ1

∂z = 0. In both

the IQG and SQG systems we maintain the boundary conditions for ψ1 since this is the equation

for the ageostrophic streamfunction and is independent at each time of the quasi-geostrophic PV

inversion. At past times, the Lagrangian history of the boundary conditions does affect ψ1, φ1,

but these historical effects do not directly accumulate in the first-order ageostrophic overturning

circulation, which in the perturbation asymptotics, is diagnostically calculated from the zeroth-

order fields through (2.25). The nature of this decomposition is highlighted by the characteristics of

the boundary conditions in the SQG system, and equation (2.29) for the IQG system, independent

of the first order Lagrangian derivative. The turbulent flux forcing term F(φ0) in equation (2.25) is

divided into surface and interior domains for the SQG and QG case respectively.

In the point source case, the boundary conditions are calculated by (2.39) where xft, xfb are

the points of maximum along-front velocity on the boundary.



Appendix C

Analytic Solution for the Delta

Function Approximation

To obtain an analytic framework, we chose the locations for which the zeroth order solution goes

singular,as the points of maximum frontogenesis. In this approximation, the point sources of PV

(q̂fs, q̂fb) can be found by evaluating the PV from equation (2.33) at these locations.

With the assumption of point sources of PV, φ1 can be found using the Green’s function for the

PDE (2.29), then equation (2.25) determines the first order geostrophic streamfunction ψ1.

If the PDE is elliptic then we can perform a change of variables so that it becomes ∼ ∇2 in

some other coordinate system. We are looking for a change of variables (ξ(x, z), η(x, z)) such that

J ≡ ξxηz − ξzηx 6= 0 for any x, z in the domain. For an equation of the sort:

L[φ1] = Aφ1
xx + 2Bφ1

xz + Cφ1
zz = D (C.1)

Where: 

A = Ro2 ∂
2φ0

∂z2

B = −Ro2 ∂
2φ0

∂x∂z

C =
(

1 +Ro2 ∂
2φ0

∂x2

)
D = q̂ftδ(x− xft)δ(z − zft) + q̂fbδ(x− xfb)δ(z − zfb)

Assuming A,B,C are real analytic functions in the domain, and that A(x, y) 6= 0 (i.e. ∂b0

∂z 6= 0), a

transformation Π(ξ, η) = φ1(x(ξ, η), y(ξ, η)) can be found such that:

AΠξξ + 2BΠξη + CΠηη = D (C.2)

And: 
A = Aξ2

x + 2Bξxξz + Cξ2
z

B = Aξxηx +B(ξxηz + ξzηx) + Cξzηz

C = Aη2
x + 2Bηxηz + Cη2

z
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Since our operator is elliptic we are looking for ξ, η that satisfy A = C and B = 0:

Aξ2
x + 2Bξxξz + Cξ2

z = Aη2
x + 2Bηxηz + Cη2

z (C.3a)

Aξxηx +B(ξxηz + ξzηx) + Cξzηz = 0 (C.3b)

Which can be found by defining the variable λ = ξ + iη, reducing to one equation:

Aλx +
(
B ± i

√
AC −B2

)
λz = 0 (C.4)

λ is constant on the characteristics (defined on the complex plane):

dz

dx
=
B ± i

√
AC −B2

A
(C.5)

Inserting the non-dimensional definitions for A, B. C gives:

dz

dx
=
−∂b

0

∂x
∂b0

∂z

± i

√(
Ro2 ∂b0

∂z

)
·
(
1 +Ro2 ∂v0

∂x

)
−
(
Ro2 ∂b0

∂x

)2(
Ro2 ∂b0

∂z

) (C.6)

Integrating the equation with respect to x:

[
z +

∫ (
∂b0

∂x

/
∂b0

∂z

)
dx

]
± i

∫
√(

Ro2 ∂b0

∂z

)
·
(
1 +Ro2 ∂v0

∂x

)
−
(
Ro2 ∂b0

∂x

)2(
Ro2 ∂b0

∂z

) dx

 = const (C.7)

This is the characteristic solution for which λ is constant and ξ = Re[λ], η = Im[λ]:

ξ = z +

∫ (
∂b0

∂x

/
∂b0

∂z

)
dx (C.8a)

η = ±
∫ √(

Ro2 ∂b0

∂z

)
·
(
1 +Ro2 ∂v0

∂x

)
−
(
Ro2 ∂b0

∂x

)2(
Ro2 ∂b0

∂z

) dx (C.8b)

The problem now reduces to solving the equation in η, ζ coordinate system, which is a Laplacian

operator equal to an equivalent delta function:

Πξξ + Πηη =
D(ζ, η)

A(ζ, η)
∼ δ(ζ, η) (C.9)

Using the definition for ξ, η we can find the boundary conditions on Π from the boundary

conditions of φ1.

