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ABSTRACT

Empirically generated indices are used to evaluate the skill of a global cli-

mate model in representing the monsoon intraseasonal oscillation (MISO).

This work adapts the method of Suhas et al. (2013), an extended empirical or-

thogonal function (EEOF) analysis of daily rainfall data with the first orthog-

onal function indicating MISO strength and phase. This method is applied to

observed rainfall and Community Earth System Model (CESM1.2) simulation

results. Variants of the CESM1.2 including upper ocean parameterizations for

Langmuir turbulence and submesoscale mixed layer eddy restratification are

used together with the EEOF analysis to explore sensitivity of the MISO to

global upper ocean process representations. The skill with which the model

variants recreate the MISO strength and persistence is evaluated versus the

observed MISO. While all model versions reproduce the northward rainfall

propagation traditionally associated the MISO, a version including both Lang-

muir turbulence and submesoscale restratification parameterizations provides

the most accurate simulations of the time scale of MISO events.
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1. Introduction30

Variability in the Indian monsoon on multiple time scales have been an area of intense research31

due to its significant societal and economic importance to the subcontinent and Indian Ocean32

periphery. Variations both year to year (interannual) and over the course of a single season (in-33

traseasonal/subseasonal) are much harder to predict, and have been a topic of significant interest to34

researchers (Goswami et al. 2016; Kuppam and Mawsynram 2019). For the purposes of predictive35

skill, interannual and intraseasonal variability appear to be distinct phenomena, allowing—perhaps36

requiring—weather models to account for them separately (Krishnamurthy and Shukla 2000).37

One primary mode of variability is the Indian monsoon intraseasonal oscillation (MISO), which38

causes brief periods of especially intense rainfall during the Asian monsoon on the Indian subcon-39

tinent and over the Bay of Bengal. At the most basic level, the MISO is defined as a deviation40

from the seasonal monsoon rainfall trend, which gradually increases over the course of the sum-41

mer, peaks around late July, then decreases to its off-season intensity (Krishnamurti and Ardanuy42

1980). This is generated in part by the annual north-south movement of the monsoonal intertropi-43

cal convergence zone (Goswami and Mohan 2001). As a result, MISO events occur in an extremely44

complex circulation context, making them difficult to predict more than a few weeks in advance45

(Mo 2001). Nonetheless, they exhibit a northward propagation and some predictability, and they46

can be isolated using the empirical pattern recognition techniques of Suhas et al. (2013) as shown47

in Fig. 1. The MISO has significant marine influences and impacts, involving ocean-atmosphere48

heat and freshwater exchange, and is extremely dependent on the particular geometry and physical49

characteristics of the Bay of Bengal (Goswami et al. 2016). Li et al. (2016b, 2018) demonstrate50

important mixed layer-related biases in the simulations of the Bay of Bengal in the Coupled Fore-51
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cast System (CFSv2), and speculate that improving mixed layer physical process representation52

may help. The Indian monsoon is a known source of error in CMIP5 models (Li et al. 2015).53

Previous work has looked at the relationship between the interannual and intraseasonal variations54

in the Indian monsoon. Goswami and Mohan (2001) found that while the two behaviors act on55

different time scales, they are not independent phenomena. Since they exhibit similar spatial56

patterns, the interannual variation in monsoons can be viewed as an anomaly in intraseasonal (i.e.,57

MISO) activity. The authors inferred that the chaotic nature of intraseasonal oscillations therefore58

spelled defeat for researchers trying to predict year-to-year monsoon trends. Empirical methods59

offer a way to circumvent this limitation by isolating modes of variation in chaotic data, and here60

they are extended to use in model evaluation. Through this combination of models and pattern61

recognition, skill in reproducing the MISO statistics can be assessed, which in turn may be used62

to improve forecast systems.63

Not only are MISOs important to the intensity of the monsoon overall, but positive oscillation64

phases (indicated by red shading of the timeseries in Fig. 1 upper panel) have been shown to be65

correlated with a greater frequency of tropical cyclones forming in the Bay of Bengal (Akter and66

