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PERSISTENT REFLECTIVE OCEAN PARTICULATES OF BIOLOGIC ORIGIN:

A GEOENGINEERING STRATEGY

Abstract

by John Matthew Nicklas, Sc.B.
Brown University

May 2020

Advisors: Charles Lawrence and Baylor Fox-Kemper

This thesis project examines a novel method of geoengineering, a means to ameliorate
the effects of anthropogenic climate change. As discussed in the first chapter of my thesis,
solar radiation management (SRM) strategies reflect short-wave light, cooling the earth
without reducing the atmospheric concentration of greenhouse gases. The SRM strategy
explored in this thesis uses reflective biological particles that float on the ocean’s surface and
accumulate in the subtropical gyres. Coccolithophores are identified as candidate organisms
for generating these reflective particles, but my further investigation of this geoengineering
strategy does not depend on any specific properties of these microorganisms. In the second
chapter of this thesis, I modify the CESM fully-coupled global climate model to simulate
all aspects of this intervention, including the advection of the particles and their optical
properties. I then examine three modified CESM simulations which approximate the regional
climate effects of ocean SRM geoengineering. In the third and final chapter of my thesis,
I develop a statistical approach for filtering the global climate temperature. This climate
temperature was previously calculated as a 30-year moving average, a definition that implies
that the current climate is unknown. However, using a Kalman filter with dynamic equations
derived from basic radiation physics, I separated the annual gaussian noise uncertainty in
temperature (weather) from the climate temperature uncertainty. This approach can be
generalized to analyze many additional variables (such as precipitation). Kalman filters thus
discern the effects of geoengineering in real time, allowing control algorithms to react and
adjust the ocean intervention within the CESM model.
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Chapter One

Introduction to Ocean Geoengineering

1.1 Current Physical and Research Climate

1.1.1 Need for Intervention

Conventional means to prevent anthropogenic climate change increasingly appear insufficient.

(Olhoff and Christensen, 2019) Despite the complexity of economic models envisioning

future emissions scenarios, the growing annual global anthropogenic CO2 emissions are

incredibly well explained by a linear fit (R2=0.98 see Figure 1.1). Since the Kyoto Protocol

in 1998, despite increased awareness and investment in renewable energy, actual greenhouse

emissions have overtaken this linear interpolation. Carbon sequestration technologies (most

promisingly direct air capture) currently exist only as working small-scale prototypes.

Therefore, although the most recent IPCC Report (Masson-Delmotte et al., 2018) concluded

that 45% emissions reductions are needed by 2030 to keep global warming to below 1.5°C,

these scenarios are exceedingly improbable. This research focuses on developing a novel

treatment for the problem at hand: a way to mitigate the effects of elevated CO2 on

the climate system. Unlike in medicine, I do not have the luxury of complete physical

experimental systems to test climate treatments. In lieu of that impartial approach, I herein

utilize the next best tools to assess my proposed treatment: both dynamical/mechanistic

modeling and statistical modeling (Rougier and Goldstein, 2014).
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Figure 1.1 Global carbon emissions spanning from 1950 to 2019. The dashed line
is the linear fit, from which the real emissions in solid blue never deviate by more
than 0.74 Gt. (Friedlingstein et al., 2019). Note that the mass of CO2 is 3.664 times
the mass of emitted carbon, and the atmosphere has volume such that each Gt of
emitted carbon increases the [CO2] by roughly 0.25 ppm.

1.1.2 Moral Imperative vs Moral Hazard

In the absence of an available cure, a moral physician must make all attempts to reduce

pain, which is often practiced by managing symptoms (Carvalho et al., 2018). Applying this

concept to climate science, it is our moral imperative to reduce the affects of climate change

even if we cannot address the root cause. Within climate change literature, such alleviating

efforts are termed "adaptation". I believe that a deliberative physician-patient framework

(E. J. Emanuel and L. L. Emanuel, 1992), with its emphasis on informed consent, is the best

context from which to evaluate non-curative treatments for anthropogenic climate change,

termed geoengineering. This stance is directly opposed to that termed "moral hazard", in

which serious consideration of geoengineering is discouraged because such discussion might

detract from the political and economic impetus to reduce carbon emissions (Lin, 2013). This

"moral hazard" approach is implicitly paternalistic. True respect toward patient autonomy

(and by extension, established means of governance) is predicated on the assumption that
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individuals are capable of weighing complex choices and can understand the conceptual

distinction between permanent risk reduction and perennial treatment. We must endeavor

to offer both: carbon reduction and safe mitigation.

Along similar lines, the implementation of emissions reductions to lessen climate change

has become a highly charged political issue. Limited evidence shows that discussion of

geoengineering does not impact any citizen’s opinion toward emissions reductions (as

this stems from their core worldview), but does increase trust in climate science among

conservatives (Fairbrother, 2016). If a patient is averse to a particular treatment, a

deliberative doctor can build trust by discussing other treatments.

1.1.3 Reflective Stratospheric Aerosols: Many Side Effects

One technologically feasible means to suppress the effects of global warming is to loft

reflective aerosols into the stratosphere, which would cool the earth by reducing the intensity

of incoming shortwave light (Keith et al., 2016). However, this treatment would bring

inherent side effects: variegated alteration of regional precipitation and temperature, human

respiratory disease caused by aerosols, reduction in performance of crops, solar panels, and

telescopes worldwide to list a few (Robock, 2008). The stratospheric aerosol treatment

requires unpalatable preconditions: continuous aerosol dosing must be ensured, and global

effects will require consent of all sovereign nations to a single SRM plan. Should this form of

geoengineering cease, the climate system will rebound to nearly its CO2 equilibrium state (the

climate that would have existed without any SRM intervention) within 5 years. (Parker and

Irvine, 2018; McCusker et al., 2014) The consequences of such a "termination shock" would

be absolutely catastrophic, more so than even the current rate of warming, as populations

and ecosystems would not have no time to react to their changing climate.
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Figure 1.2 Comparison of 3 simulations of ocean plastic distribution over multiple
decades. My beneficial floating particles will accumulate within the climate model
in a similar manner. (Sebille et al., 2015)

1.2 Reflective Ocean Particles: An Improvement

An alternative treatment would generate a stable, nearly permanent reflective substance

at the surface of the ocean (Seitz, 2011; Evans et al., 2010), which would accumulate in

the subtropical ocean gyres on a timescale of decades (Sebille et al., 2015) (see Figure 1.2)

and be maintained by an autonomous artifical ecosystem. This ramp-up timescale of decades

entails different risks than the 1-2 year timescale for utilization of stratospheric aerosols (Hall

and Waugh, 1997), and especially the 1-2 week timescale (and air quality health risks) of

tropospheric aerosols (Pan et al., 2016). This would exchange many of the global side effects

of stratospheric aerosols for more manageable local concerns, such as potential damage to

aquatic ecosystems. Of note, these subtropical and oligotrophic deep ocean ecosystems which
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such a scheme may put at risk are among the least ecologically productive and are growing in

size (Polovina, Howell, and Abecassis, 2008). This treatment has been incompletely explored

within computer models: it has been simulated by uniformly increasing the albedo of the

entire ocean (Kravitz, Rasch, et al., 2018), by regionally increasing the albedo based on a

static map of cargo shipping traffic (Crook, Jackson, and Forster, 2016), and most resembling

what I shall attempt, by using static boxed regions overlaying the southern hemisphere gyres

(Gabriel et al., 2017). In Chapter 2, I demonstrate my methods for a more rigorous simulation

of this geoengineering strategy using the Community Earth System Model (CESM), which

captures both reflective particles’ motion due to and their simultaneous effect on ocean

circulation, as well as impacts on oceanic biogeochemistry (via a model of the primary aquatic

producers and consumers). In Chapter 3, I develop a statistical Kalman Filter control theory

framework for climate models. This statistic framework will allow me to assign probabilities

to the benefits (reduction of surface temperature) and potential adverse side effects (changes

to precipitation patterns and to the ocean ecosystem).

1.2.1 Biologic Basis and Feasibility

While this choice has little affect on the following simulation, I propose that a modified

species of coccolithophore would be ideal to generate the desired reflective particles.

Coccolithophores are abundant throughout the global oceans and can be easily cultured

(Geisen et al., 2004). Cocoliths, the microscopic scales protecting these unicellular

eukaryotes are reflective, enough to contribute 0.13% to Earth’s albedo, and cause local

increases of albedo by over 5% (Tyrrell, Holligan, and Mobley, 1999). Calcium carbonate

persists above the saturation depth (including the surface), and this will remain true

despite projected ocean acidification (Zheng and Cao, 2014). The mass of material that is

chemically available to calciferous organisms is on the scale of Pg, even if I only include

[CO−23 ] within the volume of water projected to have supersaturated [CaCO3] in 2100 under
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the most severe emissions projections (and thus augmented ocean acidification). Beyond a

means to cover a vast area of water (at least several million square kiometers), the rough

and corrosive conditions of the ocean surface are a significant engineering constraint for

any ocean geoengineering schemes, as even relatively tough buoyant plastics are rapidly

digested from larger structures into millimeter-sized chips (Morét-Ferguson et al., 2010).

Any factory-made cohesive structure is ridiculously impractical. But the past 50 years have

brought tremendous progress in bioengineering (especially of microorganisms). The genetic

code can be read with next-generation sequencing (Kulski, 2016), modified with CRISPR

(Adli, 2018), or even expanded to code for unnatural proteins (Y. Zhang et al., 2017).

Figure 1.3 Electron micrograph of
Emiliania huxleyi shown, the most
common species of coccolithophore.
Image credit to (Taylor, 2011)

To modify a representative coccolithophore, say

Emiliania huxleyi, to fit the role proposed in this

thesis, two changes would have to be made: buoyancy

and apoptotic self-embalming. To make these

microorganisms positively buoyant such that they are

not lost below mixed layer by diffusion, I propose

transgenically inserting gas vacuole proteins, such

as found in Microcystis aeruginosa (Jones and Jost,

1971). More complex changes would be necessary

to induce the genetically modified organism to seal

its spherical shell upon programmed cell death. For

this purpose, I propose a screen to selectively mutate

the genes involving CaCO3 deposition. In this screen,

coccolithophores will be grown in a viscous media so

that colonies cannot spread far from the original clonal cell, then upon apoptosis the dying

clonal cell releases a transgenic toxin killing all of its descendants, unless the living or dying

cell can find a way to seal off the coccoliths into a sphere. The resulting product will be, in

essence, a floating fossil that can persist independently of the culture of coccolithophores.
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Chapter Two

Simulation: CESM Changes

CESM (the Community Earth Systems Model) is a state-of-the-art, fully-coupled climate

model that critically encompasses atmospheric, ocean, and ice model simulations. Therefore,

CESM allows for all aspects of this floating reflective particle scheme to be simulated:

the accumulation of particles to the subtropical ocean gyres, the local and global effects

of the heat reflected away as shortwave light, and any feedback that these major climate

changes may have on the particles’ transport. This model has good capability to predict

core meteorologic variables such as temperature, cloud fraction, and precipitation (He

et al., 2015), in addition to the essential ocean variables such as current, salinity, and

thermocline (relative to observations) (Danabasoglu et al., 2012). While this model is

currently unable to resolve such mesoscale features as ocean eddies and individual storms,

well-studied paramaterizations are used to capture the effects of these unseen features (Gent

and Danabasoglu, 2011). Also, many variables of lesser importance may retain bias (He

et al., 2015).