Since φ1 is confined to the frontal region, it can be assumed that far from the front as (x→ ±∞)

the first order velocities vanish:

v1 =
∂φ1

∂x
=
∂Π

∂ξ
· ∂ξ
∂x

= −∂Π

∂ξ
·

(
1

Ro∂v
0

∂Z

)
= −∂Π

∂ξ
·
(

2

eγTRo2B′0(X)

)
(C.10)

Where we use the definition of the slope in X coordinates, as in ST13. The initial buoyancy in X

coordinates is B0(X) = 1
2erf(X/

√
2)→ B′0(X) = 1√

2π
e−X

2/2

→ lim
x→±∞

∂Π

∂ξ
= lim
x→±∞

[
v1

/
2
√

2πeX
2/2

eγTRo2

]
= 0 (C.11)
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Also it can be shown that ξ → ±∞ as X → ±∞ and X → ±∞ as x→ ±∞. Thus we now have

the boundary conditions:

lim
∂Π

∂ξ
ξ→±∞

= 0 (C.12)

In a QG system, we use trivial boundary conditions ∂b1

∂z = ∂2φ1

∂z2 = 0.

∂φ1

∂z
=
∂Π

∂η

∂η

∂z
→ ∂2φ1

∂z2
=

∂

∂z

(
∂Π

∂η

∂η

∂z

)
=
∂2Π

∂η2

(
∂η

∂z

)2

+
∂Π

∂η

∂2η

∂z2
(C.13)

In order to obey the boundary conditions, the limit ∂2Π
∂η2

(
∂η
∂z

)2

<< ∂Π
∂η

∂2η
∂z2 implies that:

0 =
∂2φ1

∂z2

∣∣∣∣
b.c

=
∂2Π

∂η2

(
∂η

∂z

)2

+
∂Π

∂η

∂2η

∂z2
≈ ∂Π

∂η

∂2η

∂z2

∣∣∣∣
b.c

→ ∂Π

∂η

∣∣∣∣
b.c

= 0. (C.14)

Thus, it is enough to show that
(
∂η
∂z

)2

<< ∂2η
∂z2 and ∂2Π

∂η2 << ∂Π
∂η , which are given by the scaling

argument:

[η] =

√
[A][C]− [B]2

[A]
· L =

√
L2

H2Ro2

1
f2

M2LH
H2

· L = Ro3 ·H (C.15)

→

[(
∂η

∂z

)2/
∂2η

∂z2

]
=

[A][C]−[B]2

[A]2 · L
2

H2

√
[A][C]−[B2]

[A] · LH2

=

√
[A][C]− [B]2

[A]
· L (C.16)

For the HB72 case Ro ∼ O (0.4) and H ∼ O (10) which means that Ro3 ·H ∼ 10−3 ·101 = 10−2 << 1.

Thus
(
∂η
∂z

)2

<< ∂2η
∂z2 .

Next, we want to show that ∂2Π
∂η2 <<

∂Π
∂η :

∂φ1

∂x
=

∂Π
∂η

∂η
∂x

∂Π
∂ξ

∂ξ
∂x

→ ∂Π

∂η

∂η

∂x
=
∂Π

∂ξ

∂ξ

∂x
→ ∂Π

∂η
=

1
∂η
∂x

∂Π

∂ξ

∂ξ

∂x
(C.17)

In addition, in the same way we got equation C.13 with η, we can do the same with ξ:

0 =
∂2φ1

∂z2

∣∣∣∣
b.c

=
∂2Π

∂ξ2

(
∂ξ

∂z

)2

+
∂Π

∂ξ

∂2ξ

∂z2
→ ∂2Π

∂ξ2

∣∣∣∣
b.c

= −∂Π

∂ξ

∂2ξ
∂z2(
∂ξ
∂z

)2

∣∣∣∣
b.c

(C.18)