Tsuboki 2014). Moreover, those storms associated with a positive MISO phase tend to form at a67

central point in the northern Bay of Bengal and travel northwest across India, steered by the low68

pressure border known as the monsoon trough. The place where the storms form is a relatively69

small region associated with the point of greatest MISO variation in the Bay, meaning that the70

movement and change of the MISO over time may affect the origin and path of weather events in71

that region of the subcontinent (Goswami et al. 2003). A key result here is that the connectivity of72

rainfall over the subcontinent to the MISO variability over the Bay of Bengal is sensitive to upper73

ocean physics in a coupled model. Additionally, the Bay is particularly important as MISOs form74

in the Indian Ocean to the south and move northward, and previous studies have found a zone75
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of peak variation to be centered on the bay (Goswami et al. 2003; Goswami and Xavier 2003;76

Sengupta et al. 2001).77

The Community Earth System Model version 1.2 (CESM1.2: Hurrell et al. 2013) is a global78

coupled modeling system. The particular variants being used for this study use the standard at-79

mosphere, sea ice, and land components, but differ in key ocean model parameterizations (Table80

1). The goal in studying the MISO in these configurations was to determine if its statistics are81

sensitive to the upper ocean physics (as shown with less direct attribution to specific upper ocean82

processes in Li et al. 2016b, 2018; Samanta et al. 2018; Zhang et al. 2018), and whether op-83

timization of these physical parameterizations might usefully improve skill in coupled forecast84

systems (e.g., Pattanaik et al. 2012). The specific upper ocean physical processes being evaluated85

are wave-induced mixing, or Langmuir turbulence, as parameterized by Li et al. (2016a) and sub-86

mesoscale mixed layer eddy restratification as parameterized by Fox-Kemper et al. (2008, 2011).87

As of CESM1.2 the submesoscale parameterization is standard, but the Langmuir turbulence pa-88

rameterization, built upon the KPP scheme (Large et al. 1994), was only included as a default89

setting in CESM2 (Danabasoglu et al. 2020). The CESM1.2 variants being evaluated here are90

prototypes including both parameterizations that preceded CESM2, but are similar in terms of the91

ocean model setup.92

The potential importance of oceanic processes in the Bay of Bengal in setting the phasing and93

intensity of the MISO has been shown recently in closely related studies. Zhang et al. (2018) found94

a quadrature relationship between SST and precipitation in smoothed observations, indicating that95

these two quantities share a relationship which they presume involves warm SSTs triggering at-96

mospheric convection. This study highlights a potential role for sea surface temperature–and the97

ocean mixing and restratification processes that affect it–in the phasing of monsoon active cycles.98

Additionally, in an atmospheric model-ocean mixed layer forecast system, the geographic distribu-99
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tion of mixed layer depth (held constant in time) was shown to improve forecast skill by Samanta100

et al. (2018), therefore processes affecting spatial distributions of mixed layer depth are likewise101

linked to monsoon dynamics. Therefore it is reasonable to hypothesize that processes that impact102

boundary layer turbulence temporally and spatially will influence monsoon variability.103

Upper ocean mixing in in the Bay of Bengal is set by processes that inhibit mixing, such as104

buoyancy input from warming and freshwater fluxes, and those that enhance mixing such as wind105

driven mixing or convection. In addition to surface forcing at the air-sea interface, other processes106

are known to be leading order at influencing upper ocean turbulence. In particular, this work107

focuses on the restratifying effects of submesoscale baroclinic instability and enhanced mixing108

due to Langmuir circulation and turbulence, a variety of mixing that derives some of its energy109

from surface waves (McWilliams et al. 1997; Li et al. 2019). Submesoscale restratification plays110

an essential role in the upper ocean buoyancy budget where there are strong horizontal density111

gradients. Large freshwater input into the Bay of Bengal from river runoff (e.g., from the Brama-112

putra River) is stirred into the interior of the bay and creates sharp buoyancy fronts and filaments113

(MacKinnon et al. 2016; Ramachandran et al. 2018; Spiro Jaeger and Mahadevan 2018; Sarkar114

et al. 2016). Instabilities that occur at submesoscale fronts act to slump horizontal buoyancy gra-115

dients to create vertical stratification and inhibit upper ocean mixing (Boccaletti et al. 2007; Fox-116

Kemper et al. 2008). Conversely, Langmuir turbulence results from wind-wave interaction which117

creates parallel rotating cells ∼ 101 m deep and is known to enhance turbulence in the ocean sur-118

face boundary layer (Langmuir 1938; Leibovich 1983; McWilliams et al. 1997; McWilliams and119

