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Abstract  

Purpose of review Assessment of the impact of ocean resolution in Earth System models on the mean 

state, variability and future projections and discussion of prospects for improved parameterisations to 

represent the ocean mesoscale. 

Recent findings The majority of centres participating in CMIP6 employ ocean components with 

resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In 

contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean 
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components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). 

Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised 

affects not only the mean state of the ocean but climate variability and the future climate response, 

particularly in terms of the Atlantic Meridional Overturning Circulation (AMOC). Recent 

developments in scale-aware parameterisations of the mesoscale are being developed and will be 

included in future Earth System models. 

Summary Although the choice of ocean resolution in Earth System models will always be limited by 

computational considerations, for the foreseeable future, this choice is likely to affect projections of 

climate variability and change as well as other aspects of the Earth System. Future Earth System 

Models will be able to choose increased ocean resolution and/or improved parameterisation of 

processes to capture physical processes with greater fidelity.   

 

1) Introduction  

The ocean plays a key role in the Earth System with ocean heat uptake determining the Earth’s energy 

budget [1] and global sea level rise [2]. The ocean has a key role linking to other parts of the Earth 

System; e.g., Sea Surface Temperatures (SSTs) affect atmospheric circulation and precipitation [3], 

ocean circulation [4] and biogeochemistry [5] determine the flux of carbon between the oceanic and 

atmospheric reservoirs, and upper ocean temperatures and circulation influence sea ice properties and 

dynamics, while sea ice also feeds back onto the ocean circulation via insulation and freshwater input. 

Global and regional sea level is strongly influenced by high-latitude ocean processes associated with 

the basal melting of Antarctic ice shelves [6] and ocean-driven melting of the Greenland ice sheet [7].  

Since the first review in 2000 [8], the ocean components of Earth System Models (ESMs) have 

evolved considerably following the different phases of Coupled Model Intercomparison Projects, 

CMIP3 to CMIP5 and most recently CMIP6 [9]. Conservation of heat and salt, exact computation of 

sea level, and the improvement of water mass properties have been the main objectives that have led 

modelling groups to abandon rigid-lid formulations and time-invariant vertical grids, and to develop 

higher order advection schemes. Community modelling platforms such as NEMO [10], MOM 

(https://mom-ocean.github.io/) or POP [11] have been extended to offer a larger choice of grids, 

numerical schemes and parameterizations. Two new ocean models with flexible grids have been 

introduced in CMIP6: FESOM [12] and MPAS [13] and although CMIP6 models generally use quasi-

geopotential grids ("z-coordinates"), one model has terrain-following coordinates (INM-CM5) [14] 

and two models use Lagrangian hybrid coordinates following isopycnals in the interior: MOM6 [15] 

and Nor-ESM [16]. 

This paper reviews the state of knowledge of the importance of ocean resolution drawing on recent 

results from CMIP6 models (including HighResMIP [17] and building on previous reviews [18–20] to 

address to what extent ocean resolution introduces uncertainty into climate variability and projections 

of future climate. Although the emphasis of this review is on multi-decadal climate timescales, many 

of our conclusions also have relevance for initialized predictions with coupled forecast models [18, 

21]. Section 2 reviews the current status of resolution in ocean components of CMIP6 Earth System 

models. Section 3 reviews the impact of ocean resolution on the mean state, variability and future 

projections of key metrics. Section 4 reviews linkages between ocean resolution and other 

components of the Earth System reviewed in this issue. Section 5 discusses advances in 

parameterisation of the mesoscale which are applicable for future developments of ESMs. Section 6 

summarises the review. 

 

https://mom-ocean.github.io/


 

2) Resolution in ocean components of CMIP6 Earth System Models 

Ocean models for climate, as atmospheric models, evolve constantly towards higher resolution. This 

is driven, in part, by the need to better represent strong western boundary currents such as the Agulhas 

Current, the Gulf Stream or the Kuroshio, which play a key role in transporting heat from the equator 

to the poles. These currents have a typical width of 100 km, which means that grid meshes of 10-20 

km are necessary to represent their dynamics. Improved horizontal resolution also allows for a better 

simulation of key straits such as the Gibraltar or Denmark Strait and their role in the inter-basin 

exchanges. Estimating grid resolution as the square-root of the surface of the Earth divided by the 

total number of grid points, the average resolution was 133 km for CMIP3, 87 km for CMIP5 and 58 

km for CMIP6 (giving a timescale for doubling of ocean resolution in models of approximately 10 

years [22]). The decrease is driven both by the refinement of the ESM grids, and by the participation 

of more ocean general circulation models with very fine grids, in the 10-40 km range. This move has 

been strongly encouraged by HighResMIP [17], a protocol especially defined for high-resolution 

models. The OMIP, Ocean Model Intercomparison Project [23, 24] is also designed to help evaluate 

the impact of resolution on ocean simulations [25]. 

