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Abstract15

The global ocean modulates Earth’s warming. Most research has nevertheless ignored16

using ocean processes to improve warming projections in general circulation models (GCMs).17

We show that regional mixed layer depth (MLD) constrains climate sensitivity through18

its relation to ocean heat uptake. We correlate the parameters of two-layer energy bal-19

ance models (EBMs) to pre-forcing MLD in the north, tropical and south ocean for a20

25-member ensemble, and use the results to explain 47% of the variance in the e↵ective21

climate sensitivity (S) of a 9-member validation ensemble. Using a climatology of ob-22

servations from the Argo float network, we then constrain the EBMs which alters the23

range of S for the whole 34-member EBM ensemble from 4.42 (3.09�5.65)�C to 4.5124

(3.81�5.21)�C – a 45% reduction in the span of the 66% (likely) range. This result in-25

dicates new potential mechanisms for ensemble spread, a new use for Argo measurements,26

and path to improving GCMs.27

Plain Language Summary28

Climate or earth system models predict the rate and scale of global warming as the29

result of land, ocean, and atmospheric processes in response to greenhouse gas concen-30

tration change, also called climate sensitivity. Here a set of ocean mixing measures are31

shown to correlate with climate models’ sensitivity, so ocean processes are linked to cli-32

mate change. Prior studies have focused on atmospheric mechanisms such as cloud feed-33

backs. We show that the regional depth of the oceanic mixed layer is strongly correlated34

to warming in an ensemble of 34 climate models including both atmospheric and oceanic35

processes. This relation together with observed mixed layer depths constrains the un-36

certainty range for the earth’s climate sensitivity, reducing the range of sensitivities that37

are consistent with observations by 45%.38

1 Introduction39

Many climate change impacts scale with warming (Flato et al., 2013), so process-40

level understanding of the amount of global warming (e.g., Jones & Friedlingstein, 2020;41

Ehlert & Zickfeld, 2017)) and the speed at which it arrives (e.g., Fyfe et al., 2016; Solomon42

et al., 2010) are central tasks for climate models. Constraining the real-world equilib-43

rium climate sensitivity (ECS) has proven di�cult, with small improvements over decades44

of research. Recent studies of emergent constraints on climate sensitivity have improved45

these predictions using observed climatic quantities. However, emergent constraints re-46

search has focused mostly on atmospheric and cloud processes, despite the central role47

that the global ocean is known to play in modulating the climate’s temperature response48

to forcing by absorbing energy. We propose a new set of constraints, based on the re-49

gional mixed layer depths (MLDs) of the modelled ocean. Rather than link these depths50

directly to climate model outcomes, instead we investigate their relationships to param-51

eters in a two-layer energy balance model (EBM) that emulates the climate system and52

connects MLD to both the ECS and the near-term speed of the temperature response53

to radiative forcing. Thereby, interpretation of what the parameters in that two-layer54

EBM relate to in the real ocean is also improved.55

The ECS of the earth system refers to the steady-state warming resulting from a
doubling of atmospheric CO2. In a simple formulation, the heat uptake N following a
forcing perturbation F is determined by the change in average global surface temper-
ature �T modified by a feedback parameter �:

N = F � ��T, (1)

such that when N = 0, warming ceases and the corresponding �T is the ECS. (Quan-56

tities without subscripts refer to global averages.)57
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ECS is to be distinguished from e↵ective climate sensitivity, S, which is the equi-58

librium sensitivity extrapolated from only those feedbacks active in the 150 years after59

a modelled doubling of CO2, and which is frequently estimated by finding the �T -intercept60

of the linear relationship between N and �T over that time period (Gregory, 2004).61

Two recent developments have influenced this area of research. First, some GCMs62

in the sixth iteration of the Coupled Model Intercomparison Project (CMIP6, see Eyring63

et al. (2016)) have produced ECS estimates higher than the models preceding them (P. M. Forster64

et al., 2020). Much present research focuses on whether, or to what extent, these new65

models’ projections are accurate when compared to older ones, and why (Zelinka et al.,66

2020; Zhu et al., 2020; Meehl et al., 2020; Roberts et al., 2020; Notz & Community, 2020;67

Hermans et al., 2021). The second development concerns emergent constraints on cli-68

mate sensitivity (Eyring et al., 2019). Emergent constraints are empirical relationships69

between present and future climate model variables (call them A and B), motivated by70

a physical mechanism. An emergent constraint allows an update to probability distri-71

butions of future relationships based on how present observations relate to modelled vari-72

ables. If the modelled relationship between Amodel and Bmodel is consistent across mod-73

els and justified by a physical mechanism, then Aobserved should also constrain Bobserved74

(Nijsse & Dijkstra, 2018; Williamson et al., 2018). A recent review synthesizes 17 emer-75

gent constraints to inform estimates of S (Sherwood et al., 2020), and a few recent pa-76

pers have put forward processes that might explain high ECS in nature and models (Proistosescu77

& Huybers, 2017; Bjordal et al., 2020; Zelinka et al., 2020; Gjermundsen et al., 2021).78

The review concludes that both low (< 2.7�C) and very high (> 4.7�C) ECS values can79

likely be ruled out. Other authors prefer other metrics over ECS (Knutti et al., 2017),80

a↵ected by a di↵erent collection of process considerations (Bronselaer & Zanna, 2020).81

In addition to ECS or S, the rate of warming is key. Recent progress on transient82

warming has focused on ocean heat uptake (Yoshimori et al., 2016; Von Schuckmann et83

al., 2020). The deep ocean is frequently assumed to set the warming rate over long timescales84