Sullivan 2000; Li et al. 2019). The shoaling/deepening effects of these processes have been pa-120

rameterized for coarse-resolution models such as global circulation models and coupled weather121

forecast models that cannot simulate these processes directly.122
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Previous studies have defined MISOs using a variety of indices, including atmospheric vorticity123

at 850 hPa (Goswami et al. 2003), zonal wind (Goswami and Mohan 2001), and sea surface tem-124

perature at a stationary buoy (Sengupta et al. 2001). These choices reflected authors’ assumptions125

about MISO dynamics; for instance, Goswami and Mohan (2001)’s use of zonal wind in the Bay of126

Bengal as a metric reflected their view that MISOs were an expression of breaks in the prevailing127

monsoon winds.128

The methodology presented here is different in two ways. First, it uses rainfall data, meaning129

MISOs are measured by their effects, not their causes, insulating the analysis from discussions130

of the mechanisms of individual MISO phases. While increased rainfall alone does not define a131

MISO, it is a well-established relationship (and the most impactful on human activity). Second,132

this work expands on the technique of Suhas et al. (2013), using an extended empirical orthogonal133

function (EEOF) analysis to identify the oscillatory signal of the MISO rainfall data. Empiri-134

cal orthogonal function (EOF) analysis decomposes complex data sets into their primary modes135

of variability, revealing which geographic and temporal patterns are most significant to the over-136

all variability (Thomson and Emery 2001). This allows spatially-stationary oscillatory patterns137

(e.g., standing waves) to be revealed (Fox-Kemper 2004). Extended empirical orthogonal function138

(EEOF) analysis takes this a step further, using in this case multiple snapshots over a short time139

window as the “pattern” being recognized constructed to reveal propagating modes of variability140

(Eshel 2012; Weare and Nasstrom 1982). The EEOFs tend to isolate the northward propagation141

characteristic of the classical MISO phase progression (Suhas et al. 2013).142

This work will use an EEOF methodology to isolate MISO events and compare different for-143

mulations of upper ocean parameterizations within CESM with observations. The comparison144

provides insight into how much of a difference upper ocean processes have on MISO events, as145

well as more generally how well the CESM1.2 simulates the MISO. CESM is a climate rather than146
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a weather forecast model, so the issue of model skill is focused on the model’s ability to simulate147

a realistic MISO with reasonable magnitude and recurrence, rather than its ability to produce good148

forecasts from observed initial conditions. However, as the National Center for Environmental149

Predictions (NCEP) Coupled Forecast System (CFS) is often used in this region shares signifi-150

cant code and capabilities with the CESM, implications for what constitutes a skillful CESM is151

expected to resemble what constitutes a skillful CFS.152

2. Methods153

a. Observational Data154

Following Suhas et al. (2013), the observational data set used for model comparison is the Global155

Precipitation Climatology Project (GPCP), a reanalysis based on both satellite and historical ob-156

servations (Huffman et al. 1997; Adler et al. 2003; Huffman et al. 2009). This data set in 1× 1157

degree resolution was obtained for Oct. 1, 1996 to Sept. 30, 2015. This data was regridded onto158

the 1.9×2.5 grid of the CESM atmospheric model for comparison.159

b. CESM160

This work uses the the National Center for Atmospheric Research (NCAR) Community Earth161

System Model, version 1.2 (CESM1.2). Previously, CESMv1 was found to have the smallest bias162

in simulating the monsoon compared to other CMIP5 models (Anand et al. 2018). The model con-163

figuration includes a fully coupled atmosphere (CAM4) and land (CLM4.0) on a 1.9×2.5 degree164

nominal grid, and ocean (POP2) along with sea-ice (CICE4) on the gx1 version 6 grid (1 degree165

nominal resolution), and waves (WAVEWATCH III v3.14) on a coarser grid (Li et al. 2016a). The166

model is run for 100 years with steady preindustrial conditions. This analysis uses the last 30 years167

of integration after which the model is assumed to be sufficiently equilibrated in the upper ocean,168
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as mixed layer depths are stable when different decades at the end of the simulation are compared.169

Boundary layer turbulence is parameterized using the K-profile parameterization (KPP) mixing170

scheme (Large et al. 1994), and the additional effects of restratification by submesoscale mixed171

layer eddies (Fox-Kemper et al. 2011) and enhanced vertical mixing through Langmuir turbu-172

lence (Li et al. 2016a) can be switched on or off. The different simulations for comparison are173

all forced with the same conditions and from the same initial conditions, they differ only in this174

aspect (Table 1).175

The effects of submesoscale baroclinic instability is parameterized as an overturning stream-176

function (Fox-Kemper et al. 2008, 2011),177

Ψo =
∆s
L f

Ce
H2∇hb× ẑ
| f |

µ(z) (1)