ESM development has to prioritise between allocating computational resources either to enhance 

resolution or to increase complexity (as well as considering the length of the spin-up and ensemble 

size). Although ESMs in CMIP6 have evolved in terms of their complexity [26–29], it is clear that 

most have retained ocean resolutions which require parameterisation of mesoscale eddies [30] as they 

fail to resolve the Rossby radius [17, 30]. The Rossby radius length scale is key to the representation 

of mesoscale eddies, boundary currents and fronts and topographic flows [15, 18]. The length scales 

of the fastest growing modes in the ocean have been shown to vary less strongly with latitude than 

suggested by the Rossby radius [31] with larger length scales observed in eastward flowing currents. 

Nevertheless, taking the Rossby radius as a guide, three regimes of models [32] can be defined: eddy-

parameterising (ocean resolution of O(50-100 km) and the current status for the majority of ESMs 

which mostly employ the Gent-McWilliams (GM) [33] parameterisation of mesoscale eddies, eddy-

present (ocean resolution of O(25 km) with HighResMIP experiments at this resolution and some 

models of this resolution in the CMIP6 DECK experiment) and eddy-rich (ocean resolution of 

O(10km) with some HighResMIP experiments at this resolution but noting that even models at this 

resolution do not resolve mesoscale eddies poleward of approximately 50º). Given that a major 

constraint for running at higher resolutions is the computational cost, some models also exploit 

variable resolution or nested high-resolution grids [34, 35].  

A particular issue for models in the eddy-present regime is that the Rossby radius is resolved at lower 

latitudes but not at higher latitudes (or in shallow/shelf regions). This resolution is often referred to as 

the ‘grey zone’ when the Rossby radius is only marginally resolved and there is a question as to 

whether a parameterisation of mesoscale eddies should be included at this resolution. In CMIP6 

models, the approach at the eddy-present resolution varies between models. For example, at 1/4º 

resolution, different model families make different choices about the use of GM [36, 37]. This is also 

an issue in eddy-rich models but at higher latitudes than in eddy-present models.  

At even smaller spatial (and higher temporal) scales (100m-10km, hours to days), the 

parameterisation of submesoscale phenomena is also starting to be addressed in ESMs; the Fox-

Kemper [38, 39] parameterization of ocean surface boundary layer restratification by mixed layer 

instabilities has been followed by variants with different assumptions or for alternative submesoscale 

instabilities [40, 41] and implementations in ESMs [38, 42]. Submesoscale eddies need much higher 

resolution to resolve the smaller deformation radius of the mixed layer [43] but as demonstrated for 

the Agulhas system, there is evidence that the explicit simulation of submesoscale processes enhances 



the mesoscale scales [44]. Resolving submesoscale eddies is a target for climate simulations in future 

decades. 

 

3) Impact of ocean resolution on mean state, variability and future projections  

 

a) Western boundary currents  

In typical CMIP5/6 models, with resolutions in the eddy-parameterising regime, simulated western 

boundary currents (WBCs) are much weaker and wider than observed and the most significant biases 

in surface temperature are usually associated with incorrect presentation of WBCs in coupled models. 

Eddy-present models lead to a significant improvement in the representation of the WBCs as the 

ocean model becomes less diffusive/viscous with enhanced resolution generally improving the 

simulation of the strength and position of WBCs such as the Gulf Stream, Kuroshio Current and 

Agulhas current [17, 25, 45–50]. For example, eddy-present and eddy-rich models show much better 

representation of the North Pacific subtropical gyre currents than eddy-parameterising models [18, 19, 

25, 32, 49] where the Kuroshio separation and extension are often located at least 300-400km further 

northward than observations. Despite general improvements in WBC representation due to model 

resolution, there remains a dependence on the models’ numerics [51].  

Mesoscale eddy activity is observed to be high in WBC regions and the magnitude of eddy kinetic 

energy in these regions is strongly related to model resolution. Eddy tracking [52] demonstrates that 

an increasing number of eddies are simulated in WBC regions as resolution increases to the eddy-

present and eddy-rich regime. The magnitude of eddy kinetic energy in WBC regions is found to be 

strongly related to model resolution [37, 50, 51]. As mesoscale eddies potentially play a role in 

determining the strength of the gyre circulations and their low-frequency variability [53, 54], it is 

expected that decadal variability and sensitivity of the circulation to changes in wind stress will differ 

between eddy-rich and eddy-parameterised models. 

In the case of the Agulhas current where the leakage directly influences the hydrography in the 

Atlantic [55, 56], eddy-present and eddy-parameterising models overestimate the leakage by a factor 

of 2-3 [57]. There is also indication that eddy-rich resolution is important for the determination of the 

relative role of warm and saline Agulhas leakage versus cold and fresh waters entering the Atlantic 

through the Drake Passage [58].  

