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Chapter 1

Introduction

1.1 Motivation

1.1.1 Ocean Turbulence

The ocean is highly turbulent. This is illustrated in Figure 1.1, where cyanobacteria in the upper

ocean highlight the irregular motion that varies across a rich array of space and time scales. In 1922

Lewis Fry Richardson eloquently articulated turbulence in the context of weather forecasting as

Big whorls have little whorls that feed on their velocity,

and little whorls have lesser whorls and so on to viscosity.

This simple limerick illustrates a phenomena that is challenging to describe precisely, even though

turbulence is ubiquitous in a number of fields. The physical attributes of turbulence are illustrated

through its many observed forms – from storms in the atmosphere, to foam lines in lakes and oceans,

wakes behind boats, and stirred milk in coffee. Turbulence is responsible for the transfer of enstrophy

(the squared vorticity), energy, and tracer variance across scales. Stirring by turbulence also makes

mixing properties such as temperature more efficient. Despite much progress in the field over the

last decades, a complete understanding of geophysical turbulence – where planetary rotation and

stratification are present – is still lacking. In particular, while the large (> 10km, many days to

months) and small (< 0.1km, minutes to hours) turbulent motions of the ocean are comparatively

well described (Kolmogorov, 1941b; Kraichnan, 1967; Charney, 1971; Kunze, 2019), only recently

has the intermediate range of scales (0.1−10km, hours to a few days), termed submesoscales, become

a focus of scientific study (see for example the overviews McWilliams, 2016, 2019).

1.1.2 Submesoscale Dynamics

The submesocale range of motion plays a large role in altering the state of the upper ocean by

providing pathways to energy dissipation (Molemaker et al., 2005; McWilliams, 2008; D’Asaro et al.,

1
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Figure 1.1: Cyanobacterial bloom patterns at different spatial scales in the Baltic Sea, captured on
August 11 2015 by the Operational Land Imager (OLI) on Landsat 8. Translucent areas in the top
image indicate the extent of the bottom panels. At the highest zoom level (bottom right), a ferry
can be discerned that passed through the bloom and caused vertical mixing along its track. Source:
NASA Earth Observatory. Figure and caption from Grötsch (2018).

2011; Poje et al., 2017), altering sea-ice distributions (Manucharyan and Thompson, 2017), and

affecting both the horizontal distribution and vertical transport of pollutants, heat, freshwater, and
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nutrients within and across the mixed layer (Mahadevan and Tandon, 2006; Klein and Lapeyre,

2009; Zhong et al., 2012; Li et al., 2012; Zhong and Bracco, 2013; Poje et al., 2014; Rosso et al.,

2014; Omand et al., 2015; Özgökmen et al., 2016; Smith et al., 2016; Mahadevan et al., 2016; Lévy

et al., 2018; Siegelman et al., 2019). In particular, on April 20, 2010 the oil rig Deepwater Horizon

exploded near DeSoto Canyon in the Northern Gulf of Mexico (GoM). This catastrophic event

released an unprecedented amount of oil and gas over the course of about 3 months (Crone and

Tolstoy, 2010), resulting in 11 human deaths and countless environmental impacts (e.g. Hayworth

et al., 2011; White et al., 2012; Passow et al., 2012). Response and recovery efforts by both the

academic communities and government agencies were immediate. In concert with skimming, burning,

and releasing dispersants, an ensemble of forecast models with horizontal resolution at or above

∼ 4km were ran with particle tracking schemes to provide estimates of the oil dispersal over time.

While these models aided mitigation strategies, there were clear shortcomings, including inaccurate

representation of ocean circulation at subgrid scales (Liu et al., 2011) and the effects of topography

on near-shore transport (e.g. Restrepo et al., 2014). Additionally, satellite imagery during the spill

revealed a rich array of submesoscale processes expressed in oil patterns at the sea surface (e.g.

Poje et al., 2014), highlighting the importance of processes at scales < 10km. This dissertation

focuses on the submesoscale range of motion in the Northern GoM near the initial

location of the Deepwater Horizon Oil Spill – isolating how fluid parcels interact with

submesoscale features, characterizing the turbulence statistics that emerge from those

interactions, and providing a framework for future forecast model improvement and

tests of model fidelity.

1.1.3 Measuring Ocean Turbulence with Surface Drifters

Material transport is naturally investigated by following fluid parcels in a Lagrangian framework (Ben-

nett et al., 2006; LaCasce, 2008; Van Sebille et al., 2018), in contrast to the fixed-space Eulerian

approach implemented in many ocean models (e.g. Griffies and Adcroft, 2008). After the Deepwater

Horizon Oil Spill, several campaigns to release surface drifters were conducted near DeSoto Canyon,

including the Grand LAgrangian Deployment (GLAD) during summer 2012 (Poje et al., 2014) and

the LArangian Submesoscale ExpeRment (LASER) during winter 2016 (D’Asaro et al., 2018). Us-

ing these surface drifters to interpret upper ocean pathways is advantageous, as drifter trajectories

contain information about instantaneous ocean properties at a given time and spatial location, as

well as the history of a water parcel along its trajectory.