µ(z) =
[
1−
(2z

H
+1
)2][

1+
5

21

(2z
H

+1
)2]

(2)

Where Ce is a constant set to 0.06, H is mixed layer depth as determined by a density difference178

from the surface, b is the buoyancy formed from the density ρ and background density ρ0 by b =179

g(ρ0−ρ)/ρ0, ∇hb is the grid scale horizontal buoyancy gradient and the factor ∆s/L f includes the180

horizontal grid scale and a frontal scaling factor that accounts for the course horizontal resolution181

of the model (Fox-Kemper et al. 2011). The typical effect of this parameterization is to shoal182

the mixed layer by overturning lateral fronts wherever they are present to increase the vertical183

stratification, at a rate consistent with simulations and observations of mixed layer eddy processes.184

The Langmuir turbulence parameterization developed by Li et al. (2016a) accounts for the ad-185

ditional vertical boundary layer mixing that occurs when Stokes drift from surface waves (which186

is extracted from the WaveWatch III component model across the globe and depends on the winds187

and ocean currents of the other model components) interacts with near-surface boundary layer188

turbulence resulting in downward accelerations by a wave-current interaction called the Stokes189
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shear force (Suzuki and Fox-Kemper 2016). The rate of additional mixing beyond wind-driven190

mixing is estimated in Large Eddy Simulations resolving Langmuir turbulence (Van Roekel et al.191

2012) and included in KPP following the parameterization form suggested by McWilliams and192

Sullivan (2000). The parameterization mostly increases the vertical turbulent velocity scale within193

the boundary layer by an enhancment factor E :194

W =
ku∗

φ
→W =

ku∗

φ
E , (3)

E = |cosα|
√

1+(c1La)−2 +(c2La)−4 (4)

The angle α is the predicted angle between the Langmuir cell orientation and the surface wind195

orientation, c1 = 1.5,c2 = 5.4 are dimensionless constants, and La is the surface layer-averaged,196

turbulent Langmuir number formed from projecting both the wind stress and Stokes drift into the197

Langmuir cell orientation (Van Roekel et al. 2012; Li et al. 2016a), or198

La =

√
u∗ cosα

|〈us〉|cos(θww−α)
(5)

Here θww is the angle between the wind and the wave direction, 〈us〉 is the Stokes drift averaged199

over the surface layer –i.e., the upper 20% of the mixed layer (Harcourt and DAsaro 2008)–and200

α is found from application of the Law of the Wall as derived in Van Roekel et al. (2012). The201

additional effects of Langmuir mixing on entrainment at the mixed layer base (Li and Fox-Kemper202

2017) were not used for this study.203

In summary, the submesoscale restratification depends on the horizontal buoyancy gradient and204

mixed layer depth and acts to shoal the ML. Conversely, Langmuir turbulence depends on waves205

and wind direction and strength, and acts to deepen the mixed layer. The combinations of param-206

terizations and cases are outlined in Table 1. These parameterizations rely on different resolved207

variables and therefore have different temporal and geographical influences over the Bay of Ben-208

gal and globally. It should be noted that both of these parameterizations are the default in CESM2209

10



(Danabasoglu et al. 2020), so the sensitivity under study is the effect of turning each of or both of210

them off.211

Each model with its own parameterization set was initialized identically for 30-year runs. For212

analysis of the MISO, the annual mean and first three harmonics of the precipitation fields were213

removed, so that only sub-seasonal precipitation anomaly variations were retained. Then, a zonal214

average of precipitation data between 12.5S–30.5N and 60.5–95.5E isolated the region of interest.215

This choice has the advantage of eliminating any topography from the analysis region.216

c. EEOF Analysis217

Empirical orthogonal functions (EOFs) are an application of singular value decomposition218

(SVD) which treats the decomposed values as representations of the temporal and spatial vari-219

ability of a data set (Thomson and Emery 2001). The following equation shows the archetypal220