(Rosenthal et al., 2017) and a↵ects decadal variability (Liu & Xie, 2018). The surface85

mixed layer of the ocean, our focus, modulates seasonal and diurnal atmospheric cycles86

(Frankignoul & Hasselmann, 1977), and its peak wintertime conditions set water prop-87

erties of subduction to the deeper ocean through Stommel’s “Demon” (Williams et al.,88

1995; Stommel, 1979). Here the mixed layer depth in di↵erent regions is explored as an89

observable proxy for a variety of upper ocean processes. The upper ocean stratification90

and mixed layer depth relate both to climate change and its impacts (Sallée et al., 2021)91

and are sensitive indicators of the representation of upper ocean processes in models (Fox-92

Kemper et al., 2011; Belcher et al., 2012; Li et al., 2019). Regional surface mixing also93

ventilates deeper waters to a↵ect the warming rate (Marzocchi et al., 2021), and sim-94

ilar GCMs di↵er in rates of transient warming due to di↵ering surface mixing strength95

(Semmler et al., 2021).96

1.1 Theory97

Hasselmann (1976) proposed a model of the ocean response to weather and climate98

variability in which the ocean’s large heat capacity reservoir integrates over transient at-99

mospheric perturbations. Frankignoul and Hasselmann (1977) propose the ocean mixed100

layer as the reservoir, with stochastic fluxes from weather and a negative feedback restor-101

ing conditions toward climatology. With a uniform mixed layer of depth h, ocean sur-102

face temperature change is given by:103

d�To

dt
=

Fo

csh
� �o�To, (2)

where cs is the heat capacity per unit depth of the mixed layer, and the subscript o refers104

to ocean surface averages (rather than global). If the Hasselmann hypothesis motivat-105

ing equation 2 is correct, and a time-invariant mixed layer depth holds approximately,106
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then intermodel di↵erences in h might explain some of the di↵erences in the transient107

and perhaps even equilibrium warming, thus S and ECS.108

Gregory (2000) proposed a two-layer ocean model of the climate system to explain109

the di↵erence between near and long-term rates of warming in climate models. In this110

model, the heat capacity of the climate system comprises two constant-volume ocean lay-111

ers termed the upper and lower ocean. The upper ocean (or active layer) responds to112

radiative forcing and exchanges heat with the lower ocean at a rate proportional to the113

temperature di↵erence between the two,114

exchange rate = �(�T ��TD)

where � is the (constant) ocean heat uptake e�ciency. Although the two layers in this115

model are global in extent, their depth, temperature, and other properties are homoge-116

neous. Furthermore, �T encodes the global average surface temperature, not just the117

ocean surface temperature, because the ocean is the dominant heat sink for global heat118

imbalances. Winton et al. (2010) proposed an ocean heat uptake e�cacy parameter, ",119

which modifies the e↵ect of heat exchange between the upper and lower ocean versus up-120

per ocean heat anomaly remediation through atmospheric and radiative processes. This121

quantity distills vertical mixing and eddy processes that vary across models with reso-122

lution and parameterization choices (Raper et al., 2002; Gri�es et al., 2015). The ra-123

tio between the e↵ect of radiative feedbacks and ocean heat uptake feedbacks on global124

warming is encoded by " (Winton et al., 2010; Held et al., 2010). With constant ", Geo↵roy125

et al. (2013a) give the resulting system:126

CS

d�T

dt
= F � ��T � "�(�T ��TD), (3)

CD

d�TD

dt
= �(�T ��TD); (4)

whereN = CS

d�T

dt
+ CD

d�TD

dt
(5)

where CS and CD are the surface and deep-ocean heat capacities (which depend on layer127

volume or average layer depth). Note that while equations 3-5 are written with refer-128

ence to global surface air temperature (GSAT), they might instead reference sea surface129

temperature (SST); primary di↵erences between the two approaches result from sea ice130

freezing and insulation and continental climate variability. From an energy balance per-131

spective the ocean is the dominant reservoir on decadal to centennial timescales suggest-132

ing SST or mean ocean temperature may be the more direct measure (Hansen et al., 2011;133

Trenberth & Fasullo, 2012; Trenberth et al., 2016), but we follow convention by using134

GSAT. The depth DS of a uniform global ocean surface layer of heat capacity CS is DS =135

CS/(⇢cpA0), where cp = 4180 J kg�1 K�1 is the heat capacity of seawater, ⇢ = 1030 kg136

m�3 is the density, and A0 = 3.6 · 1014 m2 is the area of Earth’s surface covered by137

oceans. Geo↵roy et al. (2013a) find that fitting this two-layer system, called EBM-", to138

estimate S gives better fits to modelled temperature changes than the linear model in139

Equation 1, and we typically use this approach to find S.140

Recent studies have shown that the 2-layer EBM-" is valuable as an emulator of141

metrics of climate sensitivity (Geo↵roy et al., 2013a; Soldatenko & Colman, 2019; Win-142

ton et al., 2020) and related metrics such as thermosteric sea level rise (Palmer et al.,143

2018). For this reason, there is value in better understanding the variability of the pa-144

rameters of these models and the processes they approximate in more complete earth145

system models. To this end, we follow Geo↵roy et al. (2013b) and Kostov et al. (2014)146

in linking the process variability across a CMIP ensemble to the variations in 2-layer model147

parameters. However, our study uses a larger ensemble, CMIP6 models rather than CMIP5148
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Figure 1. (a) Time ranges for calculated variables: Grey lines show each model’s warming

trend under the 4⇥CO2 experiment; the black line shows the ensemble mean warming. Inset:

shown in white, the latitudinal ranges for each zonal-mean ML quantity. (b) Example results of

the EBM-" model for �T data from a 4⇥CO2 run with CESM2. TOA radiative imbalance N is

plotted against the yearly average �T ; empty circles represent the first 15 years and dots repre-

sent the remaining years. The thin black line shows the fitted relationship between N and �T

from the EBM-". The solid gray line shows the same fit using Gregory (2004)’s one-layer rela-

tion. The dotted and dashed gray lines show the linear contribution F � ��T and the (1 � ✏)H

components of N , respectively. This figure mimics the layout in Geo↵roy et al. (2013b).

