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Abstract

The oceanic mixed layer plays an important role in the global climate
system as a gateway between the atmosphere and the deep ocean. Yet
modelling the mixed layer is difficult, and climate models in the Coupled
Model Intercomparison Project ensemble have historically not captured
the mixed layer’s depth either accurately or precisely, and a wide inter-
model variation in mixed layer depths exists (Huang et al., 2014). In
light of these wide variations, and in view of the large range of climate
sensitivities found in the CMIP6 ensemble, I ask: could variations in
mixed layer depth explain some of the variation in climate sensitivity?
I test one hypothesis, that the mixed layer relates directly and linearly
to the global transient climate response, and find it unsupported. Using
a two-box model to estimate climate sensitivity and ocean heat uptake
efficacy, I then find that for the subset of CMIP6 models studied here,
a strong negative correlation between mixed layer depth and short-term
climate response exists, as well as a weaker positive correlation between
mixed layer depth and equilibrium climate sensitivity, and ocean heat up-
take efficacy. A potential explanation for this result is proposed, though
further research will be needed to assess it.
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Chapter 1

Introduction

The study of the global climate system has become one of the more critical sci-

entific endeavors of the twenty-first century. As greenhouse gases emitted pri-

marily from human activities increase their concentration in the atmosphere,

the resulting radiative imbalance causes the atmospheric temperature to rise.

This much can be predicted from a simple model: to leading order, the climate

approximates a simple energy-balance system, in which short-wave radiation

is absorbed from the Sun and emitted as long-wave radiation, through the

Stephan-Boltzmann law. The resulting climate change is traditionally mea-

sured by the change in global mean surface temperature (hereafter ∆Ts).

Both the important consequences of this temperature change and the

mechanisms that determine its exact magnitude are complicated and involve

large uncertainties. Understanding and predicting those interactions becomes

increasingly important as the magnitude of climate change grows. This task

also requires a tremendous amount of information, because the radiative im-

balance that causes climate change is coupled to other changes throughout

the climate system — and human society — in complex interactions.

A central task of climate scientists therefore involves aggregating large
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global datasets of climatic observations and attempting to relate them to past

or predicted changes to the radiative imbalance. Physical theory can help

to point scientists towards likely interactions and impose fundamental con-

straints on climate models. For example, conservation of energy along with

basic radiative transfer theory can suffice to give a relatively accurate (em-

pirically parameterized) one-dimensional model of the global temperature’s

response to radiative imbalance. Even with these constraints, however, cli-

mate scientists are generally left attempting to interpret the chaotic motions

of highly non-linear systems with an enormous number of couplings between

variables. It therefore becomes crucial to see which of those interactions can

be approximated by a simpler relationship than the fully coupled one, both for

the sake of computational efficiency and to build a comprehensible physical

picture of the climate system.

One such interaction involves the depth of the mixed layer of the ocean.

The ocean can be modelled very roughly as being stratified into the upper

mixed layer and the oceanic depths. The mixed layer is a region of seasonally

and geographically variable depth beginning at the sea surface and character-

ized by vertically quasi-uniform density and temperature due to surface-forced

mixing turbulence by convection, winds, and waves (Thorpe, 2007). The ocean

temperature drops off exponentially below the mixed layer. Both sections of

the ocean are important for modulating the global atmospheric surface tem-

perature on different timescales. Roughly, the mixed layer’s heat absorption

affects temperature changes on decadal–to–century timescales, and the heat

absorption of the oceanic depths sets the temperature changes due to radiative

imbalance over millennial timescales.

The sea surface mixed layer is small relative to the rest of the ocean: a

typical mixed layer depth is 150 m, while the average ocean sea floor depth
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globally is about 3700 m. Despite its size the mixed layer plays at least two

important roles in regulating the global climate system. First, it acts as a

”gateway” between the atmosphere and the deep ocean. Exchanges of heat,

momentum and energy between the two atmosphere and the oceanic abyss

ultimately set the timescale of global warming; variations in their magnitude

and distribution between climate models can help explain differences in climate

sensitivities. Second, the mixed layer directly interacts with the atmosphere

on short timescales (years to decades), meaning that it directly regulates at-

mospheric temperatures as well, rather than only through connection to the

deep ocean.

In this thesis, I investigate whether a linear approximation of the theory

relating mixed layer temperature sensitivity to forcing and mixed layer depth

can be extended to predict differences in the global surface temperature sen-

sitivities of climate models. The full theory relating mixed layer depth to

climate sensitivity involves difficult nonlinear terms and is not of much use

for climate scientists wishing to simplify their predictive and computational

work. However, simpler versions of that theory are straightforward and linear.

In its simplest form, the depth of the mixed layer relates to the temperature

sensitivity defined with respect to the local mixed layer temperature through

the following equation:

dTos
dt

=
Fo
csh
− λoTos, (1.0.1)

where Tos is the mixed layer temperature perturbation, λo is the mixed layer

temperature sensitivity to forcing, Fo is the forcing due to heat flux at the

air-sea interface, cs is the heat capacity per unit depth of the mixed layer, and

h is the depth of the mixed layer (Frankignoul and Hasselmann, 1977). The

forcing here is defined as a perturbation above the forcing f1 at which heat flow

is balanced. Because the mixed layer is a much larger heat reservoir than the
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atmosphere, a relation governing its temperature may hold reasonably well for

the atmospheric temperature — at least, an assumption of this sort motivates

the investigation. The sea surface temperature (SST) is often the same as the

mixed layer temperature to within some small deviation, by definition of the

mixed layer, and there is a direct observed proportionality between SST and

the global surface air temperature on decadal timescales. Therefore, if this

relation holds on decadal timescales for the mixed layer temperature, then it

may also be able to relate the sensitivity of the entire climate system to the

mixed layer depth.

We should note from the start that using (1.0.1) in this way entails mak-

ing a number of conceptual leaps. Although the equation closely resembles

the energy budget equations used in section 2.1 to develop a basic conceptual

model of global warming, there are some notable differences. First, the heat

flux Fo above is not the same as the global average radiation flux at the top

of the atmosphere (TOA), which is used as the measure of total forcing on

the climate system; instead it applies locally at the sea surface. Additionally,

equation 1.0.1 is derived assuming constant mixed-layer depth, when in fact

the mixed layer depth varies considerably over space and time. The relation

above therefore technically holds not as a global relation but only locally, and

at specific times. Throughout much of this thesis I nevertheless use globally-

averaged statistics which eliminate the geographic variation in all parameters.

Held et al. (2010) show that there is time variation in the globally averaged

feedback parameter λs which Armour et al. (2013) demonstrate can be ex-

plained well by geographically localized climate sensitivities (λ(r)) which are

constant in time along with a changing pattern of surface warming. In other

words, neither time nor spatial homogeneity in these variables hold in truth,

but I will for the most part assume that they do.
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We want to see whether this series of conceptual leaps can relate the global

average mixed layer to the global average temperature change. Why would

this be an important finding? First, any explanation of variation in climate

sensitivities between models is helpful, as it allows modellers to focus on those

variables which it is most important to parametrize accurately (relative to

their real-world values). Second, the potential effects of variations in mixed

layer depth have generally faded from primary relevance among researchers,

but perhaps more because of quirks in the history of model development than

any conclusive evidence that such effects don’t exist. Finally, the most recent

set of models in the Coupled Model Intercomparison Project — the CMIP6

ensemble — feature some models with surprisingly high climate sensitivity.

Other researchers have explained part of these high sensitivities as due to

greater aerosol sensitivity, which in combination with historical and present-

day aerosol observations effectively places an emergent constraint on the cli-

mate response (Nijsse et al., 2020). An emergent constraint is a robust linkage

between higher-order processes or parameters in the climate system which al-

lows researchers to constrain the range of realistic sensitivities by taking as

accurate only those models that conform well to the real values of these pa-

rameters, historically. But there are inter-model differences not explained by

this effect. If different mixed layer depths contribute in the way hypothesized,

then we could assess the feasibility of those concerningly high sensitivities

based on how well their mixed layers conform to expected values, in effect

finding another emergent constraint on climate sensitivity.

The basic task of this thesis is therefore to look for a significant correlation

between mixed layer depth and climate sensitivity, and, if such a correlation

exists, to assess whether it conforms roughly to the linear approximation in

equation 1.0.1, or whether there must be some other explanation. Our null hy-
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pothesis is that local ocean surface temperature variability depends on mixed

layer depth, but that variations due to anthropogenic forcing dwarf this effect,

so that there is no detectable relationship between the mixed layer depth and

climate sensitivity.

The thesis proceeds in three chapters. In chapter 2: A Simple Model of

Climate Change I build a simple picture of the climate system, starting with

the most basic energy balance models and then including processes of ocean

heat content and heat transfer within the system, as well as an explanation of

the radiative transfer process which warms the atmosphere after an increase

in top-of-atmosphere downwards radiative forcing.

In chapter 3: Mixed Layer Theory I review background on modelling

the variability of mixed layer depth and its effect on temperature and ocean

heat transfer. I introduce the theory in Frankignoul and Hasselmann (1977).

And I review a small section of the literature on different modelling parame-

terizations which affect mixed layer depth.

In the third and last chapter, 4: Mixed layer depth and climate sen-

sitivity, I cover the main findings: after fitting a two-box model to calculate

climate sensitivity and heat uptake efficacy (Geoffroy et al., 2013a; Gregory,

2000), I find that mixed layer depth does not correlate strongly with near-

term transient climate response, but shares surprisingly strong correlations

with the equilibrium response and the ocean heat uptake efficacy. I review

some possible explanations for these counterintuitive correlations. Ultimately

they remain an open question and an avenue for further research.

CMIP6 climate models & methodology

The Intergovernmental Panel on Climate Change (IPCC) is the global hub for

climate research. The IPCC is tasked with, among other things, predicting
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the likely range of temperature changes resultant from various hypothetical

emissions ”scenarios,” as well as the various changes in the climate system

that we can expect to accompany a given temperature change. It is generally

assumed that most important changes to things like precipitation, vegetation,

glaciation and so forth track temperature changes, so having a reasonable es-

timate of the future temperature change is critical. While simple models of

climate change such as those in Sections 2.1-2.2 can approximate most of the

important characteristics of temperature change in response to linearly in-

creasing forcing (which roughly describes the forcing resultant from historical

human emissions) much more complex models are required to predict changes

to local conditions. The IPCC relies on the Coupled Model Intercomparison

Project (CMIP) (Taylor et al., 2012; Eyring et al., 2016), which assembles a

host of atmosphere-ocean general circulation models (AOGCMs) and Earth

System Models (ESMs).