This geoengineering scheme primarily involves modifications to the ocean component of

CESM version 1.1, POP2 (the Parallel Ocean Program) (R. Smith et al., 2010). Additionally,

the results of a large ensemble (LENS) containing many dozen simulation replicates is utilized

as a control (Kay et al., 2015).
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2.1 Prior Work

A few teams of researchers have previously simulated similar ocean geoengineering

interventions, although none before this work display dynamic variations in the changed

albedo. The majority of these experiments (and mine) combine a geoengineering scheme

with some potential representative concentration pathway (RCP) that envisions a future

trajectory of greenhouse gas concentrations. Within the geoengineering intercomparison

project (GeoMIP), such experiments are named G4 (Kravitz, Robock, et al., 2013).

Crook et. al. simulated two different kinds of ocean geoengineering interventions with

the HadGEM2-CCS model (a peer of CESM) on the background of the RCP4.5 greenhouse

emissions projection (Crook, Jackson, and Forster, 2016). In one experiment, named G4

Uniform, the surface of the ocean was uniformly changed to have an albedo of 0.10 rather

than 0.07 (see Figure 2.1). In a second experiment, the areas of ocean containing the major

routes of ocean cargo vessels were changed to have a substantially higher albedo according

to the volume of traffic (see Figure 2.2). This second experiment was named ’G4 Shipwake’

because it attempts to capture the effects of generating reflective microbubbles in the wakes of

large watercraft which could persist for days (Seitz, 2011). The uniform change of increasing

the albedo by 0.03 yielded a global cooling of 1.6K, whereas the Shipwake experiment was

only a third as potent, yielding a decrease in temperature by 0.5K. Regionally, both of these

experiments demonstrated substantial cooling in the Arctic (by up to 10K) and marginal

cooling in the tropics (by 1-2K). However there was uncertainty regarding whether cooling

would occur in the Southern Ocean and the North Atlantic region.

Another paper by Kravitz et. al. examined a uniform application of simulated albedo

geoengineering, a very similar intervention to the aforementioned G4 Uniform experiment

(Kravitz, Rasch, et al., 2018). This analysis combined results from 11 comparable coupled

climate models, and the experimental design was quite different. All simulations combined

in this paper simultaneously implemented A) an instantaneous quadrupling of CO2 to over

8



Figure 2.1 Simulated uniform albedo increase by +0.03 over the entire ocean
surface. Hashed sections indicate uncertainty compared to the RCP4.5 background.
(Crook, Jackson, and Forster, 2016)

Figure 2.2 This simulated alternative method of making the ocean more reflective
involves infusing ship wake with surfactant to make microscale bubbles. The
intervention was weighted to the northern hemisphere because there is more
commercial shipping traffic there. (Crook, Jackson, and Forster, 2016)
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1100ppm, a greenhouse gas concentration that would only be achieved after 2080 in the

most severe RCP8.5, and B) a uniform increase of ocean albedo to a sufficient level that

the top-of-atmosphere radiation is balanced (this ensures that no net heating occurs in the

climate system). To achieve this result, some of the models had to increase the ocean albedo

by a factor of 2.4 (from 0.09 to 0.23) whereas others required a much more modest change

(from 0.12 to 0.17). As can be seen in Figure 2.3, there is agreement between models that

cooling will occur in large parts of the tropical oceans, whereas warming results over most

land areas and in the poles. These results appear to directly contradict those observed in the

G4 Uniform experiment. Perhaps polar sea ice enhances the cooling effect of a slightly more

reflective ocean under low concentrations of greenhouse gas, but with higher greenhouse gas

concentrations and corresponding larger albedo changes, most polar sea ice disappears and

the most cooling occurs where there is more light to be reflected away, at the tropics.

Figure 2.3 This is a compilation of 11 G1 experiments - the temperature of the
climate system does not change by design, because the ocean albedo has been
augmented up to match a 4x jump in CO2 while keeping heat flux constant.(Kravitz,
Rasch, et al., 2018)
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Lastly, the findings of Gabriel et. al. most closely mimic what I will simulate in this

paper, albeit in a fixed and crude manner. (Gabriel et al., 2017) Recognizing that reflective

particles will concentrate in ocean gyres, the authors of this paper simply boxed in several of

these regions and specified that the albedo within these boxes would be increased from 0.06

to 0.15. Because mitigation to climate change will be most critical in the global south, the

three southern ocean gyres were chosen, and it was assumed that particles would not cross

the equator due to the intertropical convergence zone. This G4 experiment was conducted

on a slightly more severe greenhouse emissions background (RCP6) than work of Crook

et. al., but less severe than quadrupling of carbon in the G1 experiments. As Figure 2.4

demonstrates, the albedo change induced the greatest drop in temperature immediately on

top of the ocean gyres and in the Southern Ocean. Additional cooling effects were present

throughout the southern hemisphere and in the Arctic, but statistically significant warming

also occurred east of Japan.

Figure 2.4 Simulated albedo increase of +0.07 within the boxed regions
encapsulating the three southern ocean gyres. Most cooling occurs in the southern
hemisphere, but distant effects are also observed in the northern hemisphere.
(Gabriel et al., 2017)
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2.2 Flotation: Convection-Diffusion

Buoyant particulates of any size will move up in the water column, and they will also

spread out vertically by diffusion. This simulation is implemented as a variation on the

explicit advection-diffusion difference approximation, and is given more rigorous treatment

in Appendix B1. Both this implemented buoyancy scheme and the existing discrete tracer

transport equations (R. Smith et al., 2010) are implemented as linear differential operators

in space, which are first-order accurate in time. The positional change from all of these

operators is added together to generate the overall particle movement. By Theorem 4.3.1 of

Time-Dependent Problems and Difference Methodsn(Gustafsson, Kreiss, and Oliger, 2013),

the approximation schemes of each of these operators may be implemented sequentially

at each time step. Due to the buoyancy affecting only the introduced reflective particles,

this advection-diffusion scheme is implemented in a distinct section of code (namely

cfc_mod.F90) from the schemes which affect all tracers. Similar work has simulated sinking

biological tracers (Brett et al., 2020).

Within this simulation, the particles are given a rise velocity of 5 m/day. This rate is

comparable to the sinking velocity of coccolithophores, (H. Zhang et al., 2018) and larger

rise velocities give rise to numerical instabilities in low-resolution models. This rise velocity

(examined in the advection-diffusion scheme in Appendix B1.2) means that a large portion

(30%) of the buoyant particles remain in the top layer (10 m) of the model, whereas for control

neutrally buoyant particles, only about 5% of the particles remain in the top layer. Over 60%

of buoyant particles but only 15% of neutral particles are contained within the top 30 m of

ocean. This concentration is plotted with respect to depth in Figure 2.5. Furthermore, the

combination of this buoyancy scheme with the ocean currents already computed in CESM

yield the expected accumulation of buoyant particles at the surface in the aforementioned

subtropical ocean gyres (see Figure 2.6).
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Figure 2.5 The averaged concentration of buoyant particles (labeled CFC11 in red)
and non-buoyant control particles (labeled CFC12 in blue) are plotted across ocean
depths. These concentrations do not add up to the same total because the buoyant
particles are both being added to the ocean surface in a greater quantity than the
control particles and decaying at a constant rate, whereas the control particles do
not decay.

2.3 Heat Flux at Ocean Surface

Within the overall CESM architecture, ocean albedo was originally computed in the driver

(aka coupler for v2), taking 6 inputs of both visible and near-infrared energy down-welling

fluxes for light that is diffuse, direct, and has passed through ice. The original algorithm

just summed these and multiplied by a function of the sun’s azimuth angle cos z to yield

the ocean-warming radiative flux. Instead, I modified the code such that the visible and

near-infrared lights were summed within the driver and passed to the ocean model as direct,

diffuse, and ice-penetrating light. From there, those components were taken as inputs to a

custom-built COART emulator, which would yield both A) the amount of light that passes

into the ocean and will be absorbed as heat, and B) the amount of light absorbed in the top

10 m of the ocean (as real-world reflective particles absorb light too).

13



Figure 2.6 The following figures demonstrate that this flotation method works.
They show the concentration of buoyant particles (left) and non-buoyant control
particles (right) at both the top 10 m of the ocean (above) and 40-50 m below
the surface (bottom). Clearly, the buoyant particles are accumulating on the ocean
surface in the ocean gyre regions. Please excuse the differences in concentrations -
in this particular run the total amount of control particles has been added at a rate
only 0.1 times that of the buoyant particles, but the color bars have been scaled
appropriately.

2.3.1 COART Model

These 3 inputs are then passed to a custom built-to-purpose emulator of the COART model

(Jin, Charlock, Rutledge, et al., 2006), based on a series of over 1500 computations from

the COART online model over the range of expected values. Unfortunately, prior computed

tables did not include such unnaturally high concentrations of reflective particles in the water

(Jin, Charlock, W. L. Smith, et al., 2004). This emulator uses a particle scattering coefficient

of the water b, a total chlorophyll concentration Chl (both real chlorophyll and additional

pigment produced by the organic particulate-makers), and the angle of the sun for direct

light. Diffuse light is assumed to have an angle cos z = 0.67, and wind (velocity squared) is
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also accounted as an additional boost to the albedo (Jin, Qiao, et al., 2011). Ice-penetrating

light was simply deposited as energy below the first layer of the ocean. See Appendix B2 for

a detailed mathematical description of this emulator, which is in essence a series of nested

interpolation functions.

Figure 2.7 Albedo outputs of the COART Online and Emulator Differences. Note
that this function lives in more dimensions than can be plotted - these are the values
with [Chl]=0.2 (Jin, Charlock, Rutledge, et al., 2006)

Figure 2.8 Absorbance outputs of the COART Online and Emulator Differences.
Note that this function lives in more dimensions than can be plotted - these are the
values with b=5 (Jin, Charlock, Rutledge, et al., 2006)

This custom emulator was developed both because the COART code itself did not run

15



with the required CESM FORTRAN compilers, and this algorithm may likely be too slow

to run within the model (at each timestep, at each grid point). However, my emulator is

accurate in albedo to within an error margin of <1% in 98% of tested cases, and in top-layer

absorption in 73% of tested cases. This emulator never has a point error exceeding 5% for

either albedo or absorption. Below the top layer, everything is calculated as it was originally

within the CESM.