SVD in matrix notation,221

MMM=USVTUSVTUSVT (6)

whereMMM is a spatiotemporal data set organized with rows and columns as spatial grid locations and222

time steps,UUU andVVV are its left and right singular vectors, andSSS is the matrix of singular values. VVV is223

a square matrix with the same dimensions as the spatial grid of the original data matrix and each of224

its columns is a normalized pattern or mode of spatial variability that repeats in the anomaly data.225

The different patterns are guaranteed to be orthogonal. The left matrixUUU is a square matrix the size226

of the number of time steps in the data matrix, and each of its columns captures the normalized time227

series of each corresponding spatial mode, respectively. The time series are also orthogonal. SSS is a228

diagonal matrix capturing the amplitude and relative importance of each mode, typically ordered229

from the largest amplitude to the smallest. Note that orthonormality of UUU and VVV implies that the230

sum of the diagonals of SSS2 equals that of the original data matrix times its transpose, indicating231
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that the spatiotemporal variance explained by each mode is captured by the corresponding singular232

value squared. The fraction of the variance represented by a particular mode is captured by the233

corresponding diagonal element squared divided by the sum of the squares of all of the diagonal234

elements of SSS. Similarly, (6) implies that the original data can be reconstructed from UUU,SSS,VVV, or235

approximated by retaining only a limited number of modes with the largest entry on the diagonal236

of SSS.237

A temporal extended EOF (EEOF) involves expanding the original MMM matrix by concatenating238

a duplicate of the data set which is offset (or “lagged”) in time. Thus, the lagged data follows239

the same form as (6) has for a dataset with more spatial grid points. By simultaneously perform-240

ing EOF analysis on the same data from slightly different starting times, a mode in a temporal241

EEOF captures not a single spatial pattern, but a sequential pattern of two consecutive days of242

evolving features (Weare and Nasstrom 1982). Here, an EEOF with lags ranging from 1-16 days243

(17 total days) is used to recognize patterns in the short-term evolution of the precipitation–i.e.,244

the range of time expected for the MISO development. Terminology for EOFs and EEOFs varies245

widely:extended empirical orthogonal functions with a number indicating their relative importance246

in terms of the corresponding SSS entry (e.g., EEOF1, EEOF2) and the time series describing the247

evolving amplitude of each set of lagged patterns are called principal components again numbered248

by importance (e.g. PC1, PC2). If the SSS values are all distinct, then each EEOF and PC are unique249

and distinct.250

EOF analysis in general is purely statistical and lacks dynamical cause-and-effect (Dommenget251

and Latif 2002), so the decomposed modes may not have any physical significance unless inde-252

pendently shown to do so. EOFs may produce apparent order in data beyond what is present.253

EOF analysis is particularly troubling if the real modes of variability are not orthogonal in time or254

space. EOF analysis can also be confusing when representing propagating patterns (Fox-Kemper255
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2004), but the EEOF approach makes rapidly propagating patterns simple to describe with a sin-256

gle EEOF. In this case, the MISO is well understood to be a north-south phenomenon, making it257

more natural to apply an EEOF method than in the case of, for instance, a spatial data set with258

no a priori assumptions about modes of variability. The method is not being used here to identify259

unseen patterns but to evaluate one already identified.260

As shown by Suhas et al. (2013) the EEOFs produced in this manner agree with other indices261

of MISO variability. Fig. 1 shows the variation in PC1 over a few positive and negative phases262

of EEOF1, and the corresponding zonal-mean precipitation over the region below. It is clear263

that the northward-propagating precipitation pattern is captured by the PC1 time series, and the264

EEOF spatial pattern of propagation similarly matches the precipitation propagation (not shown).265

Following Suhas et al. (2013), EEOF1 and EEOF2 are normalized by their standard deviations,266

and are hereafter referred to as MISO1 and MISO2. For the purposes of this work, MISO maxima267

and minima are identified here as peaks and troughs in MISO1 (delineated by the 5th and 95th268

percentiles over the whole record). Other EOF-based definitions are common, e.g., for evaluating269

the Madden-Julian Oscillation (such as Kim and North 1999) or other climate variability signals270

(Weiss et al. 2019). In this case, MISO1 isolates the primary north-south mode of oscillation.271

The meaning of the PCA1 appears clearly by plotting MISO1 alongside zonal precipitation272

(Figure 1). The precipitation data show clear northward-moving phenomena associated with peaks273

and valleys in PC1.274

d. Composite Maps275

Composite maps of the difference in regional rainfall anomaly between active and break phases276

of the MISO are a complementary metric to the MISO1 pattern once the maximum and minimum277