Parameterizations of sub-grid-scale dynamics in AOGCMs can impact the

large-scale model behavior. AOGCMs incorporate dozens or hundreds of vari-

ables and represent the climate system in 3+1 dimensions, building in (ideally)

all relevant processes at all calculable scales. In practice a typical horizontal

resolution for ocean process calculations is 100km × 100km or 1°× 1°. Com-

putation excludes the possibility of emergent dynamics at scales near or below

grid-scale; instead phenomena on length scales smaller than 100km must be

parameterized directly in the model. The various ocean and atmospheric tur-

bulence processes that contribute to mixed layer depth comprise one set of

directly parametrized processes, although there are many others. These pa-

rameters can also be fine-tuned by comparing the output of a model run on

a simulation of historical emissions against the real historical temperature

record. Since 2005 the Argo observing network of profiling ocean floats has
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been active globally, allowing comprehensive comparison of modeled ocean dy-

namics and stratification with the real world (Argo, 2020). Flato et al. (2013)

look in-depth at the variations between climate models in the CMIP5 ensem-

ble. Among other things, they find that there is a step-change in accuracy of

some modelled ocean dynamics for models that can resolve the sub-mesoscale,

which reinforces the above point.

The Fifth Assessment Report of the IPCC was released in 2013 and 2014

using the CMIP5 ensemble of AOGCMs. Working Group 1 reported a likely

range for the ECS calculated from the ensemble of CMIP5 models of 1.5 -

4.5°C (Collins et al., 2013). This estimate has not changed significantly over

several decades of modelling, although the ability of models to predict the

concomitant impacts from a given amount of warming has improved. Prior to

the release of AR5, Hansen et al. (2011) remarked that most AOGCMs were

mixing heat into the deep ocean too efficiently and therefore underestimating

the amount of negative forcing generated by human-made aerosols. Climate

models must be calibrated against historical data, so there is no way to directly

calculate the ECS within the calibration. As a result, only the transient

climate sensitivity can be used to calibrate. Whereas the ECS assumes that

the temperature response of the oceans has reached equilibrium, the transient

response depends on the rate of temperature change of the oceans, so changes

in this rate can counteract changes in the radiative forcing in the model and

therefore hide discrepancies with the historical data. In other words, “the

potentially compensating influences of the uncertain climate sensitivity and

the magnitudes of the cooling forcings” make it difficult to accurately estimate

the climate sensitivity from historical forcing (Winton et al., 2020).

Conversely, some of the CMIP6 and CMIP5 climate models have been

criticized for overestimating the transient and equilibrium climate sensitivi-
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ties. Winton et al. (2020) show that in the case of GFDL’s CM4.0 model,

the climate sensitivities are on the higher end despite conforming to historical

temperature and forcing data because the model’s high sensitivity to green-

house gases was masked by its high sensitivity to aerosols over the historical

runs. The Community Earth System Model Version 2 (CESM2) also has a

high equilibrium climate sensitivity of 5.3 K, which is an increase of 0.9 K on

previous iterations of the model. In this case the increase has been attributed

to a higher cloud feedback sensitivity by Gettelman et al. (2019).

In each case, a simple energy balance approach along the lines of equation

(2.1.17) underestimates the climate sensitivity because variations in one part

of the more complicated model cancel out variations in another part within

the historical simulation. However it is also possible that effects such as this

could arise in places other than the cloud feedbacks or aerosol sensitivities.

This speculation forms part of the motivation for investigating differences in

mixed layer depth in the current study.

1.1 Data sources and methods

All of the data for this thesis comes from the Earth System Grid Federa-

tion’s (ESGF) database of CMIP6 model outputs, and some was accessed

using pangeo’s Google Cloud mirror of ESGF’s database. The variables used

include surface temperature, Ts (ts in the CMIP6 vocabulary); sea surface

temperature, Tos (tos); net TOA radiation flux, Fa (rtmt); net ocean surface

heat flux, Fo (hfds); and mixed layer depth, h (mlotst). They were retrieved

as netcdf files and in most cases global averages were taken over the entire

time period prior to analysis. Global averages were calculated as the weighted

average of the given value over all grid points, for each time step, with the

weights being the latitude at the center of each grid point. All data sets had
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one-month time steps. Data processing was carried out in python.

The forcing scenarios used in this thesis are:

1. 1pctCO2: atmospheric CO2 concentration steadily increase at 1% per

year up to 4× ρ(0), so that the net TOA forcing approximately quadru-

ples by year 140.

2. abrupt-4xCO2: atmospheric CO2 is quadrupled at year 0.

3. piControl: the control run set to mimic the preindustrial climate (prior

to 1850 AD).

This thesis only uses those climate models for which all of the variables

mentioned above were available, for each of the three scenarios. In cases

where there were redundant climate models (e.g. a high resolution and a

low resolution version) only one of the set was included. Additionally due to

time and technical constraints, several viable models were not included — this

was primarily because they were too slow to download over standard internet

connections.

The final list comprises the following models, given by their source id in

the ESGF database. Each has a unique color and symbol combination that

are used throughout the rest of the thesis.

Figure 1.1: The GCMs used in this thesis with their corresponding markers.



Chapter 2

A Simple Model of Climate

Change

Although the global climate system is very complicated, some of its core char-

acteristics can be explained using relatively simple models. Here I use a ba-

sic energy-budget model to explain the mechanisms causing global warming,

and I include a quick explanation of radiative transfer, feedbacks, and global

warming timescales.

I then explain how climate models work and the role they play in this

investigation. Climate modelling began in a simplified sense well in advance

of modern weather forecasting — through simple energy budget models —

but modern global coupled climate models are far more complex and can use

cells on the order of 100km lengths. Importantly, the resolution of modern

climate models still leaves turbulence below this resolution to be parametrized

by researchers.

The ocean plays a central role in setting the rate of global warming be-

cause of its enormous heat capacity relative to the atmosphere. At different

timescales, different depths of the ocean have greater or lesser impact on the

13
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atmospheric temperature because of the differing times it takes for changes

in radiative forcing to affect the deep (shallow) ocean temperature, and the

times necessary for those changes to percolate back to the atmosphere. The

oceanic mixed layer interacts with the atmosphere far faster than the depths

do, which means that the mixed layer temperature should impact the rate of

warming in the lower atmosphere on short timescales. I review a basic theory

of this interaction and also explain some of the key sources of turbulent mixing

in the surface of the ocean, and how they can vary among climate models.

Symbol Name Scenarios Calculation

ECS or ∆T2× equilibrium climate sensitivity abrupt ∆Ts(N = 0)/2 (Gregory, 2004)

λeq equilibrium climate feedback parameter abrupt − dN
dTs

(Gregory, 2004)

ERF or F2× effective radiative forcing abrupt N(∆Ts = 0)/2 (Gregory, 2004)

TCR trasient climate sensitivity 1pct ∆T (61− 80yrs)

∆T2×,eff effective climate sensitivity 1pct, abrupt
F2×∆Ts
F (t)−N(t)

κ ocean heat uptake efficiency 1pct N
∆Ts

ε ocean heat uptake efficacy 1pct, abrupt
(∆Teq−∆Ts)/N

∆Teq/F

Ceff,s effective heat capacity 1pct, abrupt
∫ t
t′=0N(t′)dt′/∆Ts

Table 2.1: The variables calculated in this thesis. Scenario indicates the CMIP6 scenarios whose output
was used to calculate the corresponding variable. Note that all variables could be calculated twice: first
using the global surface temperature ts as a reference and second using the ocean surface temperature
tos. (The subscripts above correspond to the surface temperature.) In all cases except ECS and TCR,
the variables were calculated for each time-step using 10-year rolling averages of the relevant variables
entering the calculation to remove noise. κ was calculated as the slope of the N − ∆T relationship, with
κ(t) = dN(t′)/d∆T (t′) for t′ ∈ [0, t]. ε was calculated first using the equation shown, and then using the
methods from Geoffroy et al. (2013b,a).
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2.1 Basic theory: radiative transfer, feedbacks,

and global warming timescales, energy balance

models

The Earth’s climate is fundamentally governed by the relationship between the

energy entering the Earth system from outer space, and the energy leaving it.

If we include the entire Earth in our definition of the ”climate system,” then

energy can ultimately only leave as radiation. (If we were to look at only the

atmosphere, for example, then the deep ocean would be a significant energy

sink.) The primary source of incoming energy is sunlight. The Earth’s energy

balance arises when the power emitted by black-body radiation from the Earth

equals the power absorbed from that sunlight. This is a basic constraint on the

climate system and any attempts to model it; black body radiation ultimately

provides a restoring feedback on any energy imbalance so that the system

tends back towards equilibrium. The entire goal of climate modelling lies in

predicting what changes the Earth’s climate will undergo in the process of

recovering that equilibrium, and how fast it will do so. To say more about

this we need a brief review of the physics of global warming. Although this

thesis focuses on ocean dynamics some background on radiative transfer and

the structure of the climate system is generally useful. The derivations in this

section are based on those in Marshall and Plumb (2008) and Allen (2019)

with some modifications.

Earth-Sun energy balance

One can approximate the surface temperature of the Earth very roughly using

a simple black-body argument. The Sun emits as a black-body with temper-

ature 5770K. The flux of energy per meter squared, F , from a black-body is
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given by the Stefan-Boltzmann Law:

Fsun = σT 4, σ =
2π5k4

15c2h3
(2.1.1)

where k is the Boltzmann Constant, h is Planck’s Constant, and c is the

speed of light. Numerically, the Stefan-Boltzmann constant σ = 5.67 ×

10−8Wm−2K−4. The Sun is a distance S0 = 150 × 109m from the Earth

(averaged throughout the Earth’s elliptical orbit), and radiation from the Sun

”sees” a circular Earth of radius Re = 6.371× 106m and surface area 1/4 the

total surface area of the Earth. Dividing F by the area of the spheroid with

radius S0 and multiplying by 1/4 we obtain the power per unit area incident

on the Earth from the Sun, 342 W m−2.

Of the incident radiation about 30% is reflected due to Earth’s albedo, α.

Treating Earth as a black-body with temperature Te, at radiative equilibrium

the Stefan-Boltzmann Law gives us:

FEarth = σT 4
e (2.1.2)

= 342 Wm−2 × (1− α) (2.1.3)

Solving for Te with α = 0.30 gives a temperature of 255K, approximately

33K below the true global average surface temperature. This 33K difference,

equivalent to a ”natural” forcing of 150 Wm−2, is due to the presence of

the greenhouse gases in the atmosphere. While the temperature that the

Earth displays to outer space truly is approximately 255K, greenhouse gases

make the lower atmosphere opaque to radiation and elevate the level from

which radiation can escape to space to higher, colder altitudes. The surface

of the Earth becomes warmer through this process, which is called radiative

transfer. Note that throughout the process of reaching equilibrium following

an increase in net downwards forcing, the albedo of the earth might change
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both at the surface and in the atmosphere. Feedbacks such as this will be

discussed shortly.

Radiative Transfer

Greenhouse gases are those constituents of the atmosphere which can absorb

and emit photons at wavelengths relevant to the Earth’s total irradiance.