Some stand-alone high resolution oceanic models tend to overestimate mesoscale eddies and 

underestimate the strength of WBCs, which is partly attributed to a lack of mesoscale air-sea 

interaction [59, 60], and partly attributed to incorrect representation of sub-mesoscale motions in these 

models [61]. Eddy-present/rich coupled ocean-atmosphere models have substantially weaker eddies 

than eddy-present/rich ocean-only models without the surface current-wind stress interaction process 

because both the wind work and eddy-induced linear Ekman pumping dampen eddy kinetic energy 

when the surface currents are involved in the bulk formula [60, 62]. The Agulhas eddies’ pathway is 

also quite sensitive to the wind stress (’relative’ versus ‘absolute’, depending on whether the ocean 

velocity is considered for the wind stress calculation) in forced simulations [51]. 

Beyond the eddy-rich resolution, further improvements (i.e., penetration) are found when the 

resolution is refined to ~1km [50, 63, 64] and when a net release of available potential energy 

associated with mixed layer instability is responsible for the emergence of submesoscale eddies in 

winter time [63]. At that resolution, submesoscale turbulence affects the kinetic energy exchanges and 

provides an inverse cascade of energy to larger scales [44, 64]. These extremely high-resolution 

experiments can be used in conjunction with machine learning techniques (e.g., deep learning) to 



design ocean eddy parameterization for implementation in the coarser ocean models [65] (see Section 

5 for further discussion). 

 

b) Atlantic Meridional Overturning Circulation 

The AMOC transports warm, buoyant water polewards in the Atlantic. Cooling at high latitudes 

coupled with the relatively high salinity of in the Atlantic, means that fluid parcels become 

sufficiently dense to convect and return equatorward at depth. This circulation drives a northward heat 

transport of about 1.2 PW at 26.5°N. Observations from the RAPID-MOCHA array since 2004 [66] 

show variability on all timescales with interannual variability typically of the order several Sv, with a 

larger temporary decrease of 4.7 Sv over 2009/10 [67]. Most CMIP5 models [68] underestimate 

interannual variability and rarely if ever simulate such a large annual drop, though their daily 

variability can agree with observations [69, 70]. More recent eddy-present forced-ocean simulations 

[71] better capture the magnitude of interannual variability, suggesting that either ocean model 

resolution, or atmospheric forcing/resolution, are key. In CMIP6 HighResMIP and OMIP simulations 

(see Figure 1a,b), the AMOC transport more often than not becomes stronger at higher ocean 

resolution [20], and in coupled models this tends to be driven by enhanced convection in the Labrador 

Sea [72, 73]. For both CMIP5 models [74] and CMIP6 HighResMIP [73] there tends to be too deep 

mixed layers in the Labrador Sea in order for the AMOC strength to be comparable with observations 

(noting that this is particularly true in NEMO models suggesting that model structure as well as 

resolution may be a factor). When projecting future climate, this convection tends to reduce more 

quickly than that in the Nordic Seas [73], which means that the higher resolution models have a 

stronger AMOC decline in future. The effect of convection changes in the Nordic Seas is linked to the 

AMOC via the overflows.  

The overflows of dense waters over the Greenland-Scotland Ridge (GSR), through Denmark Strait 

and the Iceland-Faroe channel, drive two thirds of the AMOC [75]. Their dynamics are governed by 

small scale physical processes such as ageostrophic flows in the bottom boundary layer, instabilities 

and entrainment, that are difficult to represent in numerical models [76, 77], especially at low 

resolution [78]. The relationship between the strength of the overflows and the AMOC is complex in 

models, because the AMOC depends on a number of processes [79]. Rather than the strength of the 

AMOC, its vertical structure critically depends on the depth to which overflows sink [78]. Also, the 

overflows tend to be stable over decadal time scales, which results in the AMOC decadal and 

subdecadal variability being mostly dependent on the water mass formation in the subpolar gyre [79]. 

On the other hand, the influence of the overflows is strong on the water mass properties and on the 

deep stratification of the subpolar gyre, which in turn influences the depth of wintertime convection 

[80].  

The choice of vertical grid is expected to influence the representation of dense overflows. CMIP6 

models generally employ z-coordinates (with variants such as time-dependence of thickness to follow 

the motions of the free surface (z*) and partial cell topography in the deepest layer) but terrain-

following coordinates and Lagrangian hybrid coordinates are also used [14–16]. Hybrid coordinates 

are designed to avoid spurious diapycnal mixing and better represent the entrainment downstream of 

the overflows. However, even in these models, the degree of improvement for the depth of the 

overflows and the AMOC vertical structure depends on the horizontal resolution and other model 

choices [15, 16, 79]. In all vertical coordinate systems, moving to higher horizontal resolution 

improves the representation of the overflows [16, 81] and their influence on AMOC, both because the 

bathymetry is more realistic as well as the dynamics of the deep boundary currents [82]. Higher 

vertical resolution, however, can degrade the solution in z-coordinate models, because it can increase 

spurious diapycnal mixing in downslope flows [81]. A complete analysis of overflows in 



HighResMIP ocean models is not yet available for a full assessment of the progress made relative to 

CMIP5.  