models, and emphasizes the observable metric of mixed layer depth rather than the EBM-149

" fitted parameters.150

Note that the two-layer EBM-" model described here does not admit of an imme-151

diate real-world interpretation of the layers or other parameters. Their depth or vari-152

ability cannot be measured directly; only through simulations or extended observations153

and fitting of parameters are they estimable. The e↵ective heat capacities CS and CD154

can be related to approximate depths of each ocean layer, DS and DD, but the corre-155

sponding surface layer of the global ocean may not follow the warming in Equation 3.156

Geo↵roy et al. (2013b) find that DS in an ensemble of CMIP5 models varies near 64 me-157

ters, which is near the mixed layer depth over much of the globe; however, Gregory (2000)158

argues that the active layer in 80 year simulations does not share geographical similar-159

ity to the mixed layer, despite the assumed relationship in earth system models with “slab”160

oceans and the short timescale model of Hasselmann (1976).161

2 Methods162

This study establishes diagnostic tests relating mixed layer depth h(t, longitude, latitude)163

to measures of global climate sensitivity. When observed regional hi (where i stands for164

“initial”, i.e. before forcing is applied) are used to estimate the constrained parameters,165

observed h
i is a 5-95% p-box range (highest high estimate, lowest low estimate) taken166

from the two di↵erent estimation methods in Holte et al. (2017). The first, combining167

the spatial average of profile-by-profile density threshold (with a criterion of 0.03 kg m�3)168

following de Boyer Montégut et al. (2004), and the second, a profile-by-profile density169

algorithm method following Holte and Talley (2009) are combined into a p-box range.170

This climatology of mixed layer depths is based on the January 2000 to December 2019171

Argo observations (Holte et al., 2017). The CMIP6 mlotst variable, representing h, uses172

the “sigma-t” density threshold method with a criterion of 0.03 kg m�3 in most mod-173
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els (Levitus, 1982; Gri�es et al., 2016). Some inaccuracy in mlotst stems from di↵er-174

ent interpretations of this metric: some models measure a density di↵erence from the sur-175

face grid cell and some from the 10 m depth, and one (excluded) model uses a di↵erent176

threshold value.177

The CMIP6 variables used to determine the two-layer model parameters, correla-178

tions, and sensitivity include h, GSAT, ocean potential temperature ✓, and the Eulerian179

mean meridional overturning streamfunction, which was used to calculate the AMOC180

strength and depth to aid interpretation of the results. The first GCM outputs in the181

CMIP6 ensemble were selected based on the 25 models with all of the MLD, GSAT, and182

TOA radiative imbalance variables used in this study available for download by March183

2021. At that time, only 15 models’ full ✓ profiles were available, and only 11 overturn-184

ing streamfunctions; however, neither variable is central to our analysis. The correlations185

shown in the figures and tables in the main text text are based on these 25 models only.186

By February 2022 an additional 9 models had become available and were used as an out-187

of-sample validation of the relationships found with the first 25 models. All datasets were188

restricted to the first 150 years of data, which was the maximum available from all sets.189

The pre-forcing mixed layer depths were taken from averages over preindustrial control190

runs, and in cases where that data was not available, they were averaged from the first191

two years of a linear 1% per year forcing run because the adjustment in h over that times-192

pan is negligible. When taking zonal mean and latitudinal band averages, variables were193

grouped in 2 degree bands and, where necessary, regridded using a bilinear algorithm194

onto a common grid prior to averaging. Datasets of all global and zonal mean variables195

used in this study were assembled and can be viewed in the supplemental materials.196

2.1 TCR and e↵ective ECS estimation197

Transient climate response (TCR) was assessed as the average change in temper-198

ature (�T ) from the initial value at the time of CO2 doubling in the 1%/year scenar-199

ios, averaged over years 65-75. E↵ective climate sensitivity S was calculated using equa-200

tions 1, 3, and 4 applied to model runs with an abrupt quadrupling of CO2 (henceforth201

4 ⇥ CO2). To estimate the solution to equations 3 and 4, the multilinear approxima-202

tion described in (Geo↵roy et al., 2013b) was reproduced and applied to the 4⇥CO2203

data (Fig. 1b). S therefore represents the e↵ective equilibrium climate sensitivity esti-204

mated from the two-layer EBM-". In addition to providing S, this method estimates the205

model parameters CS , CD, �, �, F and ✏. The detailed estimation procedure and all fit-206

ted parameters are provided in the supplemental material.207

2.2 AMOC depth and strength calculation208

AMOC depth was calculated using the Sun et al. (2020) method: the average depth209

at which the Atlantic meridional overturning streamfunction equals zero between 0 and210

30 degrees latitude. However, some models had highly variable depth of the zero stream-211

line contour in the meridional direction after warming, so the 0.1 Sv line was used as the212

point of reference instead. The 0 Sv and 0.1 Sv lines were similar in all cases before warm-213

ing. Following Liu et al. (2020), AMOC strength was calculated as the maximum an-214

nual mean meridional overturning streamfunction below 500m in the North Atlantic Cell.215