2.4 Growth and Decay

Growth only occurs on the surface, through a user-defined input field. Particles currently

have a half-life decay of 1 year and are grown uniformly over the Earth’s surface. Simulation

results indicate that while such particles will temporarily accumulate in the subtropical gyres,

this accumulation is seasonal (occurring only in the summer). This suggests that a half-life

of 1 year is too short for these reflective particles to maintain a permanent reflective area.

I plan to conduct experiments in which growth only occurs at the mouths of major

eutrophication-prone rivers in a follow-up experiment, as this is expected to produce a slightly

different distribution of reflective particles. Preliminary results indicate that the 1 year

half-life is too short for the particles to migrate from river deltas to the subtropical gyres.

2.5 Underlying Model Specifications

CESM1.1 was run with CAM5 atmosphere and ocean biogeochemistry. The resolutions used

were 0.9x1.25 degree spherical grid for atmosphere and land models, gx1v6 ice and ocean

grids (334x320 cells, 60 level depths, displaced pole). The atmosphere, land, and ice models

had an half-hour time step, whereas the ocean had an hourly time step. Carbon dioxide

emissions followed the business-as-usual RCP8.5. See LENS (Kay et al., 2015) for details.
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2.6 Preliminary Results from Geoengineering Simulations

Following the GeoMIP G4 protocol (without termination), experiments were started in

2020 and run through 2089 under a background context of RCP8.5, the most severe,

business-as-usual emissions scenario. While more experiments are ongoing, three are

examined in this thesis: a control run, a maximal intervention experiment (in which

global cooling exceeded the effects of greenhouse emissions), and a minimal intervention

experiment (in which global cooling offset a small portion of the warming from greenhouse

emissions). The overall temperature changes are shown in the plot below (Figure 2.9).

Figure 2.9 Time series of averaged global surface temperatures from the three
geoengineering simulations compared to the LENS RCP8.5 forecasts (gradations in
red shading correspond to 1σ and 2σ). The control simulation is slightly warmer
than the ensemble forecast because it uses a different (COART-based) computation
of reflection and absorbance. The minimal geoengineering experiment reduces global
temperature by about 1.3K. However, the maximal geoengineering experiment more
than compensates for the greenhouse gas emissions (a cooling equal in magnitude
to those seen in historical ice ages).
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Regarding the regional changes in temperature, there was remarkably uniform cooling in

both the minimal and maximal geoengineering experiment (see Figure 2.10). In particular,

cooling was not concentrated in the tropics as was observed in atmospheric SRM experiments.

Warming was observed the Northwest Atlantic ocean, but this result is expected due to a

substantial acceleration of the meridional overturning circulation (see Figure 2.11).

Figure 2.10 The ocean particle geoengineering strategy is simulated to have roughly
uniform impact on surface temperature relative to the RCP8.5 control run, except
for the Northwest Atlantic Ocean. As will be true for the subsequent figures
(2.10-2.15), the top row of maps corresponds to the absolute temperatures observed
in the two geoengineering experiments, whereas the bottom row corresponds to
the differences between these experiments and the control run. The maximal
intervention experiment maps are on the left and the minimal intervention maps
are on the right. Figures 2.10-2.13 are 30-year averages.

The direct effects of the changes to ocean albedo can be observed in the differences in

the heat from shortwave light flux that is absorbed by the ocean. As can be seen in Figure

2.12, large regions where less heat is absorbed can be seen in the subtropical gyres in both

geoengineering experiments. Of note, there was also more light reflected away near the poles,

as sea ice is preserved and augments the ocean’s reflectivity. In the tropical South Pacific

(east of New Guinea), more light was absorbed due to a loss in cloud cover over this region.
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Figure 2.11 The ocean particle geoengineering strategy dramatically accelerates
the transport of warm water into the Northwest Atlantic Ocean from the tropics,
resulting in the observed warming. Note that the colorbar is saturated within the
bottom-left difference panel, and the flow is roughly 3 times greater in the maximal
geoengineering experiment relative to the control (> 32 Sv compared to ≈ 10 Sv).

Figure 2.12 Decreased light is absorbed in the subtropical gyres as a direct result
of ocean particle geoengineering. Secondary effects include decreased heating near
the poles as light is reflected by sea ice, and increased heating in the tropical South
Pacific due to a loss of cloud cover.

19



Figure 2.13 The observed precipitation pattern in both geoengineering simulations
resembles a La Nina event, in which precipitation decreases in the South-central
Pacific. However, there is much greater uncertainty regarding this climate effect, as
the regions where precipitation increases are not consistent.

Two other variable fields are of significant interest, but have not yet been examined in

great detail. The precipitation pattern observed with both geoengineering cases resembles

a La Nina event (see Figure 2.13). Precipitation decreased overall, but this likely reflects

a cancellation of the projected average increase in precipitation from climate change

(Stocker et al., 2013). Also, the primary ocean productivity (as approximated by the small

phytoplankton chlorophyll concentration) was on average decreased by roughly 60% in the

maximal geoengineering experiment and increased in the minimal experiment (see Figures

2.14 and 2.15). This decrease was mostly due to light limitation at the poles (where a small

fraction of reflective particles were distributed), as primary productivity in the subtropical

gyres is usually limited by nutrient scarcity. In November (Figure 2.15) when nutrients are

available in these gyres, light scarcity only prevents growth in the maximal case.
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Figure 2.14 The simulated effects of ocean geoengineering on small phytoplankton
growth at the surface. Note this figure is a snapshot of one specific date (May 1st)
rather than a 30-year average.

Figure 2.15 The simulated effects of ocean geoengineering on small phytoplankton
growth at the surface. Note this figure is a snapshot of one specific date (November
1st) rather than a 30-year average.
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Chapter Three

Statistical Filtering

The results of any scientific experiment must be judged within a statistical context (and

particularly compared to the null hypothesis), and this usually demands multiple replicates.

However, the vast computational resources required to run even a single CESM simulation

(with the aforementioned modifications and settings) are vast: upwards of 1700 processor

hours per simulated year, or 120,000 processor hours per experimental run. Therefore,

I utilized a specialized statistical model, Kalman filtering, to form Bayesian confidence

intervals around individual time-series. However, as this technique cannot eliminate bias

(should that individual time-series be far from the unknown mean) and assumes a normal

distribution, the probabilities I generate cannot be taken as much more than best guesses.

3.1 Kalman Filtering, Smoothing, and Extensions

In the widely used statistical Kalman filtering framework (Kalman, 1960), where subscripts

represent time step, let xn be the variable of interest (an unknown state) at the time step

n, and let this variable be affected by three quantities: its prior state xn−1, the time n, and

some source of internal noise wk that is propagated forward to the next time step. This is

known as the dynamic equation. At that time, I also make a measurement yn that reflects

xn but also contains additional measurement noise vn, the measurement equation. The two
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fundamental assumptions of basic Kalman filters are that these functions are linear, and that

both sources of noise wn and vn have a Gaussian distribution. Linear functions on vectors

are matrices, so I can write: 
xn = Φnxn−1 + wn

yn = Hnxn + vn

(3.1)

Likewise, the covariance matrices of these model and measurement errors are respectively:

Q = E[wnw
T
n ] R = E[vnv

T
n ] (3.2)

Under these assumptions, given all prior and current observations, the optimal estimate of

the current state ∗
xn and its error covariance matrix Pn = E[(xn −

∗
xn)(xn −

∗
xn)T ] can be

generated inductively, starting with initial estimates for ∗x0 and P0:

∗
xn|n−1 = Φ

∗
xn−1 a priori estimated state projection (3.3)

Pn|n−1 = ΦPn−1ΦT + Q a priori state covariance projection (3.4)

cn = yn − H ∗
xn|n−1 innovation residual (3.5)

Sn = HPn|n−1HT + R innovation covariance (3.6)

Kn = Pn|n−1HTS−1n Kalman gain (3.7)

∗
xn =

∗
xn|n−1 + Kncn a posteriori estimated state (3.8)

Pn = (I−KnH)Pn|n−1 a posteriori state covariance (3.9)

Note that I have dropped the time subscripts on Φ and H in this recursive loop, but they

too are updated at each time step. The three new terms introduced above are designated

as the innovation covariance Sn, the innovation residual cn, and the Kalman gain Kn. This

past-to-present filter can be extended into a RTS smoother (Rauch, Tung, and Striebel,

1965), which encompasses all known measurements into each estimated state by running
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backward from the last known estimates of ∗xn and Pn:

K̂n = PnΦP−1n|n−1 back-updated Kalman gain (3.10)

∗̂
xn =

∗
xn + K̂n(

∗̂
xn+1 − Φ

∗
xn) back-updated estimated state (3.11)

P̂n = Pn +
∗
Kn(P̂n+1 − Pn|n−1)K̂T

n back-updated state covariance (3.12)

This Kalman framework can be extended to include a control vector un and nonlinear

dynamic F (·, un) and observation equations h(·):
xn = F (xn−1;un) + wn

yn = h(xn) + vn

(3.13)

The simplest way to achieve this is to linearize F (·;un) and H(·) about the previous time

step, known as the Extended Kalman Filter (R. E. Kopp and Oxford, 1963; Cox, 1964):
Φn = ∂F (x;un)

∂x

∣∣∣∣
x=

∗
xn−1

Hn = ∂h(x)
∂x

∣∣∣∣
x=

∗
xn|n−1

(3.14)

More advanced methods exist to ensure that this linearization does not lead the filter astray

like the unscented Kalman filter (UKF) (Wan and Van Der Merwe, 2000), but as I will

demonstrate later that the EKF is sufficient for these purposes due to the nature of the

nonlinear model developed in the following section.

3.2 Weather as a Noisy Climate Signal

Weather reflects the underlying climate with additional stochastic variability arising from

dynamic instabilities. For instance, anomalies in mean annual global temperature are

primarily due to El Nino events in the tropical Pacific, which typically oscillate with a

period of less than 5 years (Hu and Fedorov, 2017). It is a common convention ((WMO),

2017) to report the climate as the 30-year running average of temperature (30 < T >).
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Therefore, in order to make a probabilistic estimate of the effects of climate interventions

in real time, I propose the weather system fits into the Kalman filtering framework:
30 < T >n = F (30< T >n−1, un) + wn

Tn =30< T >n +vn

(3.15)

Utilizing the HadCRUT4 dataset because it extends back to 1850 (which is also the start

point for 20th century runs within CMIPs), I can generate estimates of the measurement

covariance matrix R. For instance, if I take Tn to be a one-dimensional mean temperature

of the whole planet, then I generate the following graph: The standard deviation of the

Figure 3.1 Temperature anomaly from HadCRUT4 (Morice et al., 2012) compared
to the 30-year running mean

difference between the 30-year running mean and the yearly temperature is 0.103. This

distribution is very close to being Gaussian, so a portion of the Kalman filtering assumptions

are met.
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Figure 3.2 Histogram of differences between annual temperature anomaly and
30-year running mean, with normal distribution overlaid in red. Standard deviation
is 0.103. This does not form a perfect normal distribution, but it is close enough for
the Kalman filter to make a good approximation.