 

Figure 1: Comparison of multi-model large-scale ocean metrics with observations. (a) AMOC and (b) 

Northward Heat Transport (NHT) in the Atlantic at 26.5oN; (c) ACC transport (Sv); (d) an illustration 

of the impact of ocean model resolution on the ACC-AMOC simulation. Model simulations are from 

CMIP6 OMIP experiments [25] and from CMIP6 HighResMIP control-1950 experiments [73] (plus 

additional data not yet archived, see Model Data for details). AMOC/NHT observations [66, 67] are 

shaded with the annual mean range between 2004-2017. ACC observations from the cDrake array 

[83] are shaded indicating 173±11 Sv.  

 

c) Antarctic Circumpolar Current and associated Southern Ocean dynamics 

Different aspects of the regional dynamics in the Southern Ocean are closely dynamically linked 

including the Antarctic Circumpolar Current (ACC), the Southern hemisphere upper and lower MOC 

cells, temperature and salinity structure and associated meridional gradients and sea-ice processes 



[84]. For example, the Southern Ocean mean state and its response to expected future changes in wind 

stress forcing, including the upper cell of its overturning circulation which influence heat and carbon 

uptake, and isopycnal slopes that drive the ACC, result from a subtle balance between larger opposing 

wind-forced and eddy-driven cells [85]. Perhaps in consequence, representation of all of these ocean 

processes show considerable sensitivities to ocean model resolution and configuration, even including 

fairly subtle changes to closure schemes which represent the impacts of sub-gridscale processes [86, 

87]. 

The simulation of the ACC is sensitive to model resolution in both forced and coupled simulations 

(figure 1c). Relative to observations from the cDrake Array [83], models tend to fall on the lower end 

of observational uncertainty or underestimate the net ACC volume transport [84]. Models in the eddy-

parameterised or eddy-rich regime perform better than those in the eddy-present regime which are 

particularly sensitive to the choice of uncertain grid-scale closures as seen in forced ocean 

experiments [15, 36, 37].  

The few CMIP6 models in the eddy-present regime provide a much more realistic representation of 

the frontal jets of the ACC [84] in contrast to the majority of models which are lower resolution and 

completely fail to represent any distinct fronts. These higher resolution models, however, also show 

distinct counter flows, presumably linked to stationary eddies in Drake Passage, in multi-decadal 

means which are not evident in the observational means over similar periods (although they may be 

evident in sections from individual cruises). Increased model resolution allows for greater topographic 

detail to be resolved leading to improved topographic control of the ACC. In CMIP5, a weaker 

relationship between the ACC strength and position with westerly winds compared to CMIP3 was 

attributed to this control [88]. Further work is required to investigate this in CMIP6 and eddy-rich 

models. 

There is much ongoing effort to better understand the strong dependence of the ACC on ocean 

resolution. Preliminary unpublished findings suggest that in Hadley Centre models, ACC transports 

using ocean resolution of 1/4o are rather sensitive to subtle changes in the configuration of grid scale 

closures, such as viscosity, the use of weak GM, the use of localised partial slip at topographic 

boundaries and even changes to bed stress. Analyses of  Perturbed Parameter Ensemble with a 1/4o 

ocean model [89] , in which only atmospheric parameters are perturbed, also suggest there may be a 

link between large-scale Southern Ocean SST biases; sea-ice concentrations and associated 

meridional freshwater transports; near coastal salinity biases that drive a strong westward counter 

flow around the continental margin through Drake Passage, weakening the total ACC transport; and 

Weddell Sea sea-ice and salinity biases that cause a spurious polynya to form causing deep convection 

and large changes to Antarctic bottom water properties. 

Several other studies have also noted multi-decadal temporal variations in ACC transports, of 10 to 30 

Sv, linked to the occurrence of unrealistic large open-ocean polynya events, in both the Ross and 

Weddell Sea, which alter the density structure of the Southern Ocean though intense spurious open 

ocean convection [84].  In 1/4o and 1/2o  GFDL models [90, 91], super-polynyas in the Ross Sea have 

been shown to drive large centennial-scale variability in the Southern Hemisphere climate. These 

events are found in both the eddy-parameterising models used in CMIP6 and higher resolution models 

[90–92]. Whether there is a resolution dependence on their frequency and characteristics is a topic of 

future study. With the exception of the 1974 – 1976 [93, 94] and 2016-2017 [95] polynya events 

observed in the Weddell Sea, there is no observational evidence to support the frequent open-ocean 

polynyas and associated intense open ocean convection that is found in model simulations. 