MISO stages are found (Fig. 2). While the EEOF is formulated based only on rainfall in the Bay278
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of Bengal, composite plots of these time periods show a wider region, illustrating how the MISO279

phases defined by the EEOF manifest in the Indian Ocean as a whole. Furthermore, the composite280

precipitation averages are not limited by orthogonality of spatial patterns, or the fact that the linear281

construction of the EEOFs ensures symmetries that may not be present: e.g., EEOF1 in a positive282

phase is exactly the same as the negative of EEOF1 in a negative phase. Fig. 3 illustrates that the283

composites over positive and negative phases indeed differ in spatial pattern.284

3. Results and Discussion285

Solely matching the timescale of simulated MISO phenomenon identified by the EEOF analysis286

to that previously observed for the MISO does not indicate a complete model success, but together287

with a good spatial structure of the EEOFs and the patterns of the composite maps (Figure 2)288

alternative mechanisms become increasingly unlikely. The short lag interval (1-16 days) chosen289

for EEOF-based MISO detection is insufficient to cover a full repetition of a MISO event followed290

by another, but it does capture the characteristic northward trend of the precipitation maximum291

within an individual event (Figure 1).292

The composite maps (Figure 2) of the difference in precipitation anomaly between MISO posi-293

tive and negative phase peaks (MISO1 maxima and minima) show clear regions of strong variabil-294

ity throughout the Bay of Bengal and the surrounding region. The GPCP data has a strong positive295

center stretching from the Bay of Bengal across India to the Arabian Sea. Closer to the equator,296

there is a diffuse precipitation minimum during the MISO positive phase. These precipitation pat-297

terns are not an input to the detection algorithm for EEOF1, but are consistently correlated with it.298

The models do a fair job of capturing the Bay of Bengal center of activity, but tend to either over-299

estimate the precipitation anomaly over Indonesia or underestimate the precipitation anomaly over300

western India. None of them show a positive anomaly region stretching as far west as in the GPCP301
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data. Conversely, in all of the models, the opposing precipitation anomaly near the equator is too302

strong compared to the observations. Overall, the CESM control run including both Langmuir and303

mixed layer eddy parameterizations tends to have the closest pattern to the GPCP observations.304

The EEOFs for all of the data sets have very broad singular value distributions, meaning the first305

few EEOFs account for only a modest portion of the variance which captures many other sources306

of precipitation variability. In GPCP, the first two EEOFs explain 9.80% and 8.97% of the total307

variance respectively. For the CESM control run with both Langmuir and submesoscale turbu-308

lence, the first two EEOFs explain 7.83% and 6.87% of the variance. Removing Langmuir turbu-309

lence leaves 7.73% and 6.24%, while removing submesoscale turbulence gives a greater spread of310

7.86% and 6.03%. Removing both gives 8.01% and 6.89% (Figure 4). Thus, the MISO is stronger311

as a fraction of total precipitation variance in the real world than in the simulations, which tend312

to spread precipitation variance more evenly among modes. In absolute terms, the first 2 singular313

values for all CESM versions are weaker than those for GPCP data, consistent with the MISO1314

index accounting for more of the variation in the observations than in the model runs.315

Active, or positive, MISO period identified in observations by the EEOF method have an average316

period of 31 days (Figure 5 top row), which is consistent with previous descriptions of the MISO317

as approximately 30-60 days long (Goswami et al. 2016). This recurrence time exceeds the lag318

interval used to formulate the EEOF. The control model version exhibits the most similar behavior,319

with active periods on average 37 days long. The two model versions without Langmuir turbulence320

show the greatest difference difference from the observations: the noLT version has active phases321

on average 52 days long, while the noLTSM version has 123 days. This trend is similarly evident322

in the distribution of negative MISO phases (right column). Note the difference in sample size323

caused by the longer time span of the model runs.324
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Figure 6 shows that while the CESM simulations including parameterizations of mixed layer325

eddies and Langmuir turbulence do have the most similar MISO statistics to the GPCP, the mixed326

layer depth in the Bay of Bengal, and the north-south gradient of mixed layer depth differ signif-327

icantly from an observations for this simulation, here drawn from the Monthly Isopycnal Mixed328

Layer Climatology (MIMOC, Schmidtko et al. (2013)). The definition of mixed layer used in the329