3.2.1 Derivation of Dynamic Equation

I begin by examining a toy model involving a uniform planet and the principal energy fluxes.

This model was inspired by the work of other published energy-budget models (Hu and

Fedorov, 2017; Kravitz, Rasch, et al., 2018).

Eflux = SWin −LWout (3.16)

Tn − Tn−1
k

Cheat = (Solrad(absorption)) −(σsf (Tn−1)
4(1− backscatter)) (3.17)

k is 1 year, the time step of this model. T 4 is the ideal black body radiation, which derives

from quantum mechanics, particularly the Stefan–Boltzmann law (Boltzmann, 1884), from

which I get the Stefan-Boltzman constant σsf = 5.670 ∗ 10−8Wm−2K−4. For the Earth,

because the temperature is in the neighborhood of 287K, this black body radiation is

primarily in the infrared spectrum, between the range of 200 and 1200 cm−1 (Zhong and

Haigh, 2013). While a portion of this light β0 back-scatters off of the atmosphere due to

26



gasses other than CO2, the back-scattering from CO2 is directly proportional by β1 to the

logarithm of the CO2 concentration (see Figure 3.3).

Figure 3.3 Linear correlation between log [CO2] and the proportion of LWout that
is back-scattered. Adapted from (Zhong and Haigh, 2013). The red line represents
the back-scattering due to CO2 at all infrared frequencies, whereas the blue line is
just the spectral region 550-800 cm−1

Ebackscatter = Egreenhouse−absorb/2 ≈
(
β0 + β1 log10([CO2])

)
Etotal (3.18)

The rationale behind this correlation can be demonstrated by a series of simplifications,

particularly Beers Law and approximating absorption peaks as normal distributions. Of

the outgoing radiation that is absorbed by greenhouse gases (Egreenhouse−absorb), principally

carbon dioxide and atmospheric water, half is re-emitted outward by this layer, and half is

back-scattered back to the surface. See Appendix C1 for a more detailed explanation.

The overall albedo of Earth is primarily determined by clouds and the optical properties

of the dominant surface in each biome, which change relatively little on an annual basis
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(Stephens et al., 2015). Reductions in sea ice and snow cover may be traded for increases

in clouds, such that no global albedo change is yet attributable to anthropogenic climate

change (Loeb, Lyman, et al., 2012), although the Arctic albedo has decreased dramatically

(Pistone, Eisenman, and Ramanathan, 2014). Therefore, I assume an underlying albedo of

β2 = albedoconst = 0.29, as measured by the CERES satellite (Wielicki et al., 1996; Loeb,

Wielicki, et al., 2007).

On a year-to-year basis, I assume that anomalies in the planet’s albedo are primarily

determined by atmospheric aerosols generated by volcanic eruptions. Unlike carbon dioxide

absorption, the light reflected by these aerosols is broad spectrum (hence clouds of dust

appear white). Therefore, I translate the aerosol optical depth reported by (Sato et al.,

1993; Vernier et al., 2011) into units of energy:

τ = log(
Erec′d
Etrans′d

) (3.19)

e−τ =
Etrans′d
Erec′d

(3.20)

To translate this into units of albedo, let’s approximate that of the light which is not

transmitted through the atmosphere, all the energy of the light not absorbed by the top

layer of the atmosphere is reflected directly back into space, whereas the rest is absorbed.

Again by Beer’s Law, if that top atmosphere layer is proportion β3 of the total, then

β3τ = log(
Erec′d
Etrans′d

) (3.21)

e−β3τ =1− Erefl′d
Erec′d

(3.22)

1− e−β3τ =
Erefl′d
Erec′d

= albedoaerosols (3.23)

Since this now considers two kinds of albedo, the fractions of light which are not reflected
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at each level (top of atmosphere and surface) are multiplied together as below:

absorption =(1− albedoconst)(1− albedoaerosols) (3.24)

=(1− β2)
(
1− (1− e−β3τ )

)
(3.25)

=(1− β2)e−β3τ (3.26)

While the annual total solar irradiance Solrad does vary by 0.1% between solar minima

and solar maxima on a cycle lasting about 11 years (G. Kopp and Judith L. Lean, 2011;

Wang, J. L. Lean, and Sheeley, 2005; Willson and Hudson, 1991), for the purposes of the

this toy model I assumed a constant 1364 W/m2, or 341 W of insolation per m2 of Earth’s

surface area. In a later version of the model, this constant parameter was allowed to be

tuned to values in the neighborhood of 341 W/m2. Assuming this value, in a steady-state

climate equilibrium with no volcanic eruptions, 242 W/m2 of shortwave light is absorbed by

the climate system.

Figure 3.3 from (Zhong and Haigh, 2013) tells us that for every order of magnitude by

which [CO2] increases, an additional 15.45 W/m2 is absorbed. This assumes a constant black

body temperature, which I will assume to be 286K in a steady-state climate equilibrium.

This allows us to solve for β0 and β1 as follows, with the additional information that in the

pre-industrial climate, log10([CO2]) ≈ 2.45:

Tn − Tn−1
k

Cheat = 0 = (Solrad(absorption))− (σsf (Tn)4(1− backscatter)) (3.27)

0 = 341W/m2(0.71)− σsf (Tn)4(1− β0 − β1 log10([CO2])) (3.28)

242W/m2 = σsf (286K)4(1− β0 − β1(2.45)) (3.29)

15.45W/m2 = σsf (286K)4(β1) (3.30)

0.0407 = β1 (3.31)

0.633 = 1− β0 − 0.0407(2.45) (3.32)

0.267 = β0 (3.33)
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Finally, the value of Cheat, representing the heat capacity of the whole climate system

and land mass on a yearly time scale, was a quantity that involved substantial uncertainty.

Reported literature values of this heat capacity are 17 ± 7 W (year) m-2 K-1, (Schwartz,

2007).

Combining all of these derivations and notating the values which change at time n (but

eliminating units for simplicity), I obtain the following as the dynamic equation

Tn − Tn−1
k

Cheat = SWin(1− β2)e−β3τn −(σsb(Tn−1)
4(1− β0 − β1 log10([CO2]n))) (3.34)

Tn =
SWink

Cheat
(1− β2)e−β3τn +Tn−1

(
1− σsbk

Cheat
T 3
n−1(1− β0 − β1 log10([CO2]n))

)
(3.35)

Tn = α1(τn) +Tn−1
(
1− α2([CO2]n) T 3

n−1
)

(3.36)

Tn = F (Tn−1; τn, [CO2]n) (3.37)

This dynamic equation was first run as a blind model, merely running the dynamic equation

recursively without changing any parameters or state variables based on observations. The

trajectory of this blind model was then compared to the 30-year mean, shown as black

in Figure 3.4 in order to tune the parameters. The blind model was initialized with a

temperature of 286.7K as this was the starting temperature of the 30-year mean (see Figure

3.4). In yellow, parameter values were taken as derived from literature sources above (with

β3 = 0). However, this yellow blind model substantially underestimated the sensitivity of

the climate system to CO2. Thus, the blind model was fit to the 30-year mean using sum

of squared differences minimization with Microsoft Excel’s GRG nonlinear optimization,

varying only the parameters Cheat, β0, β1 and β3 to keep the model identifiable. This modified

blind model is displayed in magenta, and the updated parameters are displayed in the inset

table. Note that β1 increased by more than 75% and β2 decreased to compensate, while Cheat

increased from 17 to 43. In orange, there is an intermediate blind model in which β3 = 0

but the other parameters (Cheat, β0, β1) are fit, and these take similar values as the purple

blind model.
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Blind Model Description R2 Cheat β3 β1 β0

Literature Parameter Values 0.7005 17 0 0.0407 0.2674
Fitted Param. Values w/o β3 0.9366 43.41 0 0.0715 0.1914
Fitted Param. Values including β3 0.9531 42.89 0.0533 0.0722 0.1904

Table 3.1 Values of fitted coefficients in blind model

Figure 3.4 Comparison of the various blind models to the 30-year running mean of
the HadCRUT temperature. Discussion of this figure is in the preceding paragraph.
Parameter values are listed in Table 3.1.

3.2.2 Completion of EKF

Returning to the functional form of F in Eq. 3.36, note that this is a non-linear function.

It includes both a time-varying term α1,n and a fourth power of Tn−1, with a time-varying

coefficient −α2,n. (Note that all of the time-varying control parameters and fitted β’s have

been absorbed into these two time-varying parameters of the fundamental model, and I
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sometimes notate α1 and α2 with their critical control parameters in parentheses.)

α1(τn) =
SWink

Cheat
(1− β2)e−β3τn = α1,n (3.38)

α2([CO2]n) =
σsbk

Cheat
(1− β0 − β1 log10([CO2]n)) = α2,n (3.39)

The projection step of the Kalman filter requires that I somehow include both of these

nonlinear terms. So, the extended Kalman filter (EKF) simply requires the derivative of this

function F with respect to Tn−1 at time n.

Φn =
∂F (Tn−1; τn, [CO2]n)

∂Tn−1
=
(
1− 4T 3

n−1α2([CO2]n)
)

(3.40)

However, the basic Kalman filter update equation 3.3 no longer holds, as merely taking

ΦnTn−1 does not resemble the original function F . Therefore, I will merely replace the

projection equation 3.3 with the real definition of F:

∗
Tn|n−1 = α1(τn) +

∗
Tn−1

(
1− α2([CO2]n)(

∗
Tn−1)

3
)

(3.41)

Also rewriting equation 3.11 for the RTS smoother, this function F again replaces ΦnTn−1

∗∗
Tn =

∗
Tn +

∗
Kn

(
∗∗
Tn+1 − α1(τn)−

∗
Tn
(
1− α2([CO2]n)(

∗
Tn)3

))
(3.42)

which backward-propagates the information from new measurements to the smoothed ideal

climate temperature in the past. In the course of running this RTS Smoother, I found that

the results only differ slightly from the EKF. Therefore, the primary focus of this thesis

will remain on the EKF, which incorporates information only up to the current time point.

However, comparisons are most appropriate between the 30-year running mean temperature

and the model state of this RTS Smoother, as both metrics incorporate information from

both the past and future.

Justification that EKF will not diverge

The time-dependent values of α1 and α2 do not vary dramatically: α1 = 5.637± 0.006 and

α2 = 8.310±0.040∗10−10. Therefore, there is a very strong negative feedback arising from the
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−T 4 term, which will keep any Kalman filter predictions (particularly those from an UKF)

locked into the region immediately surrounding the blind model prediction. The amount by

which the true hidden climate temperature changes, Tn−Tn−1 = F (Tn−1; τn, [CO2]n)−Tn−1,

looks quite linear in the vicinity of 287.6K. Therefore, I do not have to worry about filter

divergence, and the EKF is more than sufficient for this purpose of planetary average climate

modeling.