Furthermore, there is no observational evidence of large open ocean polynyas in the Ross Sea, where 

these events are commonly simulated in models. For these reasons, the dynamics associated with 

these events is a topic of focus as a means for improving simulations in future model development. 



Substantial changes to the strength and latitudinal location of the westerly winds over the Southern 

Ocean have occurred and are expected to continue through a combination of ozone and greenhouse 

gas climate forcing. Future wind-driven changes in the strength of the ACC under climate change, and 

associated changes to the upper cell of the Southern Ocean MOC, may also depend strongly on ocean-

resolution. Idealised equilibrated ocean-only experiments suggest that at equilibrium in eddy-rich 

models, changes to the Ekman driven overturning cell due to increased wind stress forcing are 

opposed by subsequent changes to the counter rotating eddy-driven cell caused by increases in eddy 

kinetic energy [96] although the transient adjustment could be different to the equilibrium. This 

considerably reduces the sensitivity to changes in wind stress magnitude of both the upper cell of the 

Southern Ocean overturning circulation and, through its impact on isopyncal slopes, the strength of 

the ACC, processes termed ‘eddy compensation’ and ‘eddy saturation’, respectively. Evidence 

suggests that although the eddy response is not correctly represented in eddy-parameterising models, 

partial eddy compensation and eddy saturation is obtained in some models in which GM is allowed to 

vary spatially and temporally [86] and even to some extent with constant GM [97].  

One interesting finding across the CMIP6 and associated HighResMIP ensemble is that many models 

with a (good) high ACC transport often have a (poor) low AMOC strength, and vice-versa (Figure 1d, 

b). This requires further investigation but such a relationship could arise either through opposing 

responses to common grid-scale numerics (for example, more damping could result in weaker Gulf 

Stream transports but stronger ACC transports) or opposing dynamical links (for example, the 

Gnanadesikan model [98] suggests that a stronger AMOC should act to reduce the density gradients 

across the ACC, weakening its transport).  

 

d) Sea surface temperature 

SST is a key metric since it is the primary way that the ocean impacts the atmosphere. The large-scale 

pattern of SST in ESMs demonstrates errors that are broadly similar across a range of models with 

cooling in the North Pacific, warming in the Southern Ocean, warming in the Eastern Boundary 

Upwelling zones and a patch of very cold water (‘blue spot’) in the North Atlantic [26, 28, 29, 90, 

99]. In many models, the magnitude of the Southern Ocean warming has been improved significantly 

through focussed effort largely to improve cloud biases [100]. Enhancing ocean resolution often leads 

to a reduction in the North Atlantic cold bias [101, 102] associated with the improvement in the 

position of the North Atlantic current but forced ocean experiments suggest that this is not always the 

case [15, 25, 36, 37]. In coupled models with eddy-present or eddy-rich resolutions [35, 49, 103, 104] 

there are typical but not uniform improvements in the Atlantic in both the tropics (both cold bias and 

zonal gradient) and mid-latitudes, the cold tongue in the tropical Pacific and the warm biases in the 

upwelling/stratocumulus regions off the western coasts of South America and southern Africa while 

the Southern Ocean surface warm bias tends to be increased. 

Key impacts of parameterizations of submesoscale restratification in ESMs are shallower mixed 

layers particularly in wintertime, affecting air-sea fluxes, energy transfers, sea ice, and 

biogeochemistry [38, 105–107]. Without further alteration to other aspects of the ESM, most 

implementations see improved extratropical winter hemisphere mixed layers but degraded tropical 

and austral summer Southern Ocean biases [38, 42]. However, the use of the submesoscale 

parameterisation is not a good predictor as to whether models will have a good representation of the 

mixed later [74, 108] which is perhaps unsurprising given the level of disagreement between models 

of boundary layer mixing [109].  

 

 



e) Heat uptake 

Ocean and coupled models initialised from rest with climatological temperature and salinity generally 

gain or lose heat as they approach a quasi-equilibrium. The underlying drifts in temperature can be 

affected by both horizontal resolution [32, 103, 110] and the choice of vertical coordinate [15]. 

Models with horizontal resolutions in the eddy-present regime often have deep biases [32, 103, 110] 

that are worse than biases in models in either the eddy-parameterizing or eddy-rich regime which may 

be linked to surface biases [100] propagated to the subsurface [110]. Excess interior mixing due to 

numerics [111] can be alleviated by moving from a depth coordinate to an isopycnal coordinate in the 

interior of the ocean [15] reducing heat uptake in the GFDL model by a factor of approximately 500 

from 1 W/m2 when a hybrid depth-isopycnal vertical coordinate was used.  