CESM and in MIMOC is consistent, so the distinctions are not semantic. MIMOC has shallower330

mixed layer depths, and less seasonal variation in mixed layer depth than CESM. Furthermore,331

the simulation that performs best in the MISO (mixed layer eddies and Langmuir mixing: yellow332

line) does not have the mixed layer depth closest to observations. This comparison of mixed layer333

depths indicates that 1) the CESM can still be improved, and 2) under the coarse vertical resolution334

and numerics of the CESM a “good” mixed layer depth may not select for the best MISO variabil-335

ity, and 3) there are likely other model biases (e.g., clouds, precipitation, or atmospheric boundary336

layer parameterizations) that are providing additional errors beyond those being assessed here by337

altering the upper ocean parameterizations. Alternatively, it is possible that it is changes to the338

mixed layer outside of the Bay of Bengal that are having a beneficial effect on dynamics within339

the bay–an issue that cannot be addressed with the global model design used here. Thus, a variety340

of diagnostics, such as the method of Suhas et al. (2013) chosen here, are needed to fully assess341

the MISO and models’ ability to predict it.342

4. Conclusions343

The EEOF method of Suhas et al. (2013) captures local modes of variability like the MISO. In344

this analysis, the MISO statistics are significantly sensitive to upper ocean parameterizations, here345

Langmuir turbulence and mixed layer eddy parameterizations, even when all other aspects of the346

model are unchanged. Thus, upper ocean physics nontrivially impacts the MISO.347
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The upper ocean turbulence plays a large role in ocean-atmosphere interactions and the MISO348

is an inherently marine weather phenomena. However, most numerical weather prediction system349

analyses tend to focus on simulation of sea surface temperature, not mixed layer depth. The models350

here differ in both SST anomaly statistics and mixed layer depth, but these are not easily separated351

as both effects stem from substituting among self-consistent parameterizations. If solely the SST352

warming of submesoscale restratification was included without altering the mixed layer depth, it353

would not be physically meaningful.354

The composite maps shown for CESM (Figure 2) show that it is not only persistence of the MISO355

phenomena that is affected by upper ocean physics, but also the spatial patterns can be made more356

or less realistic. The effects near the equator, where all of the simulations have too little coherent357

precipitation with the positive MISO phase, indicates that there are likely other biases to address,358

e.g., the double ITCZ bias (Zhang et al. 2019).359

Interestingly, the Bay of Bengal mixed layer depths of the model most successful in simulating360

the MISO are not the most accurate in comparison to observations. Thus, the mechanisms at play361

in the model to simulate the MISO are different than those in the real world–a fact that is not362

surprising given the complexity of the cloud formations in a real MISO (Kumar et al. 2017) versus363

the simplified MISO in the CESM. It is not at all clear if the model improvements shown here are364

a vindication of the particular set of parameterizations chosen, or just a coincidental set of factors365

combining into an improved MISO.366

What is clear however, is that the simulated MISO is sensitive to upper ocean physics that con-367

tributes to mixed layer balances, not just prescribed mixed layer depths (Samanta et al. 2018).368

Furthermore, in this particular model, the most realistic MISO did not occur in the model with the369

most accurate mixed layer depth, revealing that the whole of the model, including other inaccura-370

cies, need to be taken into account when assessing forecast skill potential.371
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Methods like EEOF analysis can help identify such phenomena and define a rigorous way to372

extract targeted skill tests from observations and climate models in such a way that they can be373

directly compared. Measuring precipitation alone without the added perspective of the EEOF374

framework significantly decreases the clarity of the connection between the upper ocean physics375

and the MISO, since upper ocean physics also affects other aspects of the precipitation patterns376

that conceal the MISO impact. On the other hand, EEOFs hold the potential to indicate modes of377

oscillation where there may be none, so patterns and temporal progression and persistence need to378

be evaluated as done here.379

EOFs (and EEOFs) can also provide the basis for an empirical prediction system (Penland and380