2.3 Modeling the two-layer model dependence on regional hi
216

Our goal is to constrain our estimate of the real-world climate sensitivity S, as ap-217

proximated by a two-layer model with parameters adjusted to fit constraints from the218

real-world zonal-mean northern, tropical, and southern MLD, hobs = (hobs

no
, h

obs

to
, h

obs

so
).219

The precise latitude ranges for each regional h were chosen to maximize the predictive220

power of the linear constraint: these were, respectively, hno 2 [55�N, 75�N ], hto 2 [25�S, 25�N ],221

and hso 2 [65�S, 45�S]. Furthermore, hno is averaged over the northern winter (DJF),222
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hso is averaged over the austral summer (DJF), and hto is the annual mean. Because of223

the complex nature of the constraint and the presence of significant cross-correlations224

between the dependent variables correlated with mixed layer depths, we examine four225

methods to estimate the constrained parameter distributions and find they provide sim-226

ilar constrained projections. Each of these methods and their parameter distributions227

are described in the Supplemental Information. The first method, integration over a nor-228

mal uncertainty range (Cox et al., 2018), is the most conceptually straightforward and229

common in prior literature, so unless otherwise stated we report constraints derived us-230

ing this method.231

3 Results232

Fitting the EBM-" model results in increased estimates of e↵ective climate sensi-233

tivity, S, compared to the (Gregory, 2004) method, with an average increase of 0.39�C.234

This increase is almost entirely due to increases in the estimated initial forcing F , rather235

than changes to �. In fact, � tended to increase slightly (by 0.02 W/m2K on average)236

in the EBM-" model, so that this e↵ect alone decreased the S estimates. F increased by237

0.35 W/m2 on average. The ranges of EBM-" parameters obtained here deviate slightly238

from those found in Geo↵roy et al. (2013b) (see Table S.1 in the supplemental material).239

In what follows, S refers to the ECS estimate from the two-layer models rather than the240

Gregory method. The range of ensemble active layer depths DS (47-79m) overlaps heav-241

ily with the range of global average initial mixed layer depth (hi

ga
, 38-77m), calculated242

from the pre-forcing control runs. However variation in h
i

ga
only explains approximately243

20% of the variation in CS . Thus, as Gregory (2000) notes, the active surface layer in244

EBM models is not identical to the oceanic mixed layer, as Equation 2 and Frankignoul245

and Hasselmann (1977) hypothesize on shorter timescales, but nonetheless mixed layer246

dynamics remain involved in modulating the active-layer response to forcing.247

Figure 2 shows the correlated scatter between variation in pre-forcing regional MLD248

and EBM-" variables in the right column panels, with shaded regions indicating the 5-249

95% range of present-day observed MLD measures. The left-hand panels show correla-250

tions between the same MLD variables and the zonal-mean change in ocean potential251

temperature by the last ten years of the 4⇥CO2 experiments. Panel 2a shows that a252

deeper northern initial MLD (hi

no
, 55�N to 75�N latitude) correlates with greater North253

Atlantic Deep Water warming under forcing. Panel 2b shows that upper pycnocline warm-254

ing is related to a deeper tropical initial MLD (hi

to
). Panel 2c shows that a deeper south-255

ern initial MLD (hi

so
) strongly predicts warming in the top 1200m of the ocean struc-256

ture, the Antarctic Intermediate Water, and cooling of the North Atlantic Deep Water.257

Only two models have h
i

to
within the observed range.258

Variation in h
i

ga
explains a small-but-significant variation in e�cacy, ". E�cacy259

quantifies the ratio between equilibrium radiative climate feedbacks and deep ocean cli-260

mate change, and therefore distinguishes between the feedbacks a↵ecting transient ver-261

sus equilibrium warming. Here the correlation arises primarily from variation in trop-262

ical hi. We therefore define the tropical ocean mixed layer depth (hi

to
) as the average mixed263

layer depth between 26�S and 26�N latitude, and find that hi

to
explains 35% of the vari-264

ation in " and is correlated primarily with tropical upper ocean heating (Figure 2c, d).265

Note, however, that hi

to
is also positively correlated with a factor in each term in equa-266

tion 3, i.e., CS , S and �T through S, and insignificantly in �. The Hasselmann (1976)267

model for a deeper active layer would predict larger " to reflect an overall magnitude in-268

crease of the active layer budget equation 3 rather than a change in air-sea coupling rel-269

ative to layer depth. Note that larger " alone would indicate stronger atmospheric feed-270

backs that tend to reduce S (Winton et al., 2010; Rose et al., 2014).271

Variation in the relative depth of the northern wintertime mixed layer (hi

no
) ex-272

plains 45% of the intermodel variation in �. This correlation points to the importance273
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Figure 2. (left) Correlations between zonal-mean pre-forcing MLD h
i
and �✓ averaged over

years 140-150. The ranges of these zonal averages are indicated by the white bars at the top of

figures (a)-(c). h
i
no is averaged over the northern winter (DJF), h

i
so is averaged over the austral

summertime (DJF), and h
i
to is the yearly average. Intermodel variation in the di↵erent regions of

h
i
correlates with variation in di↵erent segments of the ocean warming structure. Colors empha-

size significant correlations: p < 0.05 when |r| > 0.513 and p < 0.01 when |r| > 0.641. (Right)

The right-hand panels demonstrate significant (p < 0.01) positive correlations between h
i
no and

the ocean heat uptake e�ciency �, h
i
to and the ocean heat uptake e�cacy ", and h

i
so and the

e↵ective climate sensitivity S. The AWI model is excluded as an outlier, as they used a di↵erent

density criterion that is more targeted at Arctic mixed layers (0.125 instead of 0.03 kg m
�3

, Q.