These are the tri-atomic gases, such as H2O and CO2, which are the two most

important in terms of their contribution to atmospheric absorption. These

gases have vibratory modes at which their structure forms a dipole which is

capable of emitting and absorbing photons. We will focus on CO2 because its

concentration is set by emissions from human activity along with some natural

feedbacks and yearly cycles, which we ignore here. The following derivations

roughly track those in Andrews (2010).

At the pressures and temperatures observed in the atmosphere, dry air

follows near-ideal gas behavior. At global scales we can treat the vertical

acceleration in the atmosphere as secondary because the atmosphere is much

wider than it is tall. In this case the hydrostatic approximation holds, which

says that:

dp

dz
= −gρ (2.1.4)

Here p is the pressure, z is the height (increasing vertically), g is the accel-

eration due to gravity and ρ is the density of the gas. We can see that this

holds because for an infinitesimal slab of gas with no net acceleration and

therefore no net force applied, gρδz = p(z)−p(z+ δz). As δz approaches zero

this becomes equation (2.1.4). For an ideal gas pV = nRT , where V is the

volume, n the number of moles of gas, R the universal gas constant and T the

temperature.
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We can rewrite the ideal gas law in terms of the molar mass of dry air to

obtain:

p = ρRaT (2.1.5)

Here Ra = R/ma and ma is the molar mass of dry air.

Finally, if we assume that the temperature T is constant, we may rewrite

the hydrostatic balance equation (2.1.4) to obtain:

dp

dz
= −g p

RaT

d(ln p)

dz
= − g

RaT

p = p0 exp

(
− gz

RaT

)
Although the temperature of the atmosphere is not exactly constant, this

exponential decrease in pressure is approximately correct within the tropo-

sphere. Defining the pressure scale height H = RaT/g, we can write:

p = p0e
−z/H . (2.1.6)

H is roughly 8 km throughout most of the troposphere.

Now we have about enough information to define a basic model of radiative

transfer. The optical thickness of a given slab of atmosphere with thickness

δz for a given wavenumber of light ν is given by

δτν ∝ kνρδz (2.1.7)

The constant of proportionality is of order one and we can ignore it for our

purposes. The change in upwards irradiance through a slab of atmosphere is

given by Lambert’s and Kirchoff’s laws:
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δIν = Iνδτν − πBν(T )δτν (2.1.8)

Where πBν corresponds to the Planck function for the temperature of the

given slab integrated over a hemisphere to account for upwards emission in

all directions; we can call this the brightness temperature. The first term

corresponds to absorption and the second to emission, and the minus sign is

present because δτν is negative in the upwards direction. The transmittance

Tν(z) of a given wavelength of light is equal to the percent of light at that

wavenumber emitted from an altitude z that would reach infinity without

being absorbed. In the absence of the second (emitting) term above, we can

define it as Iν(∞)/Iν(z) and write:

dτν = dIν/Iν (2.1.9)

τν(z) =

∫ τ ′ν(z)

τ ′ν(z=∞)=0
dτ ′ν (2.1.10)

= − ln Tν(z) (2.1.11)

To a good-enough approximation, the optical depth τν decreases exponentially

with height and the Planck function B(ν) decreases approximately linearly

with height in the troposphere, and is constant in the quasi-isothermal strato-

sphere, assuming a near-constant temperature lapse rate in the atmosphere

and near-constant dB/dT . From equation (2.1.7), the optical depth is pro-

portional to ρ. This leaves us with the key conclusion: for a doubling of the

density of a given well-mixed greenhouse gas, say CO2, the optical depth is

displaced upwards by an amount proportional to ln(2) and the Planck function

is reduced by an amount proportional to ln(2). In other words, doubling the

amount of CO2 in the atmosphere causes a logarithmic increase in the average

height of transmittance, and therefore a logarithmic decrease in the average
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irradiance. To make up for that decrease, the atmosphere has to warm up

until the CO2 at this higher level is warm enough for the emittance to again

balance the incoming radiation from the Sun. Each sequential doubling of

CO2 should produce roughly the same total temperature change.

Although there are many important caveats to this picture, it suffices

to explain the cause and scale of the warming that we observe in climate

models upon an instantaneous doubling or quadrupling of CO2 concentrations.

Carrying the derivation further and averaging over all wavelengths, one would

find that the reduction in top-of-atmosphere (TOA) outgoing irradiance due to

a doubling of CO2 concentration generates a reduction in net upward radiant

energy flux F2× = 3.7Wm−2. This forcing tells us relatively little about

the resultant temperature change at either short or long timescales, however,

because that change depends on the complex response of the global climate

system to this increase in forcing.

Feedbacks and the equilibrium response

Many negative impacts from climate change scale approximately with the

surface temperature of the atmosphere. Guided by goals set in international

agreements, a central job of climate scientists is to (1) predict the amount of

surface warming that will result from a given amount of carbon emissions and

(2) associating those temperature increases with other predicted changes in the

global climate. Difficulties arise immediately, because the rate of temperature

change in response to forcing — or equivalently, the amount of forcing restored

per unit increase in temperature — is fiendishly difficult to predict.

If we were to again treat the Earth as a simple black-body with a tem-

perature Te defined as the average brightness temperature of the Earth, then

negating a decrease in net upwards radiative forcing of 3.7Wm−2 would re-



2.1. BASIC THEORY: RADIATIVE TRANSFER, FEEDBACKS, AND
GLOBAL WARMING TIMESCALES, ENERGY BALANCE MODELS 21

quire warming the atmosphere uniformly by about 1K. In practice this does

not happen; surface temperatures are only tied very indirectly to the bright-

ness temperature that sets the irradiance. We can parameterize the increase

in net upwards irradiance that occurs from an increase in surface temperature

using:

λs ≡
dFearth
dTs

(2.1.12)

If we knew λ, then calculating the final surface temperature change from

an initial sudden increase in CO2 concentration would be straightforward. In

order for the change in temperature ∆Ts to balance the Earth’s energy budget,

we would need:

(F2×)
ln ρf
ln ρi

=

∫ Tf=Ti+∆Ts

Ti

λsdTs (2.1.13)

Where ρf is the final concentration of CO2, ρi the initial concentration, and the

integral accounts for possible variation of λs with temperature. Realistically

λs does change both with time and geographically (Held et al., 2010; Armour

et al., 2013). The logarithms enter because of the logarithmic dependence of

the irradiance on temperature outlined in the previous section. If we treat λs

as a constant, we can turn this implicit equation for ∆Ts into an explicit one:

λs∆Ts = F (2.1.14)

Here we have simply substituted F for the forcing imbalance. We then

define the equilibrium climate sensitivity (ECS) as the final change in temper-

ature at radiative equilibrium resulting from a sudden doubling in atmospheric

CO2:

∆T2× ≡
F2×
λs

(2.1.15)

Predicting the ECS requires knowing λs. But λs depends on a number

of factors, some of which are not well-understood. One such factor is cloud

cover: since clouds contribute significantly to the Earth’s albedo, and some
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clouds also trap heat in the atmosphere, understanding how cloud formation

will change due to an increase in radiative forcing is important for estimating

λ.

The feedbacks that contribute to set λs are for the most part nonlinear

and intercoupled. Summing up all the different sources of uncertainty can

give us a fair estimate of the uncertainty in λs, but the real spread of ECS

predictions is traditionally found using a range of fully-coupled climate models

each using different paramterizations. The 2013 IPCC Assessment Report of

Working Group 1 found a range of likely predictions for the ECS from 1.5K

to 4.5K (Collins et al., 2013). This prediction came out of the Coupled Model

Intercomparison Project version 5 (CMIP5) (Taylor et al., 2012). Some newer

CMIP6 (Eyring et al., 2016) models for use in the next Assessment Report have

reported climate sensitivities far outside of this range (Winton et al., 2020;

Gettelman et al., 2019; Nijsse et al., 2020). This discrepancy has motivated a

search for explanations as to why these large model biases (if they are biases)

arose, which this thesis hopes to contribute to.

A climate model typically takes between hundreds and thousands of years

to reach equilibrium after a sudden increase in forcing, due to the slow adjust-

ment of the cryosphere and deep oceans. But it is also often useful to know

how the climate (or model) responds to steadily increasing forcing over time.

Energy conservation gives the following equation for the global energy budget:

N = F − λs∆Ts (2.1.16)

whereN is the rate of heat uptake by the climate system, primarily determined

by the rate of ocean heat uptake because the heat capacity of the ocean

Co � Ca; F is the forcing prior to readjustment by the climate system, and

all values are perturbations on equilibrium at which we assume there is no

net heat flux into the climate system. By combining equations (2.1.16) and
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(2.1.15), we obtain an approximate equation for ∆T2×:

∆T2×,eff =
F2×∆T

F −N
. (2.1.17)

We call ∆T2×,eff , which was introduced by Murphy (1995), the effective cli-

mate sensitivity. This is far from an exact equation, however, because we have

been treating λ as a constant even though internal climate variability causes it

to change as the climate system equilibrates. In other words, equation (2.1.17)

only incorporates information about λ prior to the period in which tempera-

tures begin to converge (otherwise Q ≈ 0). It turns out that as temperatures

do converge, λ becomes smaller and these effects are too significant to ignore

(Allen, 2019; Winton et al., 2020). However, with more information about the

climate system we can use equation (2.1.16) to construct a simple and fairly

accurate model of the Earth’s response to increasing forcing.

2.2 Ocean heat content and the rate of warming

The rate of heat entering the climate system, N , can be decomposed into

the changes in temperature of the various segments of the climate system

multiplied by their respective heat capacities. Since the atmosphere’s heat

capacity is equivalent to the upper 3 m of the ocean, we can create a simple

two-box model of the climate system including only the deep ocean and the

shallow ocean as heat reservoirs. The shallow ocean has a temperature which

we will also term Tos, counting on the fact that the temperature of the ocean

surface roughly corresponds to the global surface temperature because the top

layers of the ocean are such a large heat reservoir compared to the atmosphere.

The deep ocean temperature we term Td, and we write corresponding heat

capacities for both bodies cs and cd. This approximation is fairly accurate

on large scales, since the oceanic thermocline is usually stably stratified and
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the deep ocean is therefore a distinct body from the upper ocean. Various

processes contribute to a net heat transport H from the warmer surface ocean

to the cooler deep ocean. One large-scale process which contributes to H is

the overturning circulation, whereby cold polar water sinks into the oceanic

depths, cooling them and creating a pressure front that expands equatorward

(see Marshall and Plumb, 2008, Chap. 11; Vallis, 2019, Chap. 15).

We can construct a simple two-box model of this process following Held

et al. (2010) and Gregory (2000), ignoring additional diffusion terms:

cs
d(h∆Tos)

dt
= −λos∆Tos −H + F, (2.2.1)

Cd
d∆Td
dt

= H. (2.2.2)

Here, ∆Tos is the perturbation to the global mean surface temperature, cs

is the heat capacity per unit depth of the mixed layer of the ocean which

responds rapidly to changes in the atmosphere, h is the height of the mixed

layer (allowing for time variation), ∆Td is the perturbation to the temperature

of the deep layers of the ocean which possess a cumulative heat capacity Cd,

and H is the heat exchange between the two segments of the ocean. We

have written λos to indicate the climate sensitivity parameter in terms of the

ocean surface temperature rather than the surface air temperature – however

if changes to the two are assumed to be proportional, all of the os subscripts

in equation (2.2.1) could be replaced with s for atmospheric values.