Figure 3.5 Graph of the update equation, the amount by which T will change over
the next time step gives its current value and a constant α1 and α2. Note that this
only has one intercept (one stationary point), and there is a good linear fit in this
region.
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3.3 Initial Results on Historical Data

The blind-model-fitted β values (including β3 were plugged into an EKF with the "noisy

measurements" of yearly temperature coming from the aforementioned HadCRUT dataset.

The values of the model and measurement error were adjusted individually to Q = 0.001, R =

0.007, and the results look very promising. In particular, Figure 3.6 shows the 5 ways

of analyzing the global temperature from 1850 through 2019: plotting raw, averaging,

predicting, filtering, and smoothing. All of these lines and scatters show a very similar

overall trend, with temperature remaining nearly constant until 1925, rising by about 0.3K,

then briefly plateauing between 1950 and 1975, only to resume warming at a rate of 0.9K

per 50 years. Furthermore, the Kalman filter (and smoothed) climate states appear to more

closely match the 30-year averaged climate temperature than either the raw temperature or

the blind model prediction.

Next, the innovation (co)variance Sn and the EKF a priori estimated state are compared

to "noisy" yearly measurements of temperature yn = Tn in Figure 3.7. I write (co)variance

because this term is currently a scalar rather than a matrix. Notice in the figure that the

initial large estimate of this variance (due to a large initial guess of P0) is rapidly burned

off. Assuming that the Kalman filter estimated state closely approximates the true "climate

state" then these innovation residuals should be normally distributed. In Figure 3.8, observe

that the distribution is indeed very close to normal. Furthermore, Sn is the most appropriate

value to use to make this comparison, as it combines time-varying uncertainty regarding the

model state and the constant "measurement error" R, and thus allows for the generation of

a marginal likelihood of the observations.

log(P [y0..169]) = log
169∏
n=0

N
(
yn;Hk

∗
xn|n−1, Sk

)
(3.43)

=
169∑
n=0

−1

2

(
cTnS

−1
n cn + log |Sn|+ (1) log 2π

)
(3.44)

(There are 169 years from 1850 to 2019, and the (1) is due to the fact that the observations
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Figure 3.6 The blind model (again in magenta) and the 30-year running mean

temperature (again in black) are now joined by the EKF ∗
xn and RTS ∗̂

xn forward
posterior estimates in blue and green. Annual measurements of temperature are
shown in +, which direct the EKF and RTS estimates of the true climate state.
Note that the EKF and RTS estimates are usually in between the 30-year mean
temperature and any bumps in annual temperature, such as the cooler years that
occurred around 1910.

are one-dimensional).
√
Sn = σ consistently has a value of ±0.098K, meaning that about

73% of the innovation (co)variance arises from the prescribed measurement uncertainty R.

Next, the RTS backward-updated estimates of the model state and state (co)variance

are compared to the 30-year average temperature measurements (see Figure 3.9). Here, the

30 < T >n is taken to be the truth value of the xn that I am trying to estimate. This

is a bit of a stretch, but I want to ensure that the Kalman estimates behave as closely as

possible to an consensus-recognized measurement of the "climate state". Note that the final

35



Figure 3.7 EKF forward posterior ∗
xn, with 1σ and 2σ windows of the innovation

(co)variance
√
Sn, compared to the annual measurements of temperature.

Figure 3.8 The EKF innovation residuals cn are fit nicely to a normal curve, so
they are nicely predicting the distribution of temperature measurements.
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uncertainty in the model state P̂n is significantly less than the innovation uncertainty Sn.

In particular, σ =

√
P̂n ≈ ±0.036K. Surprisingly, these 30-year averages also appear to be

normally distributed about the RTS state estimate (adjusting for the state uncertainty), as

can be seen in Figure 3.10. Similarly to before, the marginal likelihood of these model states

are calculated as follows. (Note that there are fewer years in the series, because the 30-year

moving average requires a 15-year buffer before and after xn =30< T >n.)

log(P [x15..154]) = log
154∏
n=15

N
(
xn;

∗̂
xn,

)
(3.45)

=
154∑
n=15

−1

2

(
(xn −

∗̂
xn)

T

P̂n
−1

(xn −
∗̂
xn) + log

∣∣∣P̂n∣∣∣+ (1) log 2π

)
(3.46)

Figure 3.9 RTS-smoothed estimate ∗̂
xn, with 1σ and 2σ windows of the

backward-updated state covariance, compared to the 30-year average of temperature
(black stars). The a posteriori EKF estimate ∗

xn is also plotted on this figure in blue.
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Figure 3.10 The distribution of differences between the RTS-estimated state ∗̂xn and
30 < T >, adjusted for the RTS-estimated state covariance. This normal distribution
implies that the RTS state and state (co)variance are fit nicely to predict the 30-year
mean temperature measurements.

3.3.1 MCMC Variation of Parameters

To ensure that there was not a better combination of the time-invariant parameters of the

Kalman filter model, I conducted a Metropolis-Hastings search of the parameter space.

To prevent issues with generating non-identifiable models, I only included the parameters

Cheat, β0, β1, β3, R and Q. Each of these parameters was varied by simultaneously sampling

in a multivariate normal distribution about these parameters’ current value, with standard

deviations proportional to these parameters initial values (from the blind model fitting).

The total log-likelihood of each sample was computed as the sum of the log-likelihoods

of the 30-year averaged climate log(P [x15...154]) and the "noisy" annual temperatures

log(P [y0...169]). This was then multiplied by an adjustment factor of 1/10 to reflect the

average log-likelihood of a collection of 31 individual temperature or climate measurements.

This reduced the absolute probability difference between sampled parameter values and

encouraged the Metropolis-Hastings algorithm to explore the parameter space (see Figure

3.11).
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Figure 3.11 The adjusted log-likelihood score evolution over time in the MCMC
model over the course of 5000 trials. Dot size corresponds to the adjusted
log-likelihood of the accepted sets of parameter values. The color of these dots
corresponds to the order with which these accepted parameter values appeared, with
red corresponding to early in the run (burn-in period) and green corresponding to
later.

The average probability density (likelihood) at a single measurement (either of Tn = yn

or 30 < T >n= xn) is roughly 1.3 throughout this MCMC run. Rather than using a principal

component analysis to display the changes within the specified 6 parameters (which would

obscure their physical meaning), they are plotted in Figure 3.12 in pairs corresponding to

those which were most strongly correlated (see 3.2). Furthermore, the figures displaying this

Metropolis-Hastings simulation do not include an earlier burn-in period of approximately

1000 trials which only changed the blind-fitted parameter values by ±20%. The small orange

points sweep back very near to the blind-fitted parameter values.

Unfortunately, the converged results from this Metropolis-Hastings search with the

greatest log-likelihood are also physically unrealistic. As can be seen in the upper-right

panel of Figure 3.12, in the later green samples Cheat grew to a very large size, all >500.

Recalling the original literature value of 17 ± 7 W (year) m-2 K-1, (Schwartz, 2007) and

judging these values to be far too high, 1/Cheat was plotted rather than Cheat. This allowed
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Figure 3.12 The parameters 1/Cheat, β0, β1β0, β3, Q, and R evolving over the course
of the Metropolis-Hastings search. The point size corresponds to the log-likelihood.
Red points represent the burn-in phase, whereas green colors represent points that
are sampled later.

the earlier values to not be compressed near 0. In one accepted sample (with a high adjusted

log-likelihood), the value of Cheat exceeded 25000 W (year) m-2 K-1. A heat capacity per

square meter this high would correspond to a column of water 200km deep.

2.5 ∗ 104W (year)m−2K−1 ∗ 3.154 ∗ 107 s
year

4.184Jg−1K−1 ∗ 106 g
m3 for water

≈ 2 ∗ 105m (3.47)

Therefore, this use of Metropolis-Hastings sampling did not allow us to discover the

uncertainty regarding the unknown parameter values, as intended. This failing occurred

because the parameter which was least known in the earlier blind model, Cheat, exploded

in magnitude to a ridiculously large size. I could re-adjust the summed log-likelihood
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Cheat β3 β1 β0 Q R

1. 0.6358 0.5507 -0.7094 0.7435 -0.2512
0.6358 1. 0.8845 -0.3169 0.7373 -0.1259
0.5507 0.8845 1. -0.1123 0.5988 -0.0890
-0.7094 -0.3169 -0.1123 1. -0.6114 0.4274
0.7435 0.7373 0.5988 -0.6114 1. -0.4039
-0.2512 -0.1259 -0.0890 0.4274 -0.4039 1.

Table 3.2 Correlations between MCMC-sampled parameters. The very strong
negative correlation between β0 and β1 is likely real because of Eq 3.29-3.33.
However, many other correlations may largely reflect the shift to the modes in
which Cheat is unrealistically large.

computation or the sampling distributions to discourage such high estimates of Cheat, but

such efforts are beyond the scope of this thesis. The original blind-model parameter values

are sufficient.

3.3.2 Comparison with CESM LENS Ensemble

A very different approach for generating uncertainty regarding the state of the climate

system involves ensembles of climate model hind-cast runs. These runs utilize historical

concentrations of carbon dioxide and atmospheric aerosols from volcanic eruptions, but

start the numerical model at different initial conditions. Parameters within these physical

simulations are tuned to reflect climate observations, just as the various parameters were

tuned within the blind model. Analogous to the fundamental assumption for the Kalman

filter that the climate system is Gaussian noise atop a dynamic equation that also includes

noise, assumptions are made within climate models for the physics equations that determine

the model’s behavior (as fractal features like mesoscale eddies must be paramaterized).

Due to the chaotic yet bounded nature of the climate system, this ensemble quickly

loses any predictable artifacts of the differing initialization and samples the entirety of the

state-space within the climate model. Therefore, I attempted a comparison between the

Kalman filter and the 41 CESM LENS runs of the 20th century (Kay et al., 2015). The
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Figure 3.13 The LENS hind-cast simulation over the years 1920-2006. Note that
colors are chosen at random to allow the reader to follow the 41 individual simulation
runs.

results from these runs, particularly regarding globally averaged surface temperature, are

shown in Figure 3.13.

Thus, at each year I have 41 samples of the temperature, which can be used to generate a

distribution. This distribution generally looked normal, and had a fairly consistent standard

deviation of 0.11± 0.01. Therefore, I compared the prediction distributions of temperature

generated by both the Kalman filter and this LENS ensemble in Figure 3.14.

Recall that the original HadCRUT data was presented as temperature anomalies and then

shifted up by (chosen arbitrarily) 287K to get absolute temperature. The Kalman filter was

also based on the assumption of a steady-state pre-industrial climate that determines β0 and

β1 (see Eq. 3.29-3.33), so these parameters reflected the (arbituarily shifted) temperature

data. Furthermore, it is common practice in climate model inter-comparison projects to

shift the results so they match in the average temperature and analyze only the trend

(Masson-Delmotte et al., 2018). So it is reasonable for several reasons to perform the vertical

shift in temperature (as noted in 3.14) to compare these two predictive models.