Work with simplified models [112, 113] suggests that heat uptake due to anthropogenic forcing will 

occur in the ventilated thermocline on the timescale of a few decades and in the deeper ocean on a 

longer timescale associated with changes in the AMOC and that insufficiently resolved eddies in the 

eddy-present regime could lead to reduced ocean heat uptake at depth. In idealised experiments, the 

Southern Ocean plays a particularly important role in global ocean heat (and anthropogenic carbon) 

uptake [113] (see also section 3c) and more realistic sensitivity experiments have suggested that 

Southern Ocean heat uptake is sensitive to horizontal resolution when moving from the eddy-

parameterising to the eddy-present regime [114], to the near surface vertical resolution [115] and, in 

eddy-parameterising models, to the magnitude of the thickness diffusion parameter [116].  

There are currently insufficient results from eddy-rich simulations to assess the impact of this 

resolution on projections of future ocean heat uptake. Projections of ocean heat uptake from eddy-rich 

models are likely to be limited by the length of the spin-up as the magnitude of the underlying drift is 

likely to affect stratification and rates of ocean heat uptake [117]. A long spin-up which would be 

required for smaller drifts [118] is currently too expensive for eddy-rich models but in the next 

decade, as DECK simulations are extended to include eddy-rich models, this will be an area for future 

research. 

The uptake of anthropogenic CO2 over the historical period and into the 21st century is heavily 

influenced by the background ocean transport, which includes large-scale advection and eddy 

transport [119]. Like heat, a large fraction of the anthropogenic CO2 taken up by the oceans occur in 

the Southern Ocean and we can expect that the storage might be sensitive to horizontal resolution. 

 

 

4) Links to other aspects of the Earth System 

 

a) Sea ice 

Sea ice is comprised of floes, and resembles a generally moving jumble of irregular, often interlocked, 

pieces of ice that vary in size from a few metres up to tens of kilometres. Crucially, sea ice is not a 

turbulent fluid and so we would not expect performance to respond to grid resolution changes in the 

same way as in the ocean or atmosphere [120].  

Sea ice is highly non-Gaussian in nature and exhibits considerable heterogeneity in both time and 

space. To account for this, sea ice evolution in contemporary climate models is targeted at scales of 

~100 km over periods of days to months and expressed in terms of local balances of conserved 

quantities such as mass and heat, with unresolved, small-scale processes handled using numerous 

parameterisations. This modelling framework, using the viscous-plastic (VP) model [121], or a 

derivative of it, is based upon an isotropic, plastic continuum approach whose validity relies upon 

statistical averages taken over a large number of floes [122]. Therefore, simply increasing the 

resolution of the sea ice model component will likely have little impact on the evolution of the sea ice 



per se (although when resolution is increased, parameterizations may be able to be better optimized). 

In spite of this, and of the fact that the continuum model assumptions break down at eddy-present 

resolutions, small-scale features can be obtained from VP continuum-based models through virtue of 

the high-resolution atmosphere and ocean boundary forcing. Simulations at kilometric resolutions 

using isotropic, plastic rheologies have been shown to generate linear kinematic features, such as 

leads and ridges, which look realistic, although are not well resolved and may not be oriented 

correctly [123].  

Furthermore, being at the interface between the two, sea ice responds strongly to the forcing provided 

by the atmosphere and ocean components within climate models [124]. This means that changes in 

model resolution that lead to improvements in the mean state (i.e., bias reduction) or variability of the 

atmosphere or ocean models, can lead to considerable improvements for the sea ice. For example, 

improvements to Southern Ocean circulation and SST biases can have a considerable impact on 

Antarctic sea ice cover [103, 110], whilst improved transport of warm Atlantic waters into the Arctic 

through Fram Strait can have a considerable impact on Arctic sea ice thickness [125]. 

Although continuum sea ice models are not expected to resolve small-scale dynamical features, they 

represent the heterogeneity of sea ice using a subgrid ice thickness distribution (ITD). Climate models 

with the most complexity in their sea ice components generally use a prognostic ITD to evolve the 

ITD explicitly at each model grid-cell. This can be considered akin to a resolution increase for sea ice 

models and can have a considerable impact on heat exchanges over, and through, sea ice (Komuro 

and Suzuki, 2013). Inclusion of a prognostic ITD has been shown to have a considerable impact on 

sea ice evolution and feedback within climate models [126]. For example, enhancement of the 

(positive) ice-albedo feedback, coupled with suppression of the (negative) thickness-growth and 

thickness-strength (i.e., ridging) feedbacks can lead to enhanced ice loss [127]. 