We assume that H is proportional to the temperature difference:

H = γ(∆Tos −∆Td), (2.2.3)

And further assume (for now) that h is constant so we can write Cs = csh

and remove h from the derivative. At equilibrium H = 0 so ∆Tos = ∆Td =
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F/λ. We define the fast (surface) relaxation time τs ≡ Cs/(λos + γ), and as

long as F varies on timescales much larger than τs, we ignore the derivative

in (2.2.1) so that

∆Tos ≈
F + γTd
γ + λos

(2.2.4)

in which case the evolution of the deep ocean temperature becomes

Cd
d∆Td
dt

≈ − λosγ

λos + γ
∆Td +

γ

λos + γ
F (2.2.5)

and ∆Td relaxes to the equilibrium value F/λ on the slow (deep ocean)

timescale

τd ≡
Cd(λos + γ)

λosγ
. (2.2.6)

On timescales much shorter than τd, for which the deep ocean has not

responded significantly and we can treat Td ≈ 0, the surface temperature

can be thought of as responding to the instantaneous forcing alone, with a

transient sensitivity defined by

∆Tos ≈ ∆TF ≡
F

λos + γ
. (2.2.7)

This scheme is important for understanding twentieth-century warming, as

described in Gregory and Forster (2008) and covered in greater detail in sec-

tion 1. However at this point it is important to note that the heat capacity

of the upper layer of the ocean does not feature at all in equation (2.2.7).

The prior assumption that F varies on timescales much larger than the sur-

face temperature relaxation time τs, and further that τd � τs, mean that in

equation (2.2.7) we treat the relaxation time as effectively zero, and therefore

set λ∆Tos + γ∆Tos = F . In other words, we assume that the upper ocean

adjusts so fast to changes in the TOA forcing that its heat capacity cs does

not matter.

Is this a fair assumption? If we make the further assumption that the

top-of-atmosphere forcing F over water is equal to the net heat flux into the
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ocean surface, which covers approximately 70% of the Earth’s surface, we can

do a back-of-the-envelope check:

F

Cs
=
d∆Tos
dt

(2.2.8)

=
3.7 W m−2

MLD× 0.7× Cwater × ρwater
(2.2.9)

≈ 1.5− 2 deg K per decade. (2.2.10)

Here we assume that the depth of the mixed layer MLD = 150m, with standard

values for the heat capacity and density of water, Cwater and ρwater. The result-

ing rate of warming assuming zero climate sensitivity and zero heat transfer

to the deep ocean is approximately 2 degrees Kelvin per decade. In this cal-

culation we assume that the upper ocean is responding to a forcing equivalent

to an instantaneous doubling of CO2. We can therefore compare this rate of

change to the rate of change in the first few years of an abrupt-4xCO2 model

run. The result is shown in Figure 2.1.

Keeping in mind that we must divide the resultant slopes by 2 to match the

calculation in (2.2.8)-(2.2.10), we find that the rate of temperature change over

the first decade is approximately equal to F/cs but drops off quickly afterwards

as the temperature feedback term becomes large and can’t be ignored. On

longer timescales the H term becomes important as well.

What can we infer about the hypothesis that the rate of warming should

be inversely proportional to the heat capacity of the surface layer of the

ocean? Clearly over timescales τ � τs, the heat capacity cs does not matter

very much, except perhaps indirectly. However on decadal to multidecadal

timescales, variations in cs hypothetically have a significant effect on varia-

tions in the temperature response ∆Ts both between and within models. In

Chapter 3 I look in greater detail at why the mixed layer depth varies between

climate models and how that variation could feasibly affect climate sensitivi-
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Figure 2.1: The fast response to an abrupt quadrupling of atmospheric CO2

in the UKESM1-0-LL model. In the first decade Ts increases approximately
linearly with slope 3.13 degrees Kelvin per decade; in the second decade this
slope decreases to 0.96 degrees Kelvin per decade and 0.83 over the third and
fourth decades. The black dotted line is a one-year moving average of the
temperature.

ties.

Calculating ∆Teq and F

2.3 Time-varying climate sensitivity

The two-box model presented in the previous section has two different timescales

on which warming is primarily dependent on either the surface or deep layer

of the ocean (τs and τd respectively). In designing climate models based on

historical and present observations, we generally have good data only about

the present-day short-term climate response, and we hope to constrain both

the future short-term response and the equilibrium response based on that

data. Some qualifications to the two-box model can give us the conceptual

tools to do so. This section closely follows the summary given in Yoshimori

et al. (2016).
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Ocean heat uptake efficiency

Under monotonically increasing forcing, as in a 1pctCO2 model run, it is com-

mon to approximate the ocean heat uptake as

N = κ∆Ts (2.3.1)

where κ is the ocean heat uptake efficiency which is assumed to be either

constant or slowly varying with ∆Ts (Gregory and Forster, 2008; Winton et al.,

2020; Yoshimori et al., 2016). In terms of the model in equations (2.2.1) and

(2.2.2), this assumption can be written as:

N = Cs
dTs
dt

+ Cd
dTd
dt

= κ∆Ts (2.3.2)

= F − λs∆Ts (2.3.3)

∴ F = (λs + κ)∆Ts (2.3.4)

where we have made use of the assumption mentioned in the preceding section

that the average ocean surface and surface air temperature are proportional,

so we can exchange subscripts os and s from equation (2.2.1). The resulting

equation (2.3.4) allows us to define, following Gregory and Forster (2008), the

climate resistance ρ ≡ κ + λ. Over periods of transiently increasing forcing,

the temperature change should be related to the forcing by ∆Ts = F/ρ.

Equation (2.3.1) can only hold during periods of increasing forcing and on

short (i.e. non-equilibrium) timescales. The simplest explanation for this is

that as the climate system equilibrates to a constant forcing, N → 0 while ∆Ts

approaches ∆T2×. Conversely, during periods of increasing forcing we expect

the ocean heat uptake N to increase proportionally, as the excess forcing has

nowhere else to go. F = ρ∆Ts has no timescale, so as long as we can treat κ

as near-constant this relation should hold (Gregory and Forster, 2008).
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The ocean heat uptake efficiency is closely related to the concept of effective

heat capacity, or the heat capacity of the climate system corresponding to a

temperature change ∆Ts after a time t. The effective heat capacity at time t

can be defined as

Ceff,s =

∫ t
t′=0N(t′)dt′

∆Ts
, (2.3.5)

in other words the total time-integrated heat flux into the entire climate sys-

tem to achieve a surface temperature change ∆Ts (Donohoe et al., 2014).

Comparison to equation (2.3.1) and (2.3.4) lets us write, over transient

forcing timescales,

Ceff,s =
1

∆Ts

∫
κ∆Tsdt

′ (2.3.6)

=
κ

F (t)

∫
F (t′)dt′. (2.3.7)

Equation (2.3.7) indicates that a higher ocean heat uptake efficiency corre-

sponds to a faster increase in the effective heat capacity, and therefore either

(1) a greater role for the deep ocean over periods of transient warming or

(2) a larger surface mixed layer, or both. Conversely, a larger λs corresponds

primarily to more effective atmospheric feedback processes. Ceff,s is an in-

tentionally rough measure, and should not be confused with the true heat

capacity of the climate system. Rather, it gives an idea of the strength of cou-

pling between ocean heat content and surface temperature change. If Ceff,s is

large, then the deep ocean is playing a significant role in setting the rate of

change of warming.

Finally, we can also use equation (2.3.4) to obtain a relation between the

warming during transient forcing and the equilibrium warming, assuming that

λs is equal to the equilibrium climate sensitivity:

TCR

ECS
=

1

1 + κ/λs
. (2.3.8)
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Accordingly, if κ is larger, then transient warming should be smaller compared

to equilibrium warming.

Using equation (2.3.1) should therefore allow us to compare the relative im-

portance of ocean heat uptake, climate feedbacks, and initial radiative forcing

in determining both transient and equilibrium climate sensitivity. However it

is important to note that this conclusion relies on assuming that λs is constant

over time. If there are time-dependent feedbacks, or feedbacks that depend

on the absolute magnitude of temperature change, then λs may vary signif-

icantly with time and the ratio of transient to equilibrium warming may be

significantly different than that described by equation (2.3.8).

Ocean heat uptake efficacy

We can compare the transient and equilibrium climate feedback parameters by

using the effective climate sensitivity, ∆T2×,eff , introduced in equation (2.1.17)

as an inexact measure of the equilibrium response. Gregory (2004) report that

∆T2×,eff is significantly different from the actual ECS, and a number of studies

have since affirmed this claim (Yoshimori et al., 2016). This result indicates

that the assumption operative in equation (2.3.8) is wrong: namely, we cannot

assume that the ratio between κ and λs is constant.

To distinguish the factors affecting the climate response on different timescales,

we define the ocean heat uptake efficacy following Winton et al. (2010, 2020)

and Yoshimori et al. (2016) as

ε =
(∆Teq −∆Ts)/N

∆Teq/F
. (2.3.9)

If we then define a sensitivity parameter for the ocean heat uptake, λo, as

follows:

λo =
N

ECS−∆Ts
, (2.3.10)
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we can explain the ocean heat uptake efficacy as the ratio between the equi-

librium feedback parameter and the ocean heat uptake feedback parameter,

ε =
λeq
λo
. (2.3.11)

The ocean heat uptake sensitivity λo represents the change in surface tem-

perature following an increase in forcing that is due to heat exchange with

the ocean, while λeq incorporates all feedbacks into the equilibrium climate

sensitivity parameter. In other words, a smaller ocean heat uptake efficacy

indicates that the ocean heat uptake contributes less to the climate response

and therefore the transient climate response should be closer to the equilib-

rium response. A larger efficacy implies the opposite. We can see this more

clearly by rearranging:

∆Ts(t) =
F − εN
λeq

. (2.3.12)

The discussion in the preceding sections can be summarized well using

figure 2.2 from Yoshimori et al. (2016). The black crosses in the figure show

the relation between ∆Ts and N under increasing CO2 in a 1pctCO2 experi-

ment. The TOA net radiation change increases approximately linearly with

∆Ts, with a slope given by κ, but it is important to note that κ decreases over

time, at least in the CMIP5 models (Watanabe et al., 2013). The equilibrium

climate sensitivity is estimated from an ensemble of abrupt-4xCO2 experi-

ments (blue crosses) using the method from Gregory (2004). Over the very

long run the temperature change from constant forcing drifts slightly higher

than the Gregory (2004) method predicts. Time variation in ε causes this

drift; as the climate reaches equilibrium the heat uptake efficacy increases,

meaning more surface temperature change is required to reach equilibrium.