Regarding quantitative measurements to compare these two time-series of distributions,
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Figure 3.14 The LENS hind-cast simulation in red compared to the Kalman filter
prediction of the next year’s temperature in blue, with 1σ and 2σ of uncertainty.
Temperature data and Kalman fiter are shifted to a higher temperature by roughly
0.2K. Note that while I am using the standard calculation of standard deviation
for the LENS 1σ confidence interval, to reflect the fact that this distribution may
not truly be normal, the 2σ confidence interval is between the midpoints of the two
largest and the two smallest values (39

41
≈ 0.95).

I tried to apply the Anderson-Darling test smeared over all time points, but this yielded a

very significant difference (p ≈ 1022). I suspect that the formula may need to be revised

for it to be applied in this manner, or perhaps separate tests could be performed on the

trend in distribution means (R2) and the variances (an F test). Regardless, in qualitative

terms, the two distributions follow a very similar shape (roughly piece-wise linear with a rise

before 1940, then constant until 1975, then a more rapid increase, as described previously

in reference to Figure 3.6). Furthermore, the standard deviations are quite similar, both

holding at roughly 0.1K. However, note that the LENS climate model simulations seem to

jump down drastically at several points in a manner not matched by the Kalman filter.

One such instance was in 1992, the year following the Mt. Pinatubo volcanic eruption.
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This suggests that the LENS climate simulations are weighting a much greater impact of

atmospheric aerosol cooling than the Kalman filter (at least with the blind-model-fit value

of β3).

3.4 Future Work: More Variables and Control Theory

The Kalman filter, owing to its matrix framework, has much greater potential than what

has been explored so far in this thesis. In particular, the state of the climate system could

be expanded to include more variables of interest. These include new variables of interest

such as precipitation, variables on a regional level (such as temperature in the northern

hemisphere vs southern hemisphere), or extremes in temperature rather than simply the

mean. Once sensible equations are derived that give update equations for the chosen climate

metrics, the model parameters and covariance matrices can be fitted using similar methods

as presented in this thesis. However, I do not expect this to work with a large number of

variables, as the climate behaves according to nonlinear dynamics on a regional scale, and

linearity is one of the fundamental assumptions of the Kalman filter.

If it were to be implemented, geoengineering would not be conducted according to any

of the prescribed GeoMIP experiments (Kravitz, Robock, et al., 2013). Rather, it would

be closely monitored and continual corrections would be made to ensure the best outcome.

Assuming that such an outcome can be quantified within the CESM model and approximated

by some function on the variables captured by a Kalman filter state, there already exists a

powerful control algorithm (Lee and Ricker, 1994). This could easily make a projection of

what the climate will likely do, and generate an ideal sequence of control inputs (particularly

the growth sites and quantities of coccolithophores), from within CESM: in other words,

simulate not only the intervention but also the human aspects of monitoring and reacting to

the intervention while it is implemented.
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Appendix A
A.1 Glossary of Symbols

Symbol Description
Units
[Range]

R2 Coefficient of determination: fraction of variance explained by the
model [0,1]

σ Standard deviation (
√
V ar)

n Time index Years
k Time step 1 year
T Temperature at Earth’s surface (global average when scalar-valued) Kelvin
30 <
T >

30-year running average of the temperature (±15 years from that
date), a standard measure of climate Kelvin

albedo Fraction of incident light that is reflected by a surface [0,1]
E Radiating Energy (various subscripts) W/m2

SWin
Sun-to-earth short-wave radiation that is absorbed as heat at Earth’s
surface W/m2

LWout Earth-to-space long-wave radiation that fully escapes the atmosphere W/m2

Solrad
The average solar insolation that shines per unit area on average at
the top of Earth’s atmosphere 341 W/m2

b Water particle scattering coefficient, which increases linearly with
mass load m-1

τ Atmospheric aerosol depth [0,1]
[Chl] Water Chlorophyll concentration mg/m3

[CO2] Atmospheric carbon dioxide concentration ppm
∂C Mass of carbon emitted by human activities in one year gigatonnes

Cheat Heat capacity of the average parcel of the Earth’s surface W / m2 *
year / K

σsb Stefan–Boltzmann constant 5.670 ∗ 10−8
W m-2 K-4

β0
Constant fraction of LW light that is radiated from the surfaced and
then back-scattered by atmosphere in the absence of CO2

≈ 0.05

β1
Coefficient of log10[CO2] that determines the potency of
back-scattering ≈ 0.2

β2

Constant fraction of SW light that is reflected by the atmosphere and
Earth’s surface before it turns into heat in the absence of atmospheric
aerosols

0.29

β3

Adjustment factor of the atmospheric aerosol depth that determines
what fraction of the top of these sooty particle clouds reflect away all
the light that this layer blocks

≈ 5 ∗ 10−5
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A.2 Potential (Commercial) Benefits

Renewable Mining of Phosphates

Over 70% of the world’s proven reserves of phosphates (an essential feed-stock for modern

agriculture) is located in Morocco and the Western Sahara, a geopolitically concerning

monopoly. Moreover, global reserves will be exhausted by 2400 at current usage rates

(Jasinski, 2020). Skimming concentrated coccolithophores could be a renewable source.

Preservation of Arctic Sea Ice

A recently published experiment has demonstrated that multi-year Arctic Sea Ice might

be preserved by coating the surface of fresh ice in hollow glass spheres only a few dozen

micrometers in diameter (Field et al., 2018). The fossilized floating coccolithophores might be

quite similar in physical properties to these glass micro-bead, hence they could be transported

north and used to seed specific ice floes.

Targeting Plastic Microparticles

There has been significant concern regarding the steadily accumulating plastic trash from

the biosphere. The vast majority of this trash is on the scale of 3mm and sparsely dispersed

throughout the ocean (Morét-Ferguson et al., 2010). Perhaps the coccolithophores could

serve as a delivery vector to chemically recognize plastic microparticles and target them with

potent catabolic enzymes (Austin et al., 2018; Tournier et al., 2020) before they enter the

aquatic food chain. On a basic science level, the following simulations allow for predictions

of the future distributions of micro-plastics under different climate scenarios.
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Appendix B

B.1 Buoyancy Simulation - Simplified Example

To simplify, we begin by assigning the water column to the interval [0,L], where L is the

ocean floor and 0 is the surface, both with insulated Neumann boundary conditions.

ut = aux +
∂

∂x
(η(x)ux) (B.1)

Within the CESM model, this equation is solved for both η(x) and u within the continuously

evolving ocean grid. But I will substitute in an example function of η(x). Owing to the

mixing effects of wave action, we assume that the diffusion increases exponentially as one

approaches the mixed layer, and therefore exponentially decays with depth.


ut = aux + (bec(L−x) + d)uxx for (x, t) ∈ (0, L)× (0,∞)

ux = 0 for (x, t) ∈ {0, L} × (0,∞)

(B.2)

Each of these coefficients requires an explanation and a way to experimentally determine

them. a is simple: just measure the rate at which the band of particles with the highest

density rises in still water. To determine the coefficients that determine the rate of diffusion,

I will change the coefficents b and d, allowing me to rewrite the magnitude of uxx.

b =
b̃

ecL − 1
b̃ = b(ecL − 1) (B.3)

d = d̃− b =
b̃

ecL − 1
d̃ = d+ b (B.4)

bec(L−x) + d = b̃
ec(L−x) + 1

ecL − 1
+ d̃ (B.5)

53



With this change, d̃ is seen to be diffusion rate at the ocean floor (x = L), which can

be measured using neutrally buoyant but appropriately sized particles placed in still water.

b̃ + d̃ is the corresponding the diffusion rate at the ocean surface, and can be measured

similarly by diffusing neutrally buoyant particles in turbulent water with surface waves. The

difference between these two diffusion rates yields b̃.

c has to do with the rate at which mixing (and thus diffusion) increases as one approaches

the surface. The simplest way to measure it is to find the ocean depth δ0.5 at which neutrally

buoyant particles will diffuse at the rate midway between that measured at the surface, b̃+ d̃,

and that measured at conditions mimicking the ocean floor, d̃. At this specific depth, the

diffusion rate is:

b̃
ec(L−δ0.5) + 1

ecL − 1
+ d̃ =

b̃+ 2d̃

2

ec(L−δ0.5) + 1

ecL − 1
=

1

2

2ec(L−δ0.5) = ecL + 1

ecδ0.5 =
2ecL

ecL + 1

δ0.5 = L+ ln
2

ecL + 1
(B.6)

Obtaining the value of c from δ0.5 just requires inverting this transcendental function. But

the actual function for η(x) is much more complicated and is computed automatically within

CESM.

B.2 Numerical Scheme of Advection-Diffusion

. To describe the numerical scheme used to compute the advection-diffusion of buoyant

particles, I will adopt the notation of Time-Dependent Problems and Difference Methods

(Gustafsson, Kreiss, and Oliger, 2013). To recapitulate their work in Section 1.7, I will
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begin with the boundary-less convection-diffusion equation:
ut + αux = ηuxx for (x, t) ∈ (0, L)× (0,∞)

u(x, 0) = f(x) for x ∈ (0, L)

(B.7)

The simplest explicit difference approximation is

vn+1
j = vnj + k(ηD+D− − αD0)v

n
j , j = 0, 1, ..., N. (B.8)

vn+1
j = vnj +

kη

h2
(vnj+1 − 2vnj + vnj−1) +

kα

2h
(−vnj+1 + vnj−1) (B.9)

vn+1
j = (

kη

h2
− kα

2h
)vnj+1 + (1− 2

kη

h2
)vnj + (

kη

h2
+
kα

2h
)vnj−1 (B.10)

Note that if 2η = hα then this becomes a two-point scheme, as vnj+1 drops out.

vn+1
j = (1− kα

h
)vnj + (

kα

h
)vnj−1 (B.11)

This is what Dr. Jay Brett assumed in her code (and I currently have implemented).

