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VII. Conclusion
Incorporating the most basic effects of eddy fluxes into the Parsons model proves surprisingly
easy. Only the boundary layer width and interpretation of the velocity field as a thickness-
weighted mean is required. Interestingly, however, even this simple solution allows one to under-
stand some of the important eddy-induced effects in the gyre circulation, e.g., downward transport
of momentum by eddy form drag, scaling of the upper versus lower layer flow, etc.

The problem solved here is not accurate over a large regime–the neglect of inertial effects is a
profound weakness not seen over most of the dominant regimes of numerical simulations–but
nonetheless it is eddifying.

There are two key differences between the Parsons (1969) solution and the one here: 1) the use of
thickness-weighted mean, and 2) the boundary layer width. For a comparison of relevant scales,
the dimensional form of δb is

δb =
f2κ1 sin2 θ

g′h1i
∂f
∂s

. (11)

In terms of the deformation radius (Ld =
√
g′h1i/f ), long Rossby wave speed (cR = βL2

d),
and mixing length approximation (κ1 = LeUe), this boundary layer width is comparable to the
mixing length for eddies with Ue = cR, multiplied by an O(1) geometric factor.

δb =
κ1

cR
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Chelton et al. (2007) show that relevant eddy velocity scales are near to the Rossby wave speed.

IV. Solutions and Outcropping

Left: Streamfunction of the upper layer flow for a single-gyre wind demonstrating out-
cropping/boundary current separation (Parsons, 1969).

Right: A more complex model may be constructed using double-gyre winds and localized
diabatic forcing (Veronis, 1976; Huang and Flierl, 1987; Nurser and Williams, 1990).

V. The Solution
We proceed with (5-6) and introduce a thickness-weighted mean transport streamfunction, Ψ

†
1.

For the remainder of this section, we nondimensionalize following Parsons (1969) to yield:
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2 − λτ + εiu1 + εeff ×A · ∇hif . (8)

Where λ = LW/g′ρ0H
2
1 , εe = κβL/g′H1, and εi = Cd/βLH1 are small numbers, roughly

5 · 10−3, 10−3, and 5 · 10−6 based on typical ocean values (from Holland and Rhines, 1980).
Thus, the interfacial drag is negligible in comparison to the eddy effects. Nonetheless, we may
seek a solution to the full equations, and it is
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for attached boundary layers, and (9)
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for separated boundary layers, where (10)
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Where h1w is the depth of the upper layer at the western boundary, and by semi-geostrophy is
h

2
1w = h

2
1i − 2fΨ

†
1i = h

2
1i − 2fλ∂τ∂y .

II. Setup of the Parsons’ Model
We consider a layered, rigid-lid, shallow-water, Boussinesq flow on a beta-plane:

∂ui
∂t + (f + ζi)× ui = −∇Bi + F i, (1)

∂hi
∂t + ∇ · hiui = wi+ − wi−. (2)

The Bernoulli function Bi and Montgomery potentials,Mi, for a 2-layer, rigid-lid model are:

Bi ≡Mi +
1

2
ui · ui, M1 = g′h1 +M2

Where g′ is the reduced gravity (g′ ≡ g(ρ2 − ρ1)/ρ1). The total depth is fixed h1 + h2 = H . The
lower layer can move ifM2 6= 0, butM2 is not simply related to layer depths (Cushman-Roisin,
1994, pp. 174-179).

Parsons (1969) showed that a steady-state, wind-driven solution can be found by neglecting iner-
tia, motion in the lower layer (u2 = 0,M2 = 0), and mass exchange between layers (w = 0), as
well as replacing the upper layer friction with wind forcing and interfacial drag:

f × h1u1 = −g′∇
h2

1

2
+
τ

ρ0
− Cdu1, , (3)

∇ · h1u1 = 0. (4)

If a time-mean adiabatic solution is sought instead a steady-state solution, different equations
result from (1-2), including eddy correlations:

(f + ζi)× ui = −∇Bi −∇Ki + F i − ζ′i × u
′
i, ∇ · hiui = −∇ · h′iu

′
i,

Bi ≡Mi + 1
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2u
′
i · u

′
i

Eddy correlations are conveniently handled as velocities. The Eulerian mean velocity ui, the
eddy-induced or bolus velocity u∗i , and the thickness-weighted mean velocity u†i (McDougall
and McIntosh, 2001) are defined and related by

u
†
i ≡

hiui

hi
, u∗i ≡

h′iu
′
i

hi
. hiui = hiui + h′iu

′
i, u

†
i = ui + u∗i .

Rewriting with u†1, and following the Parsons’ model assumptions yields:
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′
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∇ · h1u
†
1 = 0. (6)

Note the equivalence between (3-4) and (5-6)! The only difference is an eddy potential vorticity
flux! With a relatively general for for a parameterization of this flux, we can proceed to solution.
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I. Abstract
The time-mean effects of eddies are studied in a model based on the Parsons-Veronis-Huang-
Flierl models of the wind-driven gyre. It is shown that much of the analysis used for the steady
solutions carries over if cast in terms of the thickness-weighted velocity, because the transport
by this velocity is nondivergent in the absence of diabatic forcing. The model serves as a simple
example of how the residual mean theory may simplify analysis in practice.

A result of the analysis is a boundary layer width in the case of a rapid upper layer flow and weak
lower layer flow. This boundary layer width is comparable to an eddy mixing length when the
typical eddy velocity is taken to be the long Rossby wave phase speed.
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