Wang pers. comm.). Shaded regions around the regressions show 90% confidence intervals, and

vertical shaded regions indicate 5 � 95% estimates for the present day values of hno, hto, and hso.

White circles indicate models added after regression as an out-of-sample validation.
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of winter ocean mixing in determining deep ocean heat uptake, as hypothesized by Stommel274

(1979) and many others since. Furthermore, models with a deeper wintertime mixed layer275

have a larger-volume deep layer CD and a larger equilibrium feedback parameter �. The276

impact of hi

no
on deep water mixing can be seen in Figure 2b, which shows that mod-277

els with greater hi

no
experience significantly larger �, and Figure 2a shows that the warm-278

ing is primarily in the Deep Water (particularly in North Atlantic Deep Water, but shown279

in zonal mean between 1000 m and 3000 m and 50�S to 50�N). Six models have h
i

no
within280

the observed range.281

Variation in the relative depth of the southern wintertime mixed layer (hi

so
, 45�S282

to 65�S latitude) explains 31% of the intermodel variation in S. Figure 2e shows that283

warming correlated with (hi

so
) opposes the Deep Water changes induced by (hi

no
), and284

warming of surface and intermediate waters is positively correlated. Four models have285

h
i

so
within the observed range.286

The right column of Figure 2 also includes the 9 out-of-sample models shown as287

white circles. These models fall within the expected rang of the correlations with h
i

no
,288

h
i

to
, and h

i

so
. If these 9 out-of-sample models are included in the regression, then the EBM-289

" parameters (Table 1) vary only slightly (Supplemental Information Table S.3).290

The ocean heat uptake e�cacy " predicts the ratio between transient and equilib-291

rium warming (Winton et al., 2010). Knowledge of ", which is correlated to inter-model292

variation in h
i

to
, should therefore improve predictions of the remaining warming along-293

side knowledge of hno and hso, which predict equilibrium warming. We define the heat294

uptake temperature TH as the di↵erence between the equilibrium warming and the re-295

alized warming at a given time t and forcing F (t):296

TH(t) ⌘ �Teq(F (t))��T (t). (6)

In 1%/year forcing experiments �Teq varies with the forcing F = ↵t where ↵ is the rate297

of increase, while in 4⇥CO2 experiments F does not change so �Teq = 2⇥ECS at all298

times.299

Figure 3c-d shows the correlations between TH and �T , and between TH and {hi

no
, h

i

to
, h

i

so
}.300

In both the 4⇥CO2 and 1%/year experiments, the three regional initial mixed layer depths301

predict TH significantly better than �T predicts TH (note that r is adjusted for the greater302

number of independent variables using MLD). In the 1%/year ensemble, knowledge of303

just the pre-forcing MLDs explains over 60% of the inter-model spread in TH .304

Because the three regional mixed layer depths constrain each of the EBM-" param-305

eters (Table 1), we can estimate a constrained range of EBM-" temperature predictions.306

Panel (a) of Figure 3 shows the CMIP6 ensemble spread �T for both experiments in light307

shading (with values after the year 2000 extrapolated using the EBM-" prediction with-308

out MLD constraints), and the range of MLD-constrained EBM-" predictions in darker309

shading. Panel (b) shows the EBM-" estimation of TH at all times.310

4 Discussion311

Our results show that the pre-forcing, initial mixed layer depth provides informa-312

tion about future warming of the upper ocean and climate system. Indeed, Figures 3c,313

d show that initial mixed layer depth is a much more e↵ective predictor of remaining warm-314

ing than the observed warming before equilibrium is reached is. Improving the climate315

sensitivity of models (Chapman et al., 2020; Small et al., 2020) deserves significant ef-316

fort. The results here show that initial, or in these idealized forcing experiments the equiv-317

alent of present-day (year 0-10), mixed layer depth biases a↵ect the active layer depth318

over the following century. However, the simple interpretation of Hasselmann (1976) that319

the mixed layer is essentially the active layer–i.e., governing the heat capacity of the ocean320
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66% CI

(a)

(b)

(c) (d)

Figure 3. Regional mixed layer depth predicts equilibrium warming. (a) the ensemble mean

surface warming �T for both experiments. Lighter shaded areas indicate the model spread, ex-

trapolated past year 2000 using the EBM-" prediction. Dark shaded regions show the 5-95%

range of the surface warming under each scenario using EBM-" predictions with parameters con-

strained by h
i
n,t,s. Note the time scale discontinuity at year 2000. (b) The ensemble di↵erence

between equilibrium warming and realized warming for forcing F (t), as predicted by the EBM-"

fits. (c-d) Scatter plots showing the correlation between decadal-mean realized and remaining

warming which is a standard metric to predict remaining warming (heat uptake temperature),

and between the proposed emergent constraints of initial regional mixed layer depths (h
i
n,t,s) and

remaining warming, for c) 1pctCO2 and d) abrupt-4xCO2 simulations.
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surface energy reservoir–is demonstrated insu�cient to capture the di↵erent roles that321

mixed layers play in di↵erent regions. In the tropical oceans on decadal to centennial timescales322

the Hasselmann theory seems to apply, but the role of mixed layers and surface temper-323

ature response in polar heat uptake is quite di↵erent from tropical as revealed when pat-324

terns of deep ocean heat uptake are varied (Rose et al., 2014). The di↵erent roles of the325

mixed layer in di↵erent regions, as well as the di↵erent connectivity by region of the sur-326

face ocean to the deep ocean, is a key aspect of the ocean warming pattern e↵ect on re-327

gional and global climate (Xie, 2020).328

The northern ocean mixed layer is correlated with the deep layer heat capacity (CD),329

the surface to deep exchange coe�cient (�), and the equilibrium feedback parameter (�).330