Magorian 1993; Weiss et al. 2019) which can offer comparable forecast skill to full process-based381

modeling systems (Newman and Sardeshmukh 2017). Thus, the results here that upper ocean382

processes affect MISO EEOF statistics is likely to impart an impact on the potential forecast skill383

of process-based models.384

The independence of EEOF analysis from model physics is both a strength and a weakness385

of the methodology. On the one hand, by making no assumptions about the dynamics of MISO386

events an EEOF can focus purely on their observed empirical behavior. Additionally, here we387

compound this agnosticism by using precipitation as our base variable, focusing on an effect of388

a MISO rather than a theorized mechanism. However, a more detailed look into the changing389

coupled air-sea mechanisms triggered by the different upper ocean physics is an important next390

step to better understand the nature of the sensitivity found here.391

Comparing versions of a GCM with and without various forms of turbulence has significant392

value from the perspective of climate mechanisms and model physics. Since the precipitation393

patterns associated with MISOs form in the Indian Ocean and move North through the Bay of394

Bengal, this model comparison provides an opportunity to test how important ocean turbulence is395
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to such synoptic scale phenomena. However, as the perturbed physics in this CESM ensemble was396

perturbed globally, it is not clear if the local effects on the upper Bay of Bengal was the key change,397

or if other regions affected the initiation of the MISOs elsewhere, for example. The mismatch398

between model MISO accuracy and Bay of Bengal mixed layer depths would be natural if the399

improved skill descended from changes elsewhere rather than local changes. Using perturbed Bay400

of Bengal physics in a regional climate model forced with identical remote forcing can distinguish401

between the impacts of local and remote physics, as can better understanding of the perturbed402

mechanisms underlying these changes to the MISO.403

The importance of intraseasonal behavior to global climate predictions has become clear over the404

last decade. The most significant mode of East-West tropical intraseasonal variation, the Madden-405

Julian oscillation (MJO), has been shown in GCMs to nearly double in simulations with quadru-406

pled atmospheric CO2 levels. The precipitation anomalies associated with the MJO are projected407

to increase by 10% with every degree C of surface temperature warming, partly due to increases408

in surface heat flux, but primarily due to a significant increase in vertical atmospheric circulation409

(Arnold et al. 2015). Since MISOs exhibit a similar mechanism, their response to climate change410

should be studied once a climate model is vetted for adequacy.411
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TABLE 1. List of CESM case studies used in this study.
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calculated from zonally averaged precipitation data (bottom) using method described in Section 2c. Diagonal

areas of high precipitation correspond to northward-propagating rain bands, which in turn correspond to periods

of positive EEOF1 (portions of the top plot in red).
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FIG. 2. Average difference in precipitation anomaly between positive and negative MISO1 phases. Maps

show the difference between the average precipitation anomalies at all times for MISO1 > 95th percentile and

all times for MISO1 < 5th percentile for the observations (top plot - GPCP) and for the cases (Table 1): CTRL

= both Langmuir and submesoscale, noLT = submesoscale only, noSM = Langmuir only, noLTSM = neither

parameterization, and GPCP = observations.
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FIG. 3. Average positive and negative precipitation phases. Maps show the average precipitation anomalies

at all times for MISO1 > 95th percentile (top row) and all times for MISO1 < 5th percentile (bottom row).

Shown are the cases (Table 1): CTRL = both Langmuir and submesoscale, noLT = submesoscale only, noSM =

Langmuir only, noLTSM = neither parameterization
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FIG. 4. Comparison of the relative importance of the first 10 EEOFs for GPCP observations and all model

configurations. Method for calculating the percent of variance explained by each EEOF discussed in text. The

first EEOF value corresponds to the percent variance represented by the MISO1 index. From Baylor: EEOF

1 and 2 of CESM represent a smaller fraction of the total variance when compared to EEOF 1 and 2 of the

observations, but the precipitation variance in CESM is higher in (mm/day)2, which may mean that the rainfall

anomalies explained by EEOFs 1 and 2 of CESM matches that of the observations. Shown are the cases (Table

1): CTRL = both Langmuir and submesoscale, noLT = submesoscale only, noSM = Langmuir only, noLTSM =

neither parameterization, and GPCP = observations.
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FIG. 5. Distribution of length in days of positive (left column) and negative (right column) phases of the

MISO1 index for GPCP observations and all model configurations. Shown are the cases (Table 1): CTRL

= both Langmuir and submesoscale, noLT = submesoscale only, noSM = Langmuir only, noLTSM = neither

parameterization, and GPCP = observations.
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FIG. 6. Monthly climatology of spatially averaged mixed layer depth (MLD) in the Bay of Bengal from

observations and for each model configuration. Observational data set from the Monthly Isopycnal & Mixed-

layer Ocean Climatology (MIMOC) (Schmidtko et al. 2013)
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