Now, to determine the stability region, the amplification factor in Fourier space is:

Q̂ = 1− 2βsin2 ζ

2
− iλ sin ζ, ζ = ωh, β =

2ηk

h2
, λ =

αk

h
(B.12)∣∣∣Q̂2

∣∣∣ = 1− 4βsin2 ζ

2
+ 4β2sin4 ζ

2
+ 4λ2 sin2 ζ

2

(
1− sin2 ζ

2

)
= 1− 4(λ2 + β2)s2 + 4(λ2 − β)s, s = sin2 ζ

2
(B.13)

Stability requires |Q̂| ≤ 1 ∀ζ (B.14)

−4(λ2 + β2)s2 + 4(λ2 − β)s ≤ 0 ∀s ∈ [0, 1] (B.15)

−(λ2 + β2)s+ (λ2 − β) ≤ 0 ∀s ∈ [0, 1] (B.16)

λ2 − β ≤ 0, and β(β − 1) ≤ 0 (B.17)

λ2 ≤ β ≤ 1, or α2k ≤ 2η ≤ h2/k (B.18)

This of course assumes that the spacial grid size k and the diffusion constant η are both

constant. In fact, both are not constant: 1/k and η both increase substantially as x → 0.
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To estimate the truncation error, we calculate how well the exact solution u satisfies the

difference scheme:

τnj :=
un+1
j − unj
k

− (ηD+D− − αD0)u
n
j = ut(xj, tn) +

k

2
utt(xj, ζ

1
t )

+ αux(xj, tn) + α
h2

3!
uxx(ζ

1
x, tn)

− ηuxx(xj, tn)− η2h2

4!
uxxxx(ζ

2
x, tn) (B.19)

where ζ1x, ζ
2
x ∈ [xj − h, xj + h] and ζ1t ∈ [tn, tn + k]

By definition of u, ut − αux − ηuxx = 0

τnj = k
utt(xj, ζ

1
t )

2
+ h2

(α
3!
uxx(ζ

1
x, tn)− 2η

4!
uxxxx(ζ

2
x, tn)

)
(B.20)

This difference operator is first order in time and second order in space.

In the CESM model, the values of η, k actually vary with depth. Such a nonlinear

differential equation is much more difficult to analyze, and is beyond the scope of this

undergraduate thesis.

B.3 COART Emulator

As explained in the main body of the thesis, a custom emulator of the COART light flux

model (Jin, Charlock, Rutledge, et al., 2006) was created by interpolating functions for both

the albedo and top-layer absorbance. First, an online version of the COART model was

utilized to calculate both of these outputs (in (W/m2)) relative to the incident light across

the integrated spectrum from to 0.25 to 4.0 um at a spectral resolution of 0.15 um. Outputs

were calculated at solar zenith angles from 0° to 87.5° with a step of 2.5° using a layered

atmosphere with no change to CO2 nor CH4. MODTRANMaritime mixed-layer atmospheric

aerosols were included at an aerosol optical thickness of 0.2 at 0.5 um, but no clouds nor

stratospheric aerosols were selected to be present. The default absorption parameterizations

of overall absorbance, absorbance of dissolved organic matter, and surface roughness were
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used. The default ocean conditions were not modified (no wind, 100m deep, 0.1 bottom

albedo), but chlorophyll concentrations ([Chl]) of 0, 0.2, 2, 20, and 200 mg/m3 were tested.

Most importantly, the particle scattering coefficient b was modified to be constant across

wavelengths and chlorophyll concentrations by setting the exponents n and k to 0. b was

tested at values of 0, 0.05, 0.5, 1, 5, 20, 50, 100, and 200 for each [Chl]. The COART model

crashed at the highest values of [Chl] and b together, so this simulation was discarded. Note

that in the process of building this emulator, I made an error in originally designing it to

calculate the albedo and top-layer (5m) absorbance for the combination of diffuse and direct

light. Later, this emulator was later used for only the direct light (the diffuse light was

calculated at cos z = 0.67) and across a top-layer which was 10m thick in total (5m center).

As direct light constitutes the vast majority of heat flux and the effects of the absorbing

particles [Chl] were not further investigated, for the purposes of this thesis, this emulator is

sufficient.

Figure B.1 Both the samples from the COART model and the interpolated function
from Eq. B.21 at b = 0 and [Chl] = 0.
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First, an emulator for albedo was built. The following function of solar zenith angle z

was interpolated for each COART simulation, as illustrated in the example Figure B.1:

albedo(z; [Chl], b) = −s3/ cos z + s4 ∗ (cos z)s1 + s2 (B.21)

Next, the values of these four coefficients s1..4 were interpolated for all values of b at one

[Chl], as illustrated in Figure B.2:

s1(b; [Chl]) = r1,1 ∗ b+ r1,2 + r1,3 ∗ exp(r0,4 ∗ b) (B.22)

sx(b; [Chl]) = log(rx,4 ∗ b+ rx,3) ∗ rx,1 + rx,2 for x = 2..4 (B.23)

r2,4 = 1 and r4,4 = 1 (B.24)

Figure B.2 Both the fit values of s1..4 in X’s and the interpolated functions in lines
involving r1..4,1..4 from Eqs. B.22 to B.23 at [Chl] = 0. Note that the values of s2/10
and s4 ∗ 10 are plotted so that all s parameters can be visualized on this graph.

This process was repeated once more to find the values of each r at a given [Chl], but

this process involved 14 functions of 5 different forms (each taking 3 parameters). These

innermost functions are both typeset in Eqs. B.25 to B.29 and can be read in the FORTRAN
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code attached below. Which innermost function is used for which r coefficient and the

parameters for these functions are included in the arrays at the beginning of this code.

f1([Chl]) = exp
(
q1 ∗ log10[Chl] + q3 ∗ (log1 0[Chl])2

)
∗ q2 (B.25)

f2([Chl]) = q1 ∗ log10[Chl] + q3 ∗ (log10[Chl])
2 + q2 (B.26)

f3([Chl]) = q1 + exp(log10[Chl] ∗ q3) ∗ q2 (B.27)

f4([Chl]) = q1 + exp(−[Chl] ∗ q3) ∗ q2 (B.28)

f5([Chl]) = exp(−[Chl]) ∗ q1 + exp(−[Chl] ∗ q3) ∗ q2 (B.29)

Regarding the light which is absorbed in the first 10 m of ocean, this process was repeated,

noting that the fraction of absorbed light (even after removing that reflected by the albedo)

is strongly correlated with that albedo:

absorb(z; [Chl], b) = s5 ∗ (cos(z)2 − cos(z))− s6 ∗ albedo(z; [Chl], b) + s7 (B.30)

Likewise functions were fit for these values of s4..6 across the range of b at each [Chl]:

s5(b; [Chl]) = r5,1 ∗ exp(−|b− r5,2|/r5,3) + r5,4 (B.31)

sx(b; [Chl]) = 1− rx,2 ∗ exp(−rx,1 ∗ b) for x = 6..7 (B.32)

These r coefficients were again interpolated between [Chl] values using Eqs. B.25 to B.29.

module c a l c u l a t o r
implicit none
integer , parameter , dimension (24) : : ct lFxn = (/1 ,2 ,2 ,1 ,3 ,3 ,1 ,0 ,&

3 ,2 , 2 , 1 , 2 , 2 , 1 , 0 , 2 , 3 , 2 , 2 , 2 , 4 , 2 , 5/ )
real ∗8 ,parameter , dimension (24) : : ctlParA = (/−0.2752494740 ,−0.0458254151 ,&

0.0446303901 ,−0.5683269568 ,0.2008671625 ,−0.0618870089 ,0.2001849426 ,0.0000000000 ,&
0.0020402023 ,0.0002018875 ,0.0190378343 ,−0.0439122887 ,&
0.0079686198 ,0 .0057858173 ,0 .3916968146 ,0 .0000000000 ,&
0.002629367 ,0 .240014106 ,1 .786102093 ,0 .029601102 ,&
−0.003974811 ,0 .008501399 ,0 .021081096 ,0 .090088604/)

real ∗8 ,parameter , dimension (24) : : ctlParB = (/0.0012350808 ,2 .7210535980 ,&
0.1581961254 ,1 .0656261587 ,0 .0199618556 ,0 .0637922964 ,1 .6937910519 ,0 .0000000000 ,&
0.0001699326 ,0 .0110000303 ,0 .8390846756 ,1 .3000844189 ,&
0.0781324491 ,0 .4055948942 ,0 .8412616011 ,0 .0000000000 ,&
−0.144772187 ,2.171705306 ,2.815379622 ,−0.034692206 ,&
0.05727732 ,0 .367410471 ,0 .04091918 ,0 .267622484/)

real ∗8 ,parameter , dimension (24) : : ctlParC = (/−0.2997132408 ,−0.0111000437 ,&
0.0102728755 ,−0.1236148245 ,0 .5481961977 ,0 .6136596117 ,0 .1926497173 ,0 .0000000000 ,&
0.5935329753 ,0.0000002593 ,0.0037620190 ,−0.2182911532 ,&
0.0012999933 ,0 .0119173776 ,0 .1476701059 ,0 .0000000000 ,&
0.004552898 ,−0.946005249 ,−0.497443432 ,−0.005623273 ,&
0.032046079 ,0 .039385742 ,0 .020637421 ,0 .049758211/)

! note − not as in exce l sheet , l a s t 4 are switched so that the exponential 2x2 i s at the end
contains

subroutine compute_chl_coeff ( chl , va lues )
real ∗8 , intent ( in ) : : ch l
real ∗8 ,dimension (24 ) , intent (out ) : : va lues
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! compute the lowest−l e v e l parameter values based on the amount of ch lorophy l l
integer : : i , indexFxn
real ∗8 : : l o g ch l

do i = 1 ,24

indexFxn=ctlFxn ( i )
! pick which function we are using

i f ( chl <0.02) then
l o g ch l =0.0

else
l o g ch l=LOG10( ch l /2)+2

end i f

SELECT CASE( indexFxn )
CASE(1 )

va lues ( i )=EXP( ctlParA ( i )∗ l o g ch l+ctlParC ( i )∗ l o g ch l ∗∗2 )∗ ctlParB ( i )
CASE(2 )

va lues ( i )= ctlParA ( i )∗ l o g ch l+ctlParC ( i )∗ l o g ch l ∗∗2 + ctlParB ( i )
CASE(3 )

va lues ( i )= ctlParA ( i ) + EXP( ctlParC ( i )∗ l o g ch l )∗ ctlParB ( i )
CASE(4 )

va lues ( i )= ctlParA ( i ) + EXP(−ctlParC ( i )∗ ch l )∗ ctlParB ( i )
CASE(5 )

va lues ( i )= ctlParA ( i )∗EXP(−ch l ) + EXP(−ctlParC ( i )∗ ch l )∗ ctlParB ( i )
CASE DEFAULT

va lues ( i ) = 1 .0
END SELECT
end do

end subroutine compute_chl_coeff

subroutine compute_bub_coeff (bub , chl , va lues )
real ∗8 , intent ( in ) : : bub , ch l
real ∗8 ,dimension ( 7 ) , intent (out ) : : va lues

real ∗8 ,dimension ( 2 4 ) : : a l l c c h l
real ∗8 ,dimension ( 4 ) : : c ch l
real ∗ 8 : : cchl1 , cch l2
integer : : k , i

ca l l compute_chl_coeff ( chl , a l l c c h l )

do i = 1 ,7

i f ( i . le . 5 ) then
do k=1,4

cch l ( k)= a l l c c h l ( ( i−1)∗4+k)
end do

else
cch l1 = a l l c c h l (9+2∗ i )
cch l2 = a l l c c h l (10+2∗ i ) !24=6+2∗7