The equilibrium feedback parameter (�) is also highly correlated with AMOC depth at331

the end of the simulation (Table 1). Thus, the mixed layer and AMOC both contribute332

to watermass transformation and the ventilation of North Atlantic Deep Water, and thereby333

climate sensitivity consistent with past studies (Marshall & Zanna, 2014; Petit et al., 2020;334

Pickart & Spall, 2007; Jackson & Wood, 2020; Kostov et al., 2014; Heuzé, 2017, 2021;335

Sun et al., 2020). Unlike Kostov et al. (2014) find in an 8 member CMIP5 ensemble, we336

do not find statistically significant correlations between AMOC strength and �. This may337

be related to the cancellation in NADW change between northern overturning and south-338

ern overturning, both of which contribute to �. Here the direct correlations between ini-339

tial northern ocean mixed layer depth and final AMOC strength or depth across mod-340

els are not strong, indicating that other e↵ects participate as well.341

The Southern Ocean mixed layer a↵ects both the Antarctic Intermediate Water,342

through mixing and ventilation of the southern meridional overturning, and North At-343

lantic Deep Water. Many studies emphasize the role of the Southern Ocean mixed layer344

in heat uptake in near decades (e.g., Morrison et al., 2016), and a recent study directly345

relates convective mixing shutdown to the potential for long-term warming in CMIP6346

models (Gjermundsen et al., 2021). They argue that models with high climate sensitiv-347

ity result from Southern Ocean positive low cloud feedbacks, which in turn result from348

warmer SSTs and weaker atmospheric boundary layer inversions (see also Gettelman &349

Sherwood, 2016). Studies comparing ocean mixed layer depths reveal that SST biases350

on seasonal and longer timescales are not connected to mixed layer depth biases, but by351

di↵erent responses to winds, waves, and convection (Belcher et al., 2012; Li et al., 2019).352

Weaker atmospheric inversions tend to make momentum and moisture transfer easier353

from the free atmosphere to the atmospheric boundary layer, raising winds and lower-354

ing humidity at the sea surface, thus deepening the ocean mixed layer through both wind-355

driven and evaporative (latent cooling) forcing. As a correlation between S and hso does356

not imply causation but potentially a confounding agent that causes both to occur, note357

that too weak atmospheric boundary layer inversions in the Southern Ocean would cause358

both excessive positive cloud feedbacks and too deep hso. Parameterization biases in both359

fluids will complicate this e↵ect further. Deep Southern Ocean mixed layers have the op-360

posite e↵ect on NADW as deep northern ocean mixed layers (Gnanadesikan, 1999; Mar-361

shall & Zanna, 2014; Heuzé, 2021), which is one reason why examining the global mean362

mixed layer depth does not reveal the processes controlling NADW temperature: hso deep-363

ening correlates with NADW cooling, while hno deepening correlates with NADW warm-364

ing (Figure 2a and 2c). Southern Ocean warming biases have been noted as a critical365

failing in models for some time (Belcher et al., 2012; Sallée et al., 2013; Durack et al.,366

2014), but the relationship of these biases to mixed layer processes (Belcher et al., 2012;367

Li et al., 2019), changing stratification (Sallee et al., 2020; Sallée et al., 2021), and un-368

resolved fronts and eddies (Bachman & Klocker, 2020) is not fully understood.369

5 Conclusions: Constrained Projections and Outlook370

The opposing correlations of southern and northern ocean mixing (Fig. 2a, e) and371

the distinct tropical e↵ects require us to constrain S using variation in h
i

no
and h

i

so
rather372

–12–
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than h
i

ga
. Geo↵roy et al. (2013b, 2013a) provide solutions for the e↵ective ECS and �TS(t)373

given the two-layer model parameters, and Table 1 provides the proportionality of those374

parameters on mixed layer depth in each region. We can therefore constrain the EBM-375

" parameters based on Argo-observed mixed layer depths and use the constrained EBM-376

" emulator to estimate future warming by the CMIP6 models were they to have had mixed377

layer depths equal to the observed depths in the real ocean. In particular, since S has378

opposite-sign dependencies on h
i

no
and h

i

so
, which are in practice independent within the379

ensemble, using both MLDs at once provides a relatively strong constraint on S.380

Using a variety of multiple linear regression techniques described in the supplemen-381

tal material with the original 25-member ensemble, the 66% confidence range of e↵ec-382

tive climate sensitivity S changes from (3.13–5.71)�C to (3.88–5.43)�C under adjustment383

to the observed northern and southern mixed layer depths. This change is a 40% reduc-384

tion in the uncertainty range. Under regional h constraints the mean S value warms from385

4.51�C to 4.66�C. Testing the relationship between (hno, hso) and S derived from the orig-386

inal 25-member ensemble on the 9 out-of-sample models explained 47% of the variation387

in S (Figure S.2). Finally, using constraints on all 34 models to find S, we arrive at a388

reduction in the 66% uncertainty range for S from 4.42 (3.09�5.65)�C to 4.51 (3.81�389

5.21)�C.390

Note that the pre-constraint range is from the selected CMIP6 model ensemble not391

an assessed range (P. Forster et al., 2021). The mean values of S and most of the other392

EBM-" parameters change insignificantly, because observed MLDs are near the middle393

of the ensemble ranges, but the MLD emergent constraints shrink the uncertainty ranges394

on each variable considerably (Supplemental Figure 1). These adjustments are as large395

as several of the emergent constraint adjustments suggested in (Sherwood et al., 2020).396