Finally, we can follow Geoffroy et al. (2013b) in incorporating ε into the
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two-box model, by adding it as a coefficient to H in equation (2.2.1):

Cs
d∆Ts
dt

= F − λs∆Ts − εH, (2.3.13)

Cd
d∆Td
dt

= H, (2.3.14)

where H is defined as before. Below we briefly reproduce their results demon-

strating the impact of different heat uptake efficacies on the shape of the

∆T − N curve. Previewing results from chapter 4, we can test the two-box

model against a sample of data taken from the CMIP6 ensemble. Using es-

timates of Cs, Cd, and γ from Geoffroy et al. (2013b), it is straightforward

to test the accuracy of equations (2.3.13) and (2.3.14) against the tempera-

ture change in 1pctCO2 runs. The results are shown in figure 2.3 for six of

the models. These models use heat capacities Cd = 100 W yr m−2 K−1 and

Cs = 8 W yr m−2 K−1, and heat exchange efficiency γ = 0.7. The forcings

F (t) were calculated using the ERFs scaled linearly by the CO2 emissions, the

climate sensitivities λs from the Gregory (2004) method, and the heat sink

from the surface was scaled using ε(∆Ts, N) averaged over the entire 1pctCO2

run. These three values were the only ones that varied; unlike in Geoffroy

et al. (2013b) the heat capacities were not calculated independently and there

was not a separate sensitivity assigned to the upper and deep ocean. Nev-

ertheless, in four out of the six results the model predicts the shape of the

transient response well, with r > 0.98 and p � 1 in all cases. On average,

the toy model underpredicts the slope of the ∆Ts response by 4% for each of

ACCESS-CM2, CESM2, CESM2-WACCM, and CNRM-CM6-1.
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r

Figure 2.2: This figure, copied from Yoshimori et al. (2016), demonstrates the
role of ocean heat uptake efficacy and efficiency. A higher efficacy in later
years may explain the outwards sweep in ∆Ts which leads the Gregory (2004)
method to underestimate the ECS.

Figure 2.3: The two-box model in equations (2.2.1) and (2.2.2) fit to six
members of the ensemble using Cs, Cd = 8, 100 W yr m2 K−1 and γ = 0.7,
and the other parameters taken from the Gregory fits to the models.





Chapter 3

Mixed Layer Theory

GCMs in the CMIP5 ensemble tend not to simulate the surface mixed layer

of the ocean very well (Huang et al., 2014). Based on the mixed layer depths

in this study, the same could be said of the CMIP6 ensemble: these GCMs

span a range of mixed layer depths, wider than the mean global average MLD

over the ensemble; they also tend not to match observed depths (see Chapter

4). In other words, taken as a whole, they are neither accurate nor precise in

calculating MLD. This result is not surprising. The depth of the mixed layer

depends on turbulent processes (Langmuir circulation, shear and temperature

instabilities, and breaking waves) that cannot be directly simulated in GCMs

because their dynamics occur below grid scale (Thorpe, 2007). Accordingly

GCMs have to parameterize these mixing processes. Parameterization of tur-

bulent processes at grid scales is bound to be difficult, because the history of

turbulence parameterization through methods such as second-moment closure

shows that outside of large eddy simulations (LES), a good turbulence model

is hard to find (Wyngaard, 2010).

35
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3.1 Mixed layer turbulence

This section reviews the main turbulent processes which affect the MLD.

Two important turbulent processes in the MLD concern heat and momen-

tum fluxes. Following the discussion in chapters 2 and 3 of Thorpe (2007)

we will describe how both of these fluxes contribute to the MLD and then

describe the causes and effects of Langmuir circulation and turbulence.

In the absence of wind stress at the ocean surface, the main contributor

to turbulence is the bouyancy flux, B. The bouyancy b = gδρ/ρ0, so B is

defined as

B = 〈wb〉 =
g

ρ0
〈wδρ〉 (3.1.1)

where w is the vertical velocity. If we assume that changes in salinity are

negligible over the region of interest we can relate B to the heat flux FT as

follows. First we note that

ρ ≈ ρ0(1− αT ) = ρ0 + δρ

so long as S ≈ constant. Then we parameterize the heat flux by making the

following assumption:

FT = 〈ρcpwT ′〉, (3.1.2)

≈ −ρcpKT
dT ′

dz
. (3.1.3)

Here T ′ is the local temperature deviation from the mean, cp the heat capacity

at constant pressure, and KT is called the eddy diffusivity of heat, which in

general can depend on z. Using the relation between δρ and T from above we

find that

B =
αg

cpρ
FT . (3.1.4)

A fluid particle gains potential energy as the product of its density variation

and the rate at which it rises, in other words as g〈wδρ〉 = −ρ0B. A gain in
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potential energy implies a loss of turbulent kinetic energy (TKE) at a rate of

ρ0B. If the temperature flux is constant then the bouyancy flux is divergence-

less and the surface bouyancy flux B0 roughly determines the turbulence.

Shear in the mean flow also produces turbulence (Thorpe, 2007). This

term can be written as the product of the Reynolds stress τ = −〈ρwu〉 and

the mean shear, i.e.

FS = −τ dU
dz
. (3.1.5)

The Reynolds stress is often expressed in terms of the virtual friction

velocity u∗ =
√
τ/ρ or in other words τ = ρu2

∗. Based on a dimensional

argument the shear can only depend on the distance from the surface, z, and

u∗, so

dU

dz
=
u∗
kz
, which means (3.1.6)

U(z) =
u∗
k

(ln z − ln z0). (3.1.7)

Here k ≈ 0.41 is the empirical von Kármán’s constant. This relationship,

which holds near the boundary, allows estimation of the Reynold’s stress and

therefore the shear production of turbulence just from the horizontal velocity

profile.

Langmuir turbulence is the last important source of ocean surface mixing

covered here. Langmuir turbulence is a disordered form of Langmuir circula-

tion (Li et al., 2019; Thorpe, 2004), which occurs when there is a Stokes drift:

a net forward drift in a fluid in the presence of waves, caused by the fact that

a circulating particle near the surface spends more time in the region below

the crest of the wave, which is moving forward, and because velocity is greater

near the surface (van den Bremer and Breivik, 2018). The second effect also

means that the stokes drift uSD has a strong vertical shear. This shear tilts

the vertical vorticity which causes overturning circulation in the open ocean



38 CHAPTER 3. MIXED LAYER THEORY

surface boundary layer, in the plane perpendicular to the wind stress (Craik

and Leibovich, 1976).

Early LES demonstrated that these Langmuir cells create turbulence. Two

main methods for modelling that turbulence have arisen: K-profile parame-

terizations (KPP) and Langmuir turbulence production in second-moment

closure models. In KPP schemes empirical relationships on different condi-

tions are used to skip over the direct calculation of the TKE. For instance in

the Langmuir case, the turbulent velocity scale is boosted by an enhancement

factor which depends on the turbulent Langmuir number,

Lat =

(
u∗
uSD

)1/2

. (3.1.8)

Lat quantifies the ratio between wind-driven shear turbulence (represented by

the friction velocity) and Langmuir turbulence. Different KPP approaches

incorporate Lat into a boosting coefficient of varying forms.

Second-moment closure models handle TKE by parameterizing all of the

terms in its equation. These models have been used to try to incorporate

Langmuir turbulence into ocean models (van den Bremer and Breivik, 2018).

For instance, one approach adds a term proportional to the shear of uSD to

the TKE equation (Kantha and Anne Clayson, 2004).

Langmuir turbulence is an important mixing scheme for the global climate

system, but was not represented explicitly in CMIP5 models, which may have

contributed to their persistent MLD biases (which cannot be explained by

surface forcing: Li et al. (2016); Huang et al. (2014)).
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Figure 3.1: A copy of Figure 1 taken from Li et al. (2019). The left panel
(a) reproduces the figure from Belcher et al. (2012), which illustrates which
turbulence schemes dominate depending on the values of Lat and h/LL, with
destabilizing buoyancy flux (thick black line = greater than 90% contribu-
tion). The white lines indicate the 2-dimensional pdf of all of the JRA55-do
forced simulations for which buoyancy production was positive (about 62%
of instances). Background filled contours correspond to the normalized tur-
bulent dissipation rate. Note that none of the simulations enter the high-
shear-production region. Panel (b) plots the equivalent pdf but for stabilizing
buoyancy flux (the remaining 38% of instances). Dots indicate the regimes
used in LES studies; since we are not as concerned about these the legend is
omitted from this copy.

3.2 Langmuir turbulence parameterizations and

MLD

As one important example of the modeling decisions which can affect MLD,

this section reviews the main findings by Li et al. (2019), who investigated the

impacts of different Langmuir turbulence parameterizations on MLD under

various forcing schemes. Six different Langmuir turbulence parameterizations

(henceforth LT, following Li et al.) are considered and their resulting MLDs

and stratifications are compared to five non-LT counterparts. The LT pa-

rameterizations include both KPP and second-moment closure models. They

modify a common turbulence diffusion scheme which is similar in form to the
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expression for FT in the previous section:

w′λ′ = −Kλ∂zλ+ Γλ, where (3.2.1)

Kλ = Cλql. (3.2.2)

Here λ is an arbitrary quantity; Kλ > 0 is the eddy diffusivity which depends

on a velocity scale q, length scale l, and nondimensional coefficient Cλ (all of

which may vary with z); and Γλ represents any fluxes not proportional to the

local λ-gradient. The six different LT parameterizations modify equation 3.2.1

under different assumptions and using variants of the Langmuir number Lat.

Specifically, they do one or more of the following: (1) boost Kλ by increasing

one of its components; (2) modify the vertical profile of Kλ to account for the

structure of Langmuir circulation; (3) modify Γλ, which generally depends on

coherent structures in the boundary layer, of which Langmuir cells are one

such structure; (4) include a down-Stokes drift shear momentum flux, which

is also treated as ”nonlocal”; (5) include a momentum flux in a direction

different than the shear orientation, because LES simulations show that the

turbulent momentum flux is often misaligned from the shear; (6) enhanced

entrainment at the base of the surface boundary layer due to unresolved shear,

because plumes generated by Langmuir turbulence increase entrainment; and

(7) enhanced entrainment from resolved shear, in which Langmuir circulation

reduces surface shear and increases shear at the base of the boundary layer.

Li et al. use three classes of initializations and surface forcings to assess

the different schemes. The first is a simulation with forcings taken from ocean

station data at three different locations and over different time periods, in

order to simulate wintertime MLD deepening, springtime shoaling, and a full

year cycle. The second test case uses a global forcing from the JRA55-do

dataset. The ocean is gridded into a set of 4◦×4◦ one-dimensional models, and
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each model is evaluated over a full year using the forcings and initializations

at each grid point. Since Li et al. only test one-dimensional parameterizations

which ignore important lateral mixing and transport phenomena, they cannot

meaningfully compare the output to real observations in these first two test

cases. Instead the MLDs resulting from the different test cases are compared

within the ensemble. In the second test case the models are re-initialized each

month to match the forcing and profile dataset so that the drift away from

the expected values does not become too large, while still giving time for the

models to diverge from each other due to intrinsic variability.