Surface drifters have demonstrated ability to follow submesoscale currents and features (e.g.

Novelli et al., 2017), unlike many other observational platforms such as moored buoys and coarse

resolution satellites. Oil is typically less dense than seawater (Wang et al., 2003), and depending

on the sea-state and composition much of it resides at the sea-surface in the form of micron to

centimeter thin slicks and films that can span hundreds of kilometers (Daling et al., 2003). The

range of scales governing oil dispersion and transport are thus many, which makes numerical repre-

sentations difficult. Observations are more practicable, via the direct release of oil (Faksness et al.,
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2016), or through the less detrimental release of surface drifters as substitutes for oil (Fingas, 2011;

Novelli et al., 2018), which can aid in model evaluation and improvement (Reed et al., 1994, 1999;

Jones et al., 2016; Spaulding, 2017). There are a few distinctions between oil and drifter proxies.

For instance, surface drifters do not mimick effects such as biodegradation of oil by bacteria and

sunlight (e.g. Bacosa et al., 2015). Additonally under conditions of strong wind-wave induced ver-

tical shear drogued drifters (i.e. drifters with a sea-sail) were found to exhibit different behavior

than oil, undrogued drifters (no sea-sail), or driftcards (bamboo plates) in laboratory experiments

and in drifter releases in the Gulf of Mexico (Haza et al., 2018; Novelli et al., 2020). Despite these

limitations, drifters still offer invaluable insight into upper ocean processes across a range of scales

currently unresolved or not captured by most other observational platforms and numerical mod-

els (e.g. Poje et al., 2014; Mariano et al., 2016; Beron-Vera and LaCasce, 2016; Balwada et al., 2016;

Poje et al., 2017; D’Asaro et al., 2018; Novelli et al., 2020).

1.1.4 Upper Ocean Energetics

With the onset of a multitude of submesoscale tracking drifter releases in the GoM, interest has

grown in understanding upper ocean turbulence in this region through the lens of surface drifters (e.g

Balwada et al., 2016; LaCasce, 2016; Poje et al., 2017). One of the key ways turbulence is classified

is through its Eulerian kinetic energy spectrum, which is the distribution of turbulent kinetic energy

per unit mass across wavenumbers. While there are many studies devoted to understanding the

energy spectrum of the atmosphere (e.g. Nastrom et al., 1984; Tulloch and Smith, 2006; Lindborg,

2006; Callies et al., 2014), the energy spectrum of the ocean is more challenging to examine due

to smaller length and time scales. On top of these obstacles, surface submesoscale features are an

added difficulty due to the the complex dynamics of the mixed layer as well as their relatively small

size and ephemeral nature (Thomas et al., 2008). Indeed, the behavior of the energy spectrum across

the submesoscale range is still an open question with results suggesting a strong dependence on time

and space (e.g. Timmermans and Winsor, 2013; Callies et al., 2015; Rocha et al., 2016a,b; Qiu et al.,

2017; Cao et al., 2019; Chereskin et al., 2019).

Analysis of GLAD drifters reveals that they poorly estimate the Eulerian kinetic energy spec-

trum of the Northern Gulf of Mexico (LaCasce, 2016). However, characterizing turbulent behavior

with drifters by calculating the real space counterpart to spectra, structure functions, is considered

more reliable, despite also having shortcomings (LaCasce, 2016). The nth-order Eulerian velocity

structure function is given as Snγ (r) = 〈∆unγ 〉, where ∆u is the difference of the γ velocity com-

ponent between two points separated by r, and 〈...〉 is an ensemble average (see Section 1.3.1 for

more details). The slope and magnitude of the second-order structure function offers information

about the slope and magnitude of the kinetic energy spectrum (Kraichnan, 1967, 1971; Charney,

1971; Bennett, 1984; Babiano et al., 1985; Callies and Ferrari, 2013), and the sign and magnitude

of third-order structure function offers information about the direction (i.e. from large to small

wavenumber or vice versa) energy or enstrophy is transferred and the average rate at which this
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transfer occurs (Kolmogorov, 1941b; Lindborg, 1999, 2007). Recent analysis of GLAD-derived Eu-

lerian structure functions indicates shallower second order structure-functions, as well as larger and

negative third-order structure functions than expected (Poje et al., 2017). Other studies using the

same or similar datasets also highlight that drifter motion in this region is strongly dependent on

divergence and vorticity fields (e.g. D’Asaro et al., 2018; Chang et al., 2019).

The bulk of this thesis is devoted to connecting these two findings by isolating how

convergence zones and vortices create shallower second-order and larger third-order

drifter-derived Eulerian structure functions than the statistics calculated from the Eu-

lerian velocity field itself. The remaining chapter is devoted to using the knowledge

gained from the biases identified in the previous two chapters alongside other La-

grangian statistics to understand where, when, and what properties both the GLAD

and LASER drifters sampled.