The large scatter in Figure 3a ensemble timeseries, and the much narrower ensemble range397

for the constrained timeseries, illustrate how much of the uncertainty in warming is ex-398

plained by initial mixed layer depth biases across the ensemble. Thus, the MLD constraints399

revealed here are not trivial adjustments but constitute a large potential for using mix-400

ing of the upper ocean to constrain climate sensitivity.401

However, a study based on diagnosis of simulations of this kind cannot distinguish402

causality directly, nor follow all of the consequences of altering the GCMs so as to ar-403

rive at more realistic MLDs. It is not clear what the direct mechanism of these corre-404

lations between mixed layer depth and two-layer model parameters is. For example, the405

mixed layers a↵ect temperature through entrainment of colder water to the surface and406

through ventilation of deeper water, but they also a↵ect clouds and cloud feedbacks, tend407

to be deeper when winds are stronger but stronger winds have many other e↵ects, change408

the intensity of seasonal and diurnal cycles, and other important consequences, corre-409

lates, and confounding variables abound. Thus, it is unclear if the mixed layer depth bi-410

ases are the cause or merely a symptom of the model biases leading to spread in their411

sensitivity. So long as the mixed layer correlations with sensitivity remain valid, using412

regional hi as an emergent contraint is valid even if the causal links are not fully clear.413

Recall that these changes are predicted by the initial mixed layer depths, hi

so
, h

i

to
, h

i

no
,414

not the evolving mixed layer depths, which does suggest causality based on biases in mixed415

layer depth preceding other consequences in time. However, the mixed layer biases in416

each model tend to persist throughout each run so this sequencing is not dispositive. Thus,417

important next steps are to show that altering processes or parameterizations that change418

the regional mixed layer depths also change climate sensitivity of the magnitude noted419

here, and furthermore to note the processes and mechanisms triggered by and leading420

to these mixed layer depth changes.421
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5.1 Open Research422

CMIP6 data was provided and accessed by Pangeo and ESGF (Abernathey et al.,423

2021; Eyring et al., 2016). All processed datasets (including zonal and global-mean vari-424

ables) and the Jupyter notebook necessary to computationally reproduce these results425

are available at https://doi.org/10.7910/DVN/NYFZJJ.426
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Text S1. Methods

1. Normal uncertainty integration

Cox, Huntingford, and Williamson (2018) demonstrate a method for constraining S

based on a linear regression of S against modelled temperature variability. Taking instead

(for example) the North Ocean MLD hno, once the regression parameters are estimated,
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X - 2 :

the conditional probability distribution of S on hn is given by

P (S|hno) = N (f(hno), �f (hno)), (1)

where �f is the prediction error of the regression (see Cox et al. (2018) for a full descrip-

tion). We estimate conditional distributions for each parameter on each regional MLD

with a significant (p < 0.05) explanatory relationship, and take the integrated product of

the conditional probabilities as the constrained distribution. For example, S depends on

hno and hso, giving:

P (S) =

Z 1

�1

Z 1

�1
P (S|hno)P (S|hso)dhnodhso. (2)

2. Linear regression with fixed errors

We first estimate a multiple linear regression between h and the parameters of the

two-layer model P = (CS, CD,�, S, �, ") within the GCM ensemble, linearizing about the

ensemble mean:

(Pgcm �P
gcm

) = M · (hgcm � h
gcm

) + ✏gcm (3)

where the GCM subscripts indicate that the values are calculated from the ensemble, and

✏gcm is the residual term. To keep only meaningful relationships we set Mij = 0 for all

parameters with p > 0.05 and recalculate the coe�cients. We then enter in the observed

values hobs to estimate the parameters of the “real” two-layer model:

Ppred = M · (hobs � h
gcm

) +P
gcm

+ ✏gcm. (4)
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Solving for the residual term in equation 3 we have

✏gcm = (Pgcm �P
gcm

) +M · (hgcm � hgcm).

Assuming that the residual remains the same for the constrained model parameters, this

leaves

Ppred = M · (hobs � hgcm) +Pgcm, (5)

which gives a discrete 24-member dataset of adjusted the EBM-" parameters using the

observed mixed layer depths (“constant residuals” in figure S1).

3. Bootstrapped linear regression

We additionally bootstrap uncertainty intervals using 10,000 random draws with re-

placement of the 24 models (excluding AWI-CM-1-1-MR for the Southern Ocean con-

straints, as described in the text). For each draw we conduct the same emergent constraint

calculation described above using random noise, and take the distribution of predicted val-

ues as our uncertainty range.

4. Monte Carlo constraint

Ordinary least squares linear regressions risk misrepresenting the constrained parameter

ranges by ignoring cross-correlations between the dependent values (for instance between

� and CD). It may be more accurate to treat MLD as constraining the joint probabil-

ity distribution of all the parameters rather than the independent probabilities of each

parameter; instead of finding
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P (S|h), P (�|h), P ("|h)...

the joint probability is preferred,

P (S,�, CS, CD, ", �|h).

We estimate a continuous joint distribution of (S,�, CS, CD, ", �, hn, hs, ht) matching

the cross-correlations in our ensemble, and take random samples from it weighted by the

probabilities of observing each sampled h. We generate the distribution using independent

Gaussian kernel density estimations (KDEs) of each parameter and the three MLD regions

from the GCMs, then take a large number of random draws from each and correlate the

random draws using the Cholesky matrix of the GCM distribution. This transformation

gives each continuous random variable the variance and cross-correlations found in the

original dataset, including all of the correlations to h. We then weight each draw by

the combined probability of observing each of the regional MLD values in the draw:

P (hn,t,s) = P (hn)P (ht)P (hs). (The pdfs of each regional MLD’s observed values are

assumed to be normal and independent.) Then we take a much smaller probability-

weighted sample, so that we are approximately again taking a weighted sample from

a continous distribution. We repeat this process in batches of 50,000 draws, taking a

weighted sub-sample of 500 each time, until we have constructed a dataset of 50,000

subsamples which represents the MLD-constrained joint parameter distribution.