The third test case compares the 11 models to two LES, and they are ini-

tialized and forced using the same values applied to the LES. These are meant

to simulate, first, a case with constant wind, waves, and destabilizing sur-

face bouyancy flux (B0 < 0). The second simulates transient hurricane-force

winds. Here some meaningful comparisons between the LES and the (non)

LT parameterizations can be made and, the authors hope, used to explain

variability in the other two test cases.

We will now quickly summarize the results from each test. The results from

test 1 showed that LT and non-LT schemes all generated significantly different

results with overlap between the two groups in both MLD and bouyancy.

However the LT parameterizations tended to give more rapid deepening of

the MLD under destabilizing surface conditions.

The results from test 2 demonstrated that LT and non-LT parameteriza-

tions had large differences in MLD regionally and on a global scale. (Due

to the monthly reinitialization these likely underestimated the actual differ-

ences.) The LT parameterizations predicted a 6%[−2% − 14%] deeper MLD

on average than their non-LT counterparts. Figure 3.1 is a copy of Figure 1

from Li et al. It shows the parameter space spanned by all of the JRA55-
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do forced tests, defined with regards to Lat and the parameter h/LL, which

measures the relative important of convection versus Langmuir turbulence.

Here h is a representative depth scale for the mixed layer (e.g. MLD) and

LL = −u2
∗uSD/B0 is the Langmuir stability length. According to Li et al.,

most of the ocean is either dominated by Langmuir turbulence (i.e. small Lat

and small h/LL, or by a mixture of Langmuir and buoyancy turbulence.

Importantly, large areas of the Southern Ocean are dominated by Lang-

muir turbulence. The LT parameterizations also show systematically deeper

MLD in these regions than the reference. As we will see, within the 16-member

ensemble used here there are large inter-model variations in Southern Ocean

MLD: up to 80% of the inter-model mean MLD, and larger than anywhere

else except a thin band at northern latitudes. Together these observations

leave open the possibility that variations in surface layer turbulence parame-

terizations, and particularly Langmuir turbulence, could explain some of the

differences in MLD between models in the ensemble.

There is one result from the third test case of interest for this study.

All non-LT parameterizations significantly underpredicted the entrainment at

the bottom of the surface boundary layer in Langmuir turbulence schemes as

compared to the LES. This result could indicate that differences in LT param-

eterization affect the depth and height of the thermocline. In the next chapter

we will see that thermocline ventilation may be important for explaining the

results.

What can we conclude from Li et al.? We want to explain inter-model vari-

ations in global average mixed layer depth of 20-30 meters. On average the LT

parameterizations in the global test case were less than 5 m deeper than their

counterparts over the entire globe. This result makes it appear unlikely that

Langmuir turbulence parameterizations alone could explain the MLD spread
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in CMIP6. Additionally the LT schemes predict a deeper MLD especially

when convection is weak, as in the Southern Ocean during austral summer;

but in the CMIP6 ensemble most of the MLD spread during those months is

confined to the Northern latitudes. However, the authors do note that the

global simulation likely underestimates the divergences between models be-

cause of monthly reinitialization. Additionally, the results from tests 1 and

particularly 3 indicate that different LT parameterizations may significantly

impact entrainment at the bottom of the boundary layer and bouyancy pro-

duction. These processes could provide a coupling to the thermocline and lead

to the ε − h correlation referred to in the introduction. In summary, it ap-

pears that characterizing the mixed layer turbulence parameterizations in the

CMIP6 set along the same lines used in Li et al. (2019) would at least indicate

whether there are systematic differences in MLD according to the parame-

terizations, and in this case we have reason to dig deeper into the particular

effects of LT parameterizations.

3.3 Frankignoul and Hasselmann’s MLD feedback

Having reviewed the main processes contributing to mixed layer turbulence,

and one explanation for intermodel variability in MLD, we now turn to the last

piece motivating the hypothesis stated in the introduction: that variability in

MLD might explain variability in climate sensitivity, according to the relation

in equation 1.0.1, which is:

dTos
dt

=
Fo
csh
− λoTos.

Equation 1.0.1 is a simple hypothetical linear feedback describing an interac-

tion between the oceanic mixed layer and atmospheric temperature, similar

in form to equation 2.1.16. This model was first proposed in Frankignoul
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and Hasselmann (1977). We will briefly review the context in which it was

proposed and the conceptual leaps required to apply it to the globe as a whole.

Hasselmann (1976) describes mechanisms by which internal weather vari-

ability in climate models can explain climatic variability. Hasselman argues

that the larger climate system can be seen as an integrator of small-scale

weather variability. Whereas previous low-dimensional nonlinear models of

weather or climate were deterministic — all variability was ascribed to bound-

ary conditions — Hasselman argues that internal time-dependent variability

on the scale of the climate system can arise due to stochastic changes at a

much smaller scale. As opposed to real turbulent systems, in which TKE

transfer occurs across a wide spectrum of length scales, Hasselman stipulates

that there are two strongly separated timescales of motion for the smaller,

stochastic weather processes and the climatic ones. Formally, the weather

and climate systems are divided into vectors of variables x and y, and related

through:

dxi
dt

= ui(x,y) (3.3.1)

dyi
dt

= vi(x,y), (3.3.2)

where the timescale of y is much larger than the timescale of change in x.

Treating x as a stationary random variable, for small excursions away from a

mean value 〉δy〈, the deviation in yi from the mean value — in other words

the evolution of the fluctuating term y′i in yi — can be described as

dy′i
dt

= vi(x,y)− 〈vi〉 = v′i. (3.3.3)

Integrating over time, the stochastic changes in x entail that the fluctuating

term in yi is non-stationary, and the covariance matrix 〈y′iy′j〉 grows linearly.

The climate system takes on greater variability from the mean state as it

integrates variability in the weather system. By way of analogy, we can see
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the climate system as a collection of Brownian particles, in which smaller

particles (weather systems) over time collide with larger particles and increase

their average variation.

Real climate variability does not grow indefinitely, and Hasselmann (1976)

argues that this is because on longer timescales (t ≈ τy) stabilizing feed-

backs dampen the effect of integrating weather variability. In Frankignoul and

Hasselmann (1977), the authors propose one such feedback between slowly-

changing mixed layer temperatures and rapidly fluctuating atmospheric tem-

peratures. Formally, they write the time evolution of the heat content of the

mixed layer as

h
dTo
dt

=
Hs +HL

ρwCwp
, (3.3.4)

where Hs is the sensible heat flux at the surface of the mixed layer, HL is the

latent heat flux, and ρw and Cwp are the density and specific heat, respectively.

This simple model assumes a constant mixed layer depth and no radiative heat

flux or heat loss to the deep ocean from the mixed layer. This equation can

be reformulated to account for fluctuations ∆To about a mean To caused by

deviations of f1 from the equilibrium value [f1] (here I write those deviations

as Fo). Using λo = (∂[f1]/∂∆To)∆To=0, they write:

dTos
dt

=
Fo
csh
− λoTos, (3.3.5)

which is the same as equation 1.0.1. This equation is identical in form to

the energy balance in equation 2.1.16, except that here λ has an apparent

dependent on h.

This similarity motivates the original hypothesis of this thesis, which is

that intermodel differences in MLD might contribute to different climate sen-

sitivities. For this hypothesis to be feasible we need to make a number of

conceptual jumps. First, while λo has an h-dependence which we exploit to
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formulate the hypothesis, that h-dependence only acts between different mod-

els with constant mixed layer depths. If we drop the assumption of constant

h within models, the above equation no longer holds true, and we have to

deal with the original nonlinear form for d(hT )/dt. However we know that

h is in fact never constant, so to assume that this model could still hold ap-

proximately correct the variations in T need to dominate the variations in h.

Second, the hypothesis ignores time and spatial variation in feedbacks, despite

evidence indicating their importance (Armour et al., 2013). Third, the hypoth-

esis assumes that we can treat local changes to ocean surface temperatures as

equivalent to (or tightly linked with) global changes in surface temperature.

Acknowledging these large assumptions, we now turn to evidence from the

CMIP6 ensemble.



Chapter 4

Results: mixed layer depth

and climate sensitivity

Having established a motivating conceptual model of the climate system (chap-

ter 2) and discussed some reasons for variation and uncertainty in mixed layer

parameterizations of climate models (chapter 3) we now turn to the actual

data. This chapter uses an ensemble of sixteen models from the CMIP6 en-

semble (Eyring et al., 2016). The goal of is to investigate whether there are

significant and systematic relationships between variation in mixed layer depth

and variables affecting climate sensitivity between the members of the ensem-

ble. To answer this question we look at a number of correlations between

outputs from the different models. I emphasize that due to the nature of this

study it is impossible to establish the existence of causal mechanisms in any

of the cases discussed. No climate model parameters were tuned and no new

output was collected in the writing of this thesis. The best we can do is detect

interesting and strong correlations which might point to useful experiments

or questions for further study.

The first question we ought to ask about these models is whether there are

47
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Figure 4.1: Values for the variables calculated here (x axis) versus the pub-
lished values in Nijsse et al. (2020) (y axis). The black line indicates a 1:1
relation. TCR was calculated as the mean temperature change from the prein-
dustrial control between years 61-80 in 1pctCO2; the remaining three variables
were calculated following Gregory (2004).

any interesting inter-model differences in the first place. Within the ensemble,

the surface temperature equilibrium climate sensitivities calculated here using

the methods from Gregory (2004) vary between 2.61 K and 5.54 K, in good

agreement with other published values (figure 4.3; the most recent published

values are collected from Nijsse et al. (2020)). The TCRs vary between 1.56

K and 2.67 K. These results corroborate the high variation and upwards bias

in climate sensitivities that have been reported for past and present CMIP

ensembles (Flato et al., 2013; Nijsse et al., 2020).

In addition to significant variability in climate sensitivities, there are large

global and region differences in mixed layer depth between the members of this

ensemble. Figure 4.2 (right) shows the 10-year moving global average mixed

layer depth (h) for all members of the ensemble over 150 years of a 1pctCO2

run. The two outliers (AWI-CM-1-1-MR and NESM3) range between h ≈ 20

m and h ≈ 100 m. Even excluding these two, the average depths in the center

of the range span a range from 40 m to 80 m.

It is also clear from the top right panel of figure 4.2 that the global average

mixed layer depth decreases over time. There are two things to note. First,
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the ordering of the ensemble by h remains nearly constant over the course

of the run, meaning h decreases at nearly the same rate across the different

models despite large differences in starting h. Across the ensemble, the global

average of h at any time t ∈ [0, 150] years remains correlated to the average

of h over the first ten years with p � 0.05 and r > 0.98 for abrupt-4xCO2,

1pctCO2, and piControl experiments (see Appendix 1).