 

b) Biogeochemistry 

Models of marine biogeochemistry are typically used within ESMs to represent the ocean’s role in the 

global carbon cycle and increasingly used to explore how climate change may impact on marine 

ecosystems [128, 129]. Eddy-parameterising models still permit simulation of large-scale features and 

trends in marine biogeochemistry [130]. However, the ocean features that drive both the climate 

dynamics and the dynamics of many fish species ideally require much greater model resolution and 

regional realism [128, 131]. The computational cost of increased spatial resolution in models is 

compounded by the growing complexity of marine biogeochemistry models through expensive tracer 

advection [132]. Consequently, there are numerous ongoing activities to address biogeochemical 

complexity [133, 134] as well as the reduction of simulation cost [132, 135, 136]. These have 

important implications, for instance lengthening spin-up to reduce model drift [118] or in efficiently 

tuning model biogeochemistry [137]. Overall, model resolution and process complexity necessarily 

trade-off against simulation duration or experimental range. Choice of model sophistication may be 

clear where an end-application requires only large-scale accuracy over long duration, or fine-scale 

accuracy over shorter periods. Many activities span this range, requiring an awareness in end-users of 

the limitations that particular simulations impose in terms of spatial, physical and biogeochemical 

accuracy. For example, results with idealised models suggest that the ocean carbon budget may 

exhibit reduced sensitivity to variations in Southern Ocean wind magnitude with explicit rather than 

parameterised eddies [138]. 

 

 



c) Ice sheet modelling 

The horizontal size of Antarctic ice shelves range from the tiny Ferrigno ice shelf (~100 km2) to the 

giant Ross ice shelf (~500,000 km2) [139]. Basal melt can also be distributed over a range of length 

scales [140], concentrated in the first 20 km near the grounding line but with kilometre scale variation 

due to the presence of a network of basal channels. Vertical length scales of the ice shelf also need to 

be considered: with buoyant plumes of O(1)m), simulated melt is very sensitive to the vertical 

resolution at the ice shelf base and vertical discretisation in the ocean model as well as the 

computation of the thermal driving [141]. Although many ocean models include ice-shelf/ocean 

interactions [142, 143], current ESMs with eddy-parameterising and eddy-present resolution are 

unable to capture all the relevant processes due to the horizontal and vertical length scales. One 

approach is to parametrize the circulation inside the ice shelf cavity (ice pump, ice shelf melt) on 

scales that the models are able to resolve [142, 144]. 

 

In current ESMs, representation of fjords around Greenland glaciers are missing. Explicit 

representation of processes at tide water glacier fronts requires very high horizontal and vertical 

resolution (O(1)m) [145] due to the typical size of the buoyant plumes generated by the subglacial 

runoff. Therefore, parametrisation of fjord dynamics and representation of ocean/tide water glacier 

interactions are needed to link the glacier front to the modelled ocean. Work with detailed models of 

fjord dynamics [146–148] (at resolutions much finer than ESMs) and analytical models [149, 150] are 

working towards parameterisations suitable for ESMs.  

 

The impact of cold, fresh water resulting from ice sheet melting on the large-scale ocean circulation is 

also resolution dependent. Convection in the subpolar North Atlantic behaves differently in volumes 

and timing depending on whether melt water from Greenland glaciers finds its way into the interior of 

the Labrador Sea or is flushed within the Labrador Current towards the south [151, 152]. Since this 

boundary-interior exchange takes place via mesoscale eddies [153], it requires grid scales of 1/20°. In 

consequence, to correctly explore the potential response of the AMOC on ice sheet decay requires an 

ESM with eddy-rich resolution. 

 

5) Advances in parameterising the mesoscale for future Earth System Models 

Current mesoscale eddy parameterisations in eddy-parameterising models, based on GM, mimic 

baroclinic instability and act as a net sink of available potential energy. As discussed in section 3, GM 

does not fully capture the physics of eddy saturation and compensation. It has been proposed that 

solving an explicit eddy energy budget is critical to understanding and correctly modelling eddy 

saturation [154]. The new GEOMETRIC eddy parameterisation follows such an approach, using the 

parameterised eddy energy to rescale GM [155], and looks promising in terms of reproducing both 

eddy saturation and eddy compensation [156]. 

 

As discussed in section 2, many models in the eddy-present regime do not incorporate GM but also do 

not explicitly resolve the mesoscale field, which can lead to less realistic behaviour in eddy-present 

models than eddy-parameterising ones. Scale-aware implementations of GM will allow the scheme to 

be used at eddy-present and eddy-rich resolution without killing the eddy field [41]. Variability in 

eddy-present and eddy-rich models has also been shown to differ from that in eddy-parameterised 

models. This is to be expected as most parameterisations are designed to only capture the mean effects 

of eddies and not the variability of eddies, although some recent schemes attempt to also parameterise 



the variability[157–160]. The choice of resolving or parameterising the mesoscale at eddy-present 

(‘grey zone’) resolutions is likely to remain difficult. 