This method relies on the fewest assumptions about the shape of the constrained dis-

tribution and consequently reports larger spreads in some constrained ranges and the
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largest changes under constraint in the mean value (Figure S1), although all methods

show smaller uncertainty ranges than the unconstrained GCM ensemble. We therefore

use this method to report headline numbers.

5. Constrained time-series predictions

The h regression gives us a constraint on S directly. Further, the GSAT change under

abrupt-4xCO2 and 1pctCO2 forcings can be determined analytically in the two-layer model

as a function of S, � and the other parameters without ever dividing S by � to obtain F :

�T4⇥CO2(t) = S ⇥
⇢
1� as exp(

�t

⌧f
)� ad exp(

�t

⌧s
)

�
(6)

�Tlinear(t) = S ⇥
⇢
t0(t)

� ⌧fas[1� exp (
�t

⌧f
)] exp (

�t+ t0(t)

⌧f
)

� ⌧sad[1� exp (
�t

⌧s
)] exp (

�t+ t0(t)

⌧s
)

�
(7)

where the ⌧ and a variables are calculated from (Cs, Cd,�, �) using the formulas in Geo↵roy

et al. (2013a). In the linear forcing case, where forcing stops at year 150,

t0(t) =

(
t, t < 150yr

150yr, t > 150yr

.
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Figure S1. (a) the simulated h ranges from 25 GCMs (grey circles) and the observed 5-95%

confidence ranges (black lines). (b) The ensemble values of the 1-layer EBM � and S and each of

the EBM-" parameters (grey circles), and the constrained values using observed h values (black

and orange circles and lines). Values in (a) and (b) are normalized about the ensemble means for

easier comparison. (c) Predicted �TS(t) for 1%/year (orange) and 4⇥CO2 (blue) experiments,

estimated using the constrained EBM-" parameters. The lighter and darker shaded regions show

90% and 66% confidence intervals respectively. Grey lines show individual GCM temperatures

and black lines the ensemble means.
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Figure S2. Comparison between the 2-layber EBM estimates of S for our out-of-sample

ensemble, and the S values predicted for those models using only their pre-forcing mixed layer

depths and the emergent constraints.
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Table S1. EBM-" parameters calculated from the 25 member CMIP6 ensemble. The rightmost

two columns mean and standard deviation are taken from Geo↵roy et al. (2013), which uses an

ensemble of 16 CMIP5 models. Our results give lower � estimates, in line with the higher reported

values of S in the CMIP6 ensemble. The set of GCMs in each ensemble are not the same. The

institutions providing CMIP6 data di↵er from those providing CMIP5 data, so these columns

are not just an update of the same model ensemble for direct comparison.

Variable CMIP6 Mean CMIP6 Std. dev. CMIP5 Mean CMIP5 Std. dev.

DS (m) 63 7 86 9
DD (m) 976 269 1141 544
" 1.3 0.23 1.3 0.25
� (W m�2 K�1) 0.89 0.30 1.18 0.37
� (W m�2 K�1) 0.64 0.14 0.67 0.15
F4⇥CO2 (W m�2) 7.5 0.82 7.6 1.0
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Table S2. All CMIP6 models used in the study. Ensemble 1 members were used to calculate

the emergent constraint, and ensemble 2 members were downloaded later as an out-of-sample

test.
Model Ensemble
ACCESS-CM2 1
ACCESS-ESM1-5 1
AWI-CM-1-1-MR 1
BCC-CSM2-MR 1
BCC-ESM1 1
CESM2 1
CESM2-FV2 1
CESM2-WACCM 1
CESM2-WACCM-FV2 1
CMCC-CM2-SR5 1
CNRM-CM6-1 1
CNRM-ESM2-1 1
CanESM5 1
E3SM-1-0 1
EC-Earth3-Veg 1
GISS-E2-1-G 1
HadGEM3-GC31-LL 1
IPSL-CM6A-LR 1
KIOST-ESM 1
MPI-ESM-1-2-HAM 1
MPI-ESM1-2-HR 1
MPI-ESM1-2-LR 1
MRI-ESM2-0 1
NESM3 1
UKESM1-0-LL 1
CAMS-CSM1-0 2
CAS-ESM2-0 2
CMCC-ESM2 2
EC-Earth3-AerChem 2
FGOALS-f3-L 2
FGOALS-g3 2
HadGEM3-GC31-MM 2
ICON-ESM-LR 2
IPSL-CM5A2-INCA 2
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Table S3. Linear correlations between all variables in the extended 34-model ensemble.

CD " � � F S hg hn ht hs

CS -0.19 0.46 0.43 -0.31 0.53 -0.22 0.27 -0.24 0.44* -0.24
CD -0.04 0.13 0.51 0.13 -0.13 -0.06 0.23 -0.07 -0.26
" -0.05 -0.04 0.49 0.31 0.20 -0.17 0.43* 0.05
� 0.20 0.54 -0.87 0.15 0.26 0.25 -0.51
� -0.10 -0.24 0.45 0.63 0.29 0.14
F -0.14 -0.07 -0.13 0.11 -0.08
S -0.14 -0.36* -0.17 0.59
hg 0.56 0.76 0.23
hn 0.15 0.13
ht -0.14
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