One of the first questions we must ask is: does the assumption of constant

mixed layer depth implicit in equation (1.0.1) and the treatment of the two-box

model (2.2.1) hold approximately true? The top left panel in figure 4.2 shows

the change in global average surface temperature change ∆Ts(t) divided by the

average change over the entire run (Ts in the legend) as the dashed lines, and

the analogous calculation for the mixed layer depth as the solid lines. Whereas

∆T increases from zero to double its mean value, the decreases in mixed layer

depth in no case amount to more than 50% its average value. This result

gives reason to trust the constant-h assumption, although not fully conclusive

evidence that the nonlinearity in equation (2.2.1) can be ignored.

4.1 Global mixed layer depth

Having established the validity of some basic assumptions, there are three

preliminary questions we might ask:

1. Does the ECS vary in proportion to the TCR?

2. Does the two-box model from chapter 2 predict the response to abrupt-4xCO2?

3. Does the global average mixed layer depth correlate to ECS, TCR, or

any of the other measures of climate response introduced in chapter 2?
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Figure 4.2: Checking some basic assumptions. Top right: The ratio of ∆Ts(t)
(dashed lines) and hg(t) (solid lines) to their time averages throughout the
ensemble. Top left the 10-year moving average hg for the 1pctCO2 ensemble.
Bottom The relationship between TCR and ECS for the 16 models used in
this ensemble. TCR is calculated as the average of ∆Ts from 61-80 years and
ECS as 1/2 the N = 0 intercept of the Gregory diagram.

The first question can be answered straightforwardly: as we would expect,

there is a correlation between the equilibrium and transient climate sensitiv-

ities. Linear regression of the ECS against the TCR (defined with respect to

surface temperature ts) yields slope = 0.235, r = 0.675, and p = 0.004. The

same regression but carried out using variables defined with respect to ocean

surface temperature (tos) gives slope = 0.259, r = 0.593, and p = 0.015.

The second question can be answered to varying levels of accuracy. First

we can plot the measured ∆Ts from the abrupt-4xCO2 ensemble against the

calculated values using the two-box model with ε from equations (2.3.13)-
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(2.3.14). The results for the two ACCESS models are displayed in Appendix B,

figure B.1. The values of ε used in these calculations were taken as the time-

average of ε calculated over the last thirty years of the 1pctCO2 runs, during

which ε shows greatest convergence.1 As can be seen, in neither case does the

linear model fit the data very well qualitatively. One possible explanation for

this is that the transient response used to calculate ε does not give enough

information to do so accurately.

Finally, we might ask whether the mixed layer depth correlates with either

measure of climate sensitivity. Recall from chapter 3 that the Frankignoul

and Hasselmann (1977) theory predicts an inverse relationship between h and

∆T . However we know in advance that this theory is a large oversimplification,

especially when applied to the globe and extrapolated to surface temperatures

and TOA forcing. (The original theory applies only to the local temperature

and forcing at the mixed layer.)

The immediate answer appears to be: no. Figure A.6 plots the correlations

between the global mixed layer depth hg at time t and eight other variables

(for more information, see Appendix A). A significant (p < 0.05) correlation is

below the solid red bar at the bottom of the plots. As we can see from figure

A.6, the global average mixed layer depth does not significantly correlate with

either the global surface or ocean surface temperature at any time throughout

the course of the 1pctCO2 runs. Neither does it correlate significantly with

any of the other variables assessed at any time. By itself this is a significant

result. There are a number of possible explanations. For instance, variations

in the mixed layer depth between models may not affect the rate or magnitude

of temperature change because the mixed layer did not correlate positively to

the depth of the surface box in the two-box model. However, we now turn to

1This calculation scales the ECS in the numerator by the year, so that ∆eq = ECS×t/70.



52
CHAPTER 4. RESULTS: MIXED LAYER DEPTH AND CLIMATE

SENSITIVITY

Figure 4.3: Values for the variables calculated following Gregory (2004) (x
axis) versus those calculated following Geoffroy et al. (2013a) (y axis). The
black line indicates a 1:1 relation. The red circles are calculated using the
global surface temperature, and the blue crosses using the SST.

the more surprising results found after applying the model of Geoffroy et al.

(2013b,a).

4.2 An inverse relationship between the mixed

layer and the active layer

Geoffroy et al. (2013b) calculate ε using a multilinear regression of N against

F, λ, ε, and H, and additionally calculate Cs, Cd, and γ. This method is de-

scribed in greater depth in Appendix B. The resulting fits include revised

estimates of λ and F , and are much closer to the model output. They allow

us to calculate ε directly using just the abrupt-4xCO2 run. In the simple

model used previously, no distinction is made between ocean surface and at-

mospheric temperatures and further the values of Cd, Cs, and γ are taken

simply as the average from Geoffroy et al. (2013b).

The surface layer in this two-box model is easily associated with the mixed

layer; both have a similar size (the heat capacity of the surface layer equals

that of the top ∼100 m of ocean), and there is reason to think that the mixed
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layer influences the short-term response to warming similarly to the surface

layer. Counter-intuitively, there is in fact a statistically significant negative

correlation between the global average mixed layer depth, taken over the first

ten years of the run, and the surface-layer depth in the two-box calculation,

hs = Cs/ρcp. The correlation coefficient is r = −0.74 and p = 0.002.2 We

use the average MLD over the first ten years because h tends to decrease

significantly decades into the run. In other words, the surface box in the

two-box model is sometimes interpreted as akin to the mixed layer (Geoffroy

et al., 2013b), but this appears to be the opposite of the truth, despite the two

being of similar magnitude. To make a clearer distinction between these two

quantities throughout, we will refer to the surface layer in the two-box model

as the active layer.

Figure 4.4: Right: The two-box Cs plotted against the global average
mixed layer depth over the first ten years of abrupt-4xCO2, hg0−10. With
AWI-CM-1-1-MR excluded the fit has r = −0.74 and p = 0.002. Left: The
same plot but with the subpolar average MLD, hp0−10. With AWI-CM-1-1-MR

and GISS-E2-1-G excluded the fit to the subpolar MLD, hp0−10, has r = −0.80
and p = 0.0006.

2Note however that this correlation only holds if the model AWI-CM-1-1-MR is excluded
from the fit. From here forward AWI-CM-1-1-MR is excluded from all correlations unless
explicitly stated. This model has an anomalously deep mixed layer near the South Pole and
high wind stresses compared to every other member of the ensemble.
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The previous point does not by itself explain the lack of a significant cor-

relation between mixed layer depth and temperature change – in fact, it gives

reason to expect a significant positive relationship, which we do not see in the

plotted 1pctCO2 correlations in Appendix A. The variations in global mixed

layer depth between runs may not have this correlation in part because the

surface layer response time is too short for them to matter much. The average

short response time τs = 10.8 yr, whereas significant temperature differences

between step-forcing experiments may emerge well beyond this point.

Critically, the correlations in Appendix A do not take into account the

corrections to F , λ, and the ECS that emerge from the two-box calculations.

Once we take these into account, there emerges a moderate correlation between

the ECS and hg0−10, with r = 0.58 and p = 0.022. Additionally, the calculated

ε values correlate strongly with hg, with (r, p) = (0.82, 0.002). A full set of

correlations between variables calculated using the EBM-ε model with both

global surface temperature and SST are displayed in tables 4.1 and 4.2.

4.3 Explaining the MLD correlations

The previous results suggest that the original hypothesis of this thesis is incor-

rect, and they point to a relationship between the mixed layer and the active

layer that is the inverse of that originally expected. By itself, the fact that the

original hypothesis was not supported is not surprising. Gregory (2000), in

the original paper proposing the two-box model, pointed out that the active

layer should not be identified with the mixed layer. However, the strong nega-

tive correlations between mixed layer depth and active layer size indicate that

there may be a mechanistic relationship underpinning differences in the short

timescale response. Additionally, the ECS correlates significantly with Cs and

with h under certain circumstances (see table 4.1), indicating the potential to
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hp0−10 hg0−10 Cs Cd λ F2× ε ECSts ECS
(1)
ts TCRts

hp0−10 - 0.79 -0.80 0.54 -0.29 0.06 0.67 0.39 0.10 -0.27
hg0−10 - -0.74 0.37 -0.49 0.07 0.82 0.58 0.34 -0.03
Cs - 0.03 0.87 0.26 -0.51 -0.83 -0.73 -0.21
Cd - 0.35 0.34 0.50 -0.14 -0.38 -0.63
λ - 0.41 -0.21 -0.87 -0.90 -0.49
F2× - 0.48 0.06 -0.13 0.06
ε - 0.45 0.12 -0.12
ECSts - 0.93 0.57

ECS
(1)
ts - 0.67

TCRts -

Table 4.1: Two-box ε correlations, Ts = ts. This table displays r-correlations between the variables
obtained by application of the EBM-ε model from Geoffroy et al. (2013a), using ts as the surface
temperature. Numbers in bold have p < 0.05 using a two-sided Wald Test for linear correspondence.
hg0−10 corresponds to the global average MLD over the first ten years and hp0−10 to the subpolar

average MLD. The superscript (1) indicates values calculated using the method from Gregory (2004).
AWI-CM-1-1-MR was excluded from all correlations and GISS-E2-1-G was excluded from the hp010

correlations.

hp0−10 hg0−10 Cs Cd λ F2× ε ECStos ECS
(1)
tos TCRtos

hp0−10 - 0.79 -0.64 -0.15 -0.45 0.56 0.68 0.60 0.50 0.12
hg0−10 - -0.86 -0.37 -0.78 0.48 0.79 0.78 0.71 0.31
Cs - 0.54 0.96 -0.34 -0.62 -0.93 -0.91 -0.54
Cd - 0.63 -0.26 -0.11 -0.60 -0.70 -0.65
λ - -0.24 -0.46 -0.90 -0.92 -0.58
F2× - 0.65 0.57 0.50 0.31
ε - 0.65 0.48 0.10
ECStos - 0.97 0.54

ECS
(1)
tos - 0.63

TCRtos -

Table 4.2: Two-box ε correlations, Ts = tos. The table shows r correlation coefficients between
variables as above, but all values calculated from the two-box ∆T fit using tos as the surface
temperature. Numbers in bold have p < 0.05 using a two-sided Wald Test for linear correspondence.

develop an emergent constraint on ECS if the relationship to MLD can be

understood.

One path towards understanding this relationship involves the regional
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variations in MLD. The MLD varies significantly both over time and with

latitude. In the subpolar regions (loosely defined here as |lat| < 50◦), h can

reach several hundreds of meters, while near the equator it often remains

in the 20-70 m range. Figure 4.5 shows these differences: each plot shows

the latitudinal band averages of h (color, vertical by latitude) against time

(horizontal axis), with darker colors representing deeper MLDs. We observe

that there are large differences between model MLD in the subpolar regions,

and that these differences partially fade with time as the ML in the higher

latitudes shallows.