Remembering that our initial Laplacian equation for Π is equal to zero everywhere except at the

point source. Specifically this means that at the boundaries (assuming the point source is not exactly

at the boundary):

∂2Π

∂η2
+
∂2Π

∂ξ2

∣∣∣∣
b.c

= 0 → ∂2Π

∂η2

∣∣∣∣
b.c

= −∂
2Π

∂ξ2

∣∣∣∣
b.c

=
∂Π

∂ξ

∂2ξ
∂z2(
∂ξ
∂z

)2

∣∣∣∣
b.c

(C.19)
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Now comparing ∂2Π
∂η2 ,

∂Π
∂η by using the expressions found for each on the boundaries and the scaling

of the problem: [
∂2Π

∂η2

/
∂Π

∂η

]
=

[
∂η

∂x

∂2ξ

∂z2

]/[
∂ξ

∂x

(
∂ξ

∂z

)2
]

=
[η]
L

[ξ]
H2

[ξ]
L

[ξ]2

H2

=
[η]

[ξ]2

=

√
AC−B2

A L(
H + B

AL
)2 =

1

4RoH
∼ 1

1.6H
<< 1

(C.20)

Thus also ∂2Π
∂η2 <<

∂Π
∂η which means that ∂2Π

∂η2

(
∂η
∂z

)2

<< ∂Π
∂η

∂2η
∂z2 .

It can be shown that η →∞ as z → −∞ and we can define η = η0 for z = 0.

Thus we now have the second boundary conditions:

lim
∂Π

∂η
η→∞,η0

= 0 (C.21)

Now we can use Green’s functions theory to solve this equation with Neumann boundary condi-

tions on a half plane:

lim
∂Π

∂ξ
ξ→±∞

= 0 (C.22a)

lim
∂Π

∂η
η→∞,η0

= 0 (C.22b)

A similar argument can be made for the SQG case with the point source being located on the

boundary.

We can solve a linear PDE with an operator L using the following method:

L{Π} = F (η, ξ) ∼ q̂(t) δ(η − p, ξ − s) (C.23)

We are looking for:

L{G(η, ξ; p, s)} = δ(η − p, ξ − s) (C.24)

Multiplying by F (p, s) and integrating by p, s:∫
L{G(η, ξ; p, s)}F (p, s) dp ds =

∫
δ(η − p, ξ − s)F (p, s) dp ds = F (η, ξ) (C.25)

Since L is a linear operator, acting on (η, ξ) we can take it out of the integral which acts on (p, s):

L{Π} = F (η, ξ) =

∫
L{G(η, ξ; p, s)}F (p, s) dp ds = L

[∫
G(η, ξ; p, s)F (p, s) dp ds

]
(C.26)

Thus the solution for Π(η, ξ) is given by:

Π(η, ξ) =

∫
G(η, ξ; p, s)F (p, s) dp ds (C.27)

Since F (η, ξ) ∼ q̂(t) δ(η− p, ξ − s), the Green’s function is proportional to the function → Π ∼ G.
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We are looking for a solution matching two point sources on a half plane with homogeneous Neu-

mann boundary conditions. This means we need to use the method of images in order to find the

appropriate solution. In order to satisfy the boundary condition ∂Π
∂η

∣∣∣∣
η=η0

=0, we need to add two im-

age point sources of the same magnitude, sign and distance from the boundary as the point sources

located at the front.

The Green’s function matching Neumann boundary conditions is:

G(ξ, η; ξ′, η′) = − 1

4π

1√
(ξ − ξ′)2 + (η − η′)2

(C.28)

In our problem each point source is multiplied by a factor of
D(ξf ,ηf ,t)
A(ξf ,ηf ,t)

, so the total Green’s function

which is also the solution for Π is:

Π(ξ, η) = − 1

4π

ˆqft
Aft

1√
(ξ − ξft)2 + (η − ηft)2

− 1

4π

ˆqft
Aft

1√
(ξ − ξft)2 + (η + ηft)2

− 1

4π

ˆqfb
Afb

1√
(ξ − ξfb)2 + (η − ηfb)2

− 1

4π

ˆqfb
Afb

1√
(ξ − ξfb)2 + (η + ηfb)2

(C.29)

This is the solution for the first order geostrophic potential φ1 in ξ, η space.
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