end i f

SELECT CASE( i )
CASE(1 )

va lues ( i )= cch l (1)∗ bub+ cch l (2)+ cch l (3)∗EXP(− cch l (4)∗ bub)
CASE(2 )

va lues ( i ) = cch l (1 ) ∗ LOG10( c ch l (3)+bub) − cch l (2 )
CASE(3 )

va lues ( i ) = −cch l (1 ) ∗ LOG10( c ch l (3)+bub∗ cch l (4 ) ) + cch l (2 )
CASE(4 )

va lues ( i ) = −cch l (1 ) ∗ LOG10( c ch l (3)+bub) + cch l (2 )
CASE(5 )

va lues ( i ) = cch l (1 ) ∗ EXP(−ABS(bub−cch l ( 2 ) )/ cch l (3))+ cch l (4 )
CASE(6 , 7 )

va lues ( i ) = 1− cch l2 ∗ EXP(−cch l1 ∗bub)
CASE DEFAULT

va lues ( i ) = 0 .0
END SELECT

end do
end subroutine compute_bub_coeff

subroutine compute_top_layer ( ang , blb , chl , alb , absorb )
real ∗8 , intent ( in ) : : ang , blb , ch l
real ∗8 , intent (out ) : : alb , absorb

real ∗8 ,dimension ( 7 ) : : acblb

ca l l compute_bub_coeff ( blb , chl , acblb )

a lb = − acblb (3) /COS( ang ) + acblb (4)∗ (1−COS( ang ))∗∗ acblb (1)+ acblb (2)

absorb = acblb (7) − alb ∗ acblb (6) + acblb (5)∗COS( ang )∗(COS( ang)−1)
! print ∗ , acblb (7) , acblb (6) , acblb (5) , alb , COS(ang)
! print ∗ , " "

end subroutine compute_top_layer

end module c a l c u l a t o r
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Appendix C

C.1 Derivation of LOG[CO2]

At any one wavelength, the concentration of CO2 is directly proportional to the absorbance,

which is the exponential power of the inverse of transmittance. l is a distance factor related

to the thickness of the atmosphere.

− log(
Iexit
Itotal

) = A = ε(γ)l[CO2] (C.1)

Iabsorb = Itotal − Iexit = Itotal
(
1− exp(−ε(γ)l[CO2])

)
(C.2)

Then, over all wavelengths, the fraction of long-wave light radiating out into space that is

absorbed by CO2 is roughly normally distributed about 680 cm-1.

ε(γ) ≈ exp(−(γ − 680)2

σ2
) (C.3)

Integrating this absorption over all wavelengths to get the absorbed energy E rather than

an intensity I at a single wavelength

Eabsorb = Etotal

∫ ∞
−∞

(
1− exp(− exp(−(γ − 680)2

σ2
)l[CO2])

)
dγ (C.4)

= Etotalσ

∫ ∞
−∞

(
1− exp(−l[CO2]e

(−γ2))dγ (C.5)

To the best of my knowledge, there is no analytical solution to this integral. However, upon

inspection I observe that when [CO2]l is larger than e, this integrated function approximates

a symmetric trapezoid of height 1. Thus, solving for the upper and lower fourth of this
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trapezoid (as the very top and bottom are exponential limits):

3

4
=
(
1− exp(−l[CO2]e

(−γ2)) (C.6)

γ = ±

√
log(

l[CO2]

2 log(2)
) for (l[CO2]) >= 2 log(2) (C.7)

1

4
=
(
1− exp(−l[CO2]e

(−γ2)) (C.8)

γ = ±

√
log(

l[CO2]

2 log(2)− log(3)
) for (l[CO2]) >= 2 log(2)− log(3) (C.9)

Area =
top+ bottom

2
1 (C.10)

=
(
γ1+ + γ1− + γ0+γ0−

)
/2 (C.11)

=
(
γ1+ + γ0+

)
(C.12)

=
(
γ0.75 −

γ0.25 − γ0.75
2

)
+
(
γ0.25 +

γ0.25 − γ0.75
2

)
=

(
γ0.75 + γ0.25

)
(C.13)

=

√
log(

l[CO2]

2 log(2)
) +

√
log(

l[CO2]

2 log(2)− log(3)
) (C.14)

The logarithm within this function dominates, whereas the sum of square roots can be

linearly approximated over the relevant range of CO2 concentrations. Over a broader range

of concentrations, other spectral effects at different wavelengths begin to play a major role

(see Figure C.1 below).

Eabsorb ≈ β log([CO2])Etotal (C.15)

C.2 Core Kalman Filter Code

This is the Kalman filter code that was used in the MCMC search. As such, it takes the

parameter values as inputs, plots nothing, and calculates the likelihood of both the data and

the 30-year average states. This python code is included following Figure C.1 below.
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Figure C.1 The impact various concentrations of CO2 have on the emission
spectrum from Earth. Adapted from (Zhong and Haigh, 2013). Notice that before
the 32xCO2 concentration, the dent in the emission spectrum behaves as a truncated
Gaussian integral.

pl import numpy as np

def l og_l ik ( params ) :
n_iter = 170
sz = ( n_iter , 1 ) # size of array

data = np . genfromtxt (open( "toyKFmodelData . csv " , " rb" ) , dtype=f loat , d e l im i t e r=’ , ’ )
dates=data [ : , 0 ]
dates [0]=1850
temps=data [ : , 1]+287
lCo2=np . log10 ( data [ : , 2 ] )

heatwmsq=params [ 0 ]###### 0.0233
s i g =5.6704e−8
Co2_b=params [ 1 ] # #### 1.0−0.1904
Co2_m=params [ 2 ] # #### 0.0722
transmdfactor=params [ 3 ] ##### 0.001∗0.053
cr it_b =0.71
crit_m=0.01
sw_in=341

transmd=np . exp(−data [ : , 3 ] ∗ transmdfactor ) #/1000?
c r i t e xp = np . ones ( len ( transmd ) )

B0= (− heatwmsq ∗ (Co2_b − Co2_m ∗ lCo2 ) ∗ s i g )#longwave l i g h t

B1= heatwmsq ∗ sw_in ∗ transmd ∗ ( cr it_b − crit_m ∗(1− c r i t e xp ) ) #shortwave l i g h t

def compute_jacobin (x , k i ) :
k=int ( k i )
return (1 + B0 [ k ]∗4∗ x∗∗3)

def compute_constant (x , k i ) :
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k=int ( k i )
return (B1 [ k ] + B0 [ k ] ∗ ( 1 ) ∗ x∗∗4)

# in t i a l parameters
H=1 #no di f ference between measurements and model r i gh t now
Q = params [ 4 ] # process variance 0.001
R = params [ 5 ] # estimate of measurement variance , change to see e f f e c t 0.007

# a l loca te space for arrays

xhat=np . z e ro s ( sz ) # a poster i estimate of x
P=np . z e ro s ( sz ) # a poster i error estimate
F=np . z e ro s ( sz ) # Jacobin s ta te trans i t ions
xhatminus=np . z e ro s ( sz ) # a prior i estimate of x
Pminus=np . z e ro s ( sz ) # a prior i error estimate
K=np . z e ro s ( sz ) # gain or blending factor

xhathat=np . z e ro s ( sz ) # smoothed a pr ior i estimate of x
Phat=np . z e ro s ( sz ) # smoothed poster i error estimate
Khat=np . z e ro s ( sz ) # smoothed gain or blending factor

xbl ind=np . z e ro s ( sz )

# in t i a l guesses
xhat [ 0 ] = 286.6
xbl ind [0 ]=286 .6
P [ 0 ] = 1 .0
Pminus [ 0 ] = 1 .0

z=temps

lml=np . z e ro s ( sz )
y=np . z e ro s ( sz )
qqy=np . z e ro s ( sz )
S=np . z e ro s ( sz )

F[0 ]= compute_jacobin (286 . 6 , 0 ) #necessary for l a s t step of RTS smoother

for k in range (1 , n_iter ) :
# time update
F[ k]=compute_jacobin ( xhat [ k−1] ,k )

xhatminus [ k ] = xhat [ k−1] + compute_constant ( xhat [ k−1] ,k )
xb l ind [ k]= xbl ind [ k−1] + compute_constant ( xbl ind [ k−1] ,k )

Pminus [ k ] = F [ k ] ∗ P[ k−1]∗ np . t ranspose (F [ k ] ) +Q

# measurement update
S [ k]=H∗Pminus [ k ] ∗ np . t ranspose (H) +R
K[ k ] = Pminus [ k ] ∗ np . t ranspose (H)/S [ k ]
y [ k]=z [ k]−H ∗xhatminus [ k ]
xhat [ k ] = xhatminus [ k]+K[ k ] ∗ y [ k ]
P[ k ] = (1−K[ k ] ∗H )∗Pminus [ k ]
qqy [ k]=y [ k ] / np . sq r t (S [ k ] )
lml [ k]= −0.5∗ (np . t ranspose (y [ k ] ) / S [ k ] ∗ y [ k ] + np . l og (S [ k ] ) + np . log (2∗np . p i ) )

xhathat [ n_iter−1]=xhat [ n_iter −1]
Phat [ n_iter−1]=P[ n_iter −1]
xhathat [0 ]= xhat [ 0 ]
Phat [0 ]=P [ 0 ]

l sml=0
ybark=0
qqyh=[ ]

#compute moving averages
N = 30
cumsum , moving_aves = [ 0 ] , [ ]
for i , x in enumerate ( temps , 1 ) :

cumsum . append (cumsum [ i −1] + x)
i f i<N/2 :

moving_aves . append ( xhat [ 0 ] )
i f i>=N:

moving_ave = (cumsum [ i ] − cumsum [ i−N] ) /N
#can do s t u f f with moving_ave here
moving_aves . append (moving_ave )

for i k in range (2 , n_iter +1):
# RTS Smoother
k=n_iter−i k
# measurement update
Khat [ k ] = P[ k ] ∗ np . t ranspose (F [ k ] ) / Pminus [ k ] #compute inverse for higher dimensions
xhathat [ k ] = xhat [ k]+Khat [ k ] ∗ ( xhathat [ k+1]− xhat [ k ] − compute_constant ( xhat [ k ] , k ) )
Phat [ k ] = P[ k ] + Khat [ k ] ∗ ( Phat [ k+1]− Pminus [ k ] ) ∗ np . t ranspose (Khat [ k ] )
i f (k<len (moving_aves ) and k>N/2 ) :

ybark= xhathat [ k ] −moving_aves [ k ]
l sml=lsml − 0 . 5∗ ( np . l og (np . abs ( Phat [ k ] ) ) + np . log (2∗np . p i ) + np . t ranspose ( ybark )/np . abs ( Phat [ k ] ) ∗ ybark )
qqyh . append ( f loat ( ybark/np . sq r t (np . abs ( Phat [ k ] ) ) ) )

return (sum( lml)+ lsml )/10
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