Boé et al. (2009) found that the mixed layer depth at high latitudes (> 58◦

N and > 68◦ S) correlated significantly with a decreased transient climate

response. They conjectured, following Winton et al. (2010), that the subpolar

mixed layer depth may increase the ocean heat uptake efficacy and therefore

the difference between TCR and ECS. This may occur because a deeper mixed

layer near the poles leads to more effective mixing of warm surface water into

cool deep ocean overturning cells. However, the correlations between MLD

and ECS were found to be stronger using global mixed layer depth than with

the subpolar mixed layer depth, however, which casts some ambiguity on the

conjectural relation based in Boé et al. (2009).

One natural hypothesis is that the active layer in the EBM-ε model is

actually the thermocline, and that models with a greater Cs are those in which

the thermocline is ventilated more effectively. The size of the thermocline

approximately matches Cs. The theory of thermocline ventilation is beyond

the scope of this thesis (see Vallis (2017, Ch. 20) for an overview), but we

note that the height of the thermocline scales with surface wind forcing. A

preliminary check found that, for the thirteen models for which zonal wind

stress could be downloaded, there was a significant correlation between the
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average global wind stress and the size of the active layer, lending credence

to this theory. Further study should look into whether ensemble differences

in the change in potential temperature within the thermocline support the

hypothesis that the heat in the active layer ends up in this region of the

ocean.
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Figure 4.5: Twelve-month rolling average mixed layer depth by latitude over
the 16-member ensemble, over the course of a 1pctCO2 run up to 4×CO2. Due
to the distribution of mixed layer depth h, the subpolar mixed layer depth hp

for latitudes greater than 50◦ N and S was defined as an important variable
for correlation. The mixed layer depth at northern latitudes decreases with
time consistently across the ensemble, and the latitude of deepest mixed layer
moves further north over time.



Chapter 5

Conclusions

This thesis began with the hypothesis that greater mixed layer depth implies

slower transient response to warming in climate models. Chapter 2 developed

a simple conceptual model of climate change and global warming time scales,

and Chapter 3 reviewed the turbulent processes that contribute to mixed layer

depth and the reasons for thinking that models with greater MLD might warm

less. Chapter 4 then found that no such correlation exists. After applying the

slightly more complex EBM-ε model developed in Geoffroy et al. (2013b), it

was seen that a deeper MLD correlates negatively with the size of the active

layer, which determines the short-term response to forcing. This counterin-

tuitive result not only disproves the original hypothesis (at least within this

ensemble of models); it also indicates that the strong negative correlation be-

tween MLD and Cs might be used to identify the active layer in the EBM−ε

model.

The possibility of an emergent constraint

The striking correlation between global average mixed layer depth and the

recalculated ECS begs the further question: could MLD impose an emergent
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constraint on equilibrium sensitivity? If so, comparisons of observations by

the Argo (Argo, 2020) network to climate models could significantly constrain

the equilibrium climate sensitivity, along the lines of Boé et al. (2009) and

analagous to Nijsse et al. (2020). It may be very difficult to do this well,

however, without knowing, first, why MLD varies between models and, second,

which mechanisms relate to the postulated causal structure.It still remains to

be seen whether a causal mechanism linking MLD to the equilibrium response

behaves accurately within these models. Even if it did, it is not entirely clear

that the ECS and ε calculated via Geoffroy et al. (2013a) are superior to

those calculated through the simpler model, although the results in appendix

B indicate that the EBM−ε theory fits most of the models well.

Finally, I conjectured that the active layer in the EBM−εmodel may be the

thermocline. In this case differences in thermocline ventilation may explain

the different heat uptake efficacies and depths of the active layer. However, we

would then need to explain why thermocline ventilation correlates negatively

with mixed layer depth. A preliminary check showed that zonal wind stress

does correlate significantly with active layer depth across a subset of these

models. Since zonal wind stress also forces thermocline depth, this is prima

facie evidence in favor of this explanation. Further investigation is needed

— in particular, vertical profiles of potential temperature should be used to

assess whether the heat absorbed by the active layer does in fact end up in the

thermocline. If this causal mechanism can be shown and its relation to mixed

layer depth is robust, then there will be potential for an emergent constraint

based on mixed layer depth in the CMIP ensemble.



Appendix A

Inter-ensemble MLD

Correlations

This section shows the inter-ensemble correlations plotted between various

measures of the mixed layer depth and a set of eight climate variables defined

by reference to the two-box model. The measures of mixed layer depth in this

section use the following convention: h0−10 means that the measure was taken

as the average over the first ten years and that constant value was correlated

to the other variables over time. ∆ means that the difference h(t)−h(0− 10)

was correlated to the global mean of each variable at each time t. If neither of

the preceding qualifications apply, h(t) was correlated directly with the given

variables. The superscripts hg and hp correspond to global and subpolar

(|lat| > 50◦) weighted averages, respectively.

All of these figures correspond only to 1pctCO2, not abrupt-4xCO2, al-

though some of the variables calculated here rely on both. The variables

correlated with h are: N , the net TOA downwards heat flux per m2 over

the globe; Q, the net global heat flux into the ocean surface per m2; κ, the

heat uptake efficiency or slope of the N − T relation; Ceff , the effective heat
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capacity, which gives a rough gauge of how much of the ocean is engaged in

the climate system at a given time; ∆Ts, the change in surface temperature

compared to preindustrial; ∆Tos, the change in ocean surface temperature

compared to preindustrial; ε, the ocean heat uptake efficacy, calculated using

∆Teq = ECS × F (t)/F2×; and hg, the global average MLD at time (t) —

which shows whether, for instance, the starting variations in subpolar MLD

can predict future variation in global average MLD (they can).

The inter-ensemble correlations were calculated by linearly regressing the

two variables at each 10-year timestep, taking a 20-year average about t. The

regression function used was scipy’s linregress(), which calculates the p

value using a two-sided Wald Test with a t-distribution of the test statistic.
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Figure A.1: Inter-ensemble correlations between the average subpolar MLD
over years 1-10 and various climatic variables. The red line and circles denote
the p value of the correlation, and the black dotten line denotes the r value.
The red dashed line at bottom is the 10% significance threshold and the solid
line is the 5% significance threshold.



64 APPENDIX A. INTER-ENSEMBLE MLD CORRELATIONS

Figure A.2: Inter-ensemble correlations: average global MLD, years 1-10.
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Figure A.3: Inter-ensemble correlations: change in average subpolar MLD
from years 1-10.
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Figure A.4: Inter-ensemble correlations: change in average global MLD from
years 1-10.



67

Figure A.5: Inter-ensemble correlations: subpolar MLD.
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Figure A.6: Inter-ensemble correlations: global MLD.



Appendix B

Reproducing Geoffroy et al.

(2013 a, b).

This section describes the procedure used to reproduce the results from Geof-

froy et al. (2013b,a) for this ensemble of 16 CMIP6 AOGCMS. The resultant

values are listed in each panel of figure B.2

For each model, beginning values for Cs, Cd, and γ were calculated using

the abrupt-4xCO2 runs and the analytical solutions to the simplified two-

box model (equations (2.2.1) and (2.2.2)). The analytical solutions for each

variable after a step forcing are derived in Geoffroy et al. (2013b) and allow for

a direct fit based on the ∆Ts output. Then these values were refined and ε, λ,

and F4× were updated using the process described in Geoffroy et al. (2013a),

which is briefly recreated below.

Fitting parameters with ε = 1

First, fit ∆T to years 30-150 of abrupt-4xCO2 using

log (∆Teq −∆T (t)) ≈ log ∆Teq + log as −
1

τs
t (B.0.1)
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to find the slow response timescale τs and the slow response scaling as. This

solution, like those that follow, is derived analytically from the simple two-box

model (no ε, or ε = 1) under the assumption that the fast timescale τf � τs.

Use a similar fit to find the fast response:

τf = t log af − log (1− ∆T

∆Teq
− aset/τs). (B.0.2)

Now calculate the the heat capacities and the heat coefficient γ:

Cs = λ/(
af
τf

+
as
τs

), (B.0.3)

Cd = λ(τsas + τfaf )− Cs, (B.0.4)

γ = Cd/(τsas + τfaf ). (B.0.5)

These parameters allow us to calculate the theoretical deep ocean temper-

ature for step forcing with ε = 1,

∆Td(t) = ∆Teq(1− φfafe−t/τf − φsase−t/τs) (B.0.6)

where

φf =
λτf − Cs

Cd
, φs =

λτs − Cs
Cd

. (B.0.7)

Iteration to find ε, λ and F2×

Each step takes the observed surface temperature change ∆T for the 4× step

forcing experiment, along with ε, λ and F4× from the previous step. The

starting values for λ an F4× are those calculated via Gregory (2004) and

ε(0) = 1.

First, evaluate H(i)−1 using passed-in variables, by first finding γ and ∆Td

as above, giving

H(i)−1 = γ(i)−1(∆T −∆T
(i)−1
d ). (B.0.8)
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Second, perform a multilinear regression of N against T and H by com-

bining equations (2.3.13) and (2.3.14) to obtain ε(i), λ(i) and F
(i)
4×:

N = F
(i)
4× − λ

(i)T − [ε(i) − 1]H(i)−1. (B.0.9)

Finally, fit Cs, Cd, and γ as above. Although this fit is performed relative to

the simpler model (i.e. ε = 1), the answers converge quickly. After 10 or fewer

iterations the values stabilized.

Note that this procedure relies on using a constant value for ε. As Yoshi-

mori et al. (2016) point out, it is quite possible that the neither the real world

nor AOGCMs behave like a constant-ε model. Finally, note that for all models

with ε > 1 the resulting estimates of F2× and ∆T2× are both higher than the

estimates using Gregory (2004). The only model in this ensemble with ε < 1

is CNRM-ESM2-1.

Figure B.1: An example showing the poor quality of the two-box model fit to
abrupt-4xCO2 without parameter optimization.
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Figure B.2: The results from fitting the two-box linear system with ocean
heat uptake efficacy ε to the model output from abrupt-4xCO2 following the
procedure in Geoffroy et al. (2013b,a). The modified fit parameters λ, F =
F4×, and ε are labelled in a box inside each chart. Blue line: calculated surface
temperature. Orange line: calculated deep ocean temperature.
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Continuation of figure B.2.
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Figure B.3: The N − ∆Ts plots from the ensemble of 16 CMIP6 AOGCMs
and ESMs. The circles are yearly averages over N and ∆T , and the hollow
circles correspond to the first 15 years of the experiment. The thin black line
indicates the two-box model fit. The dotted and dashed grey lines correspond
to the F − λ∆Ts and (1− ε)H contributions to N . The thick grey line shows
the trend calculated using Gregory (2004) methods. Note also that the format
mimics the format found in Geoffroy et al. (2013a).
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Continuation of figure B.3.
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