 

There is currently no parameterization implemented in climate models that mimics the important 

transfer of kinetic energy from small to large scales, namely kinetic energy backscatter, which affects 

the large-scale flow [161]. Recently, several studies using idealized numerical setups have developed 

energy backscatter parameterizations for ocean models. There are two main categories of 

parameterizations currently being developed:  

● A new set of momentum closures that have shown promise in mimicking kinetic energy 

backscatter. For example, stochastic eddy parametrisations have been developed for both 

eddy-parameterising and eddy-present simulations [158, 162].  The statistics of the stochastic 

models are crucial to mimicking eddy-mean flow interactions and improve the large-scale 

biases in ocean currents. Another example is a class of flow- and scale-aware 

parameterization based on a non-Newtonian stress relation [159, 163, 164]. Finally, anti-

viscous parameterizations have also shown improvements at eddy-permitting resolution [165, 

166], when energetically-constrained.  

● At eddy-parameterising resolution, part of the available potential energy extracted by the GM 

parameterization can be re-introduced at large-scale. For example, studies have reinjected the 

energy lost by GM into the momentum equation using a simple anti-viscous term [167–169]. 

We note that this approach a) could be combined with the new momentum closures which are 

more physically-appropriate than an anti-viscous term [161] and b) may have implications for 

computational cost due to a reduction in timestep required to satisfy the CFL criteria [169].  

 

Beyond the mesoscale, considering parameterisation of the submesoscale for coarser resolution 

models will be key to future model improvement. In particular, parameterization of other 

submesoscale impacts that are distinct from mixed layer eddy restratification, such as damping 

through submesoscale air-sea fluxes [170], lateral dispersion of pollutants and tracers [171] and 

submesoscale vertical transport below the mixed layer and nutrient pumping [172] are being 

developed. A different class of submesoscale parameterizations, those specifically designed for use as 

subgrid schemes to carry forward cascades of energy, enstrophy, and tracer variance in mesoscale-

resolving models are in development [41, 159, 173, 174] and being prototyped in realistic simulations 

where they are shown to have benefits in less damping leading to better realism of energy and other 

dissipation [41, 175].  

To satisfy the varying effective resolution versus a spatiotemporally variable mesoscale and 

submesoscale eddy scale, scale- and flow-awareness [30, 43] are essential ingredients of this class of 

parameterizations. One of the big advantages of scale-aware parameterizations is that they support the 

use of a hierarchy of resolutions as it avoids the need to retune parameterizations for each resolution 

[39, 41, 159]. 

 

6) Summary 

The choice of ocean resolution in full Earth System models will always be limited by computational 

resources. Although there has been notable progress in increasing ocean resolution since CMIP3, the 

average resolution of the ocean component is still above 50 km with an effective resolution on the 

order of 300 km [176] which is more than five times greater than the resolution required to resolve the 

Rossby radius at midlatitudes.  



This review has demonstrated that both the mean state of the climate and the variability is sensitive to 

the choice of horizontal ocean resolution. The mean state is not uniformly improved by increased 

resolution and the sensitivity is generally different across key metrics such as the Atlantic Meridional 

Overturning Circulation and the Antarctic Circumpolar Current. This demonstrates that the numerical 

and parameterization choices within configurations of ocean models remain important when 

producing the best possible representation of the ocean. In addition to horizontal resolution, vertical 

coordinates and resolution are also a key factor in ocean model performance, both in terms of 

capturing the baroclinic modes [177] and in particular regions determined by bathymetry such as 

overflows and ice cavities as well as in the surface boundary layer. 

Particularly relevant to the use of ocean models as a component of Earth System models is that the 

choice of ocean resolution has effects beyond the ocean physics itself. Difficult choices with respect 

to resolution will need to be made in future to satisfy the requirements for simulating the ocean 

biogeochemistry and capturing the details of ocean-ice sheet interactions as well as maintaining a 

computational cost that allows long multi-centennial simulations both for spin up and projections. 

This is likely to require implementing variable horizontal resolution so that resolution can be placed in 

areas of high ocean eddy activity and critical frontal or topographic features.  

 

 

Model data 

Model simulation output used in Figure 1 can be obtained via the Earth System Grid Federation 

(ESGF) nodes for CMIP6 HighResMIP: HadGEM3-GC3.1 [178–180], ECMWF-IFS [181, 182], 

CNRM-CM6-1 [183, 184], CMCC-CM2-(V)HR4 [185, 186], EC-Earth3P [187, 188],  MPI-ESM1-2 

[189, 190]. The CESM1-3 and DOE-E3SM data are not yet available on ESGF. For the CMIP6 

OMIP2, an archive of the model outputs and the scripts used to process the data are available at 

https://doi.org/10.5281/zenodo.3685918. 
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