1.2 Phenomenology

1.2.1 Statistical Models of Turbulence: K41 Theory

In fluid dynamics a turbulent flow is characterized by its Reynolds number (Reynolds, 1883). The

Reynolds number is the dimensionless ratio of the non-linear advective (inertial) terms in the equa-

tions of motion to the kinematic viscosity

Re =
UL

ν
(1.1)

where U , L, and ν are characteristic velocity, length scale, and molecular kinematic viscosity of

the prescribed flow. High Re numbers imply more turbulent flows, low Re numbers indicate more

laminar and smooth flows, and Re � O(104) is the boundary for laminar flows to become tur-

bulent (Reynolds, 1883). The ocean typically exceeds this requirement (Thorpe, 2007), and is

thus taken to be highly turbulent everywhere. To isolate the turbulent component of the velocity

field a Reynolds’ decomposition is imposed assuming that there is a meaningful distinction between

the background flow and the turbulent fluctuations about it. This decomposition dictates that

u = 〈u〉+u′, where 〈u〉 is the background velocity, u′ is the turbulent perturbation, and 〈.〉 is either

a space, time, or ensemble average. With this decomposition at hand, the turbulent kinetic energy

is defined as TKE = 1
2 〈u
′2〉, and its budget and path from input to dissipation can be tracked.

The general ocean circulation is sustained by substantial inputs of energy. This energy comes

from injections of momentum, heat, and freshwater, and, for a steady state ocean, this energy must

be dissipated. To accomplish this, energy is fed from the large-scale circulation into the largest

eddies of length L at rate ε. As noted above, in high Reynolds number flows viscous forces are

small with respect to inertial forces, and smaller scale motion must necessarily be generated until

a small enough scale is created that viscosity can act. Thus these large eddies are assumed to be

unstable, and break up into smaller (littler) eddies, which in turn break up into smaller eddies,
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and so on. This process continues until the small eddies associated with sharp velocity gradients

are small enough that viscosity can efficiently transform the mechanical energy into heat at rate ε.

During the break up, energy dissipation is much smaller than the transfer from scale to scale (in

the inertial range), which is then also transferred at effectively rate ε. A depiction of this process is

presented in Figure 1.2.

This ‘cascading’ or ‘spectral flux’ of energy from large to small scales reflects the ideas proposed

by Richardson (1922, 1926), and is the basis for the pioneering work of Kolmogorov (1941b) dedicated

to formalizing three dimensional (3D), stationary, homogeneous, isotropic turbulence termed “K41

Theory”. Here stationary means that the statistics of turbulence are invariant to translations in

time. Homogeneous means they are invariant to translations in space, and consequently only relative,

not absolute coordinate systems are relevant. Finally, isotropic means the statistics are invariant

to rotations, and thus have no directional dependence. A note that these assumptions imply there

are no boundaries or the turbulence studied is far from them. Thus the Reynolds’ number must be

calculated with quantities intrinsic to the flow – the statistics of the turbulence itself. The velocity

scale is prescribed as the root-mean-square (i.e. standard deviation) of the velocity field. The

characteristic length scale L is taken as the integral of the of the velocity autocorrelation function

defined in section 1.3.1.

Two other assumptions inherent to this theory are locality of scale and self-similarity (Frisch,

1995). Locality of scale requires that only scales near each other interact – small eddies are only

swept around but not influenced by large eddies, however any small or large eddy can interact with

those eddies directly below and above it in size. Secondly, self-similarity asserts that eddies break

up into area-preserving smaller versions of themselves, and the geometry is therefore invariant under

coordinate dilations. Armed with these conditions, in the limit of infinite Reynolds’ number Kol-

mogorov (1941b) proposed three hypotheses describing the cascade process. These are summarized

as:

1. Local Isotropy Hypothesis: At scales smaller than the integral length and time scale, a

turbulent flow far from boundaries is locally isotropic, homogeneous, and stationary.

2. First Similarity Hypothesis: At scales much smaller than the integral length scale and

time scale, the statistics of a turbulent flow have a universal form (i.e. are similar for any

turbulent flow). Within this “dissipation range”, the statistics only depend on the mean

energy dissipation rate (ε) and the viscosity (ν).

3. Second Similarity Hypothesis: At scales smaller than the integral length and time scale,

but larger than the dissipation length and time scale, the statistics of a turbulent flow are

also universal. Within this “inertial range” the statistics only depend on ε and the local

wavenumber κ (or scale r).

Figure 1.3 illustrates an ideal picture of an energy cascade in 3D turbulence under the assumptions

that the ocean is steadily stirred by a homogeneous and isotropic force at large scales, and that
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Figure 1.2: Depiction of Richardson’s cascade idea paired with some of Kolmogorov’s hypotheses.
Energy is injected from the large scale flow at rate ε into large eddies at the integral length scale.
The large eddies break up into smaller eddies, which break up into even smaller eddies, and so on
until they are small enough to be effectively dissipated by viscosity at rate ε. As they do break up
into smaller and smaller eddies, energy is carried to smaller scales also at rate ε. At scales above the
integral scale separating the inertial range from the energy containing range, flow statistics depend
on how the turbulence was generated. At scales below the integral length scale, the flow statistics
are universal (but scale-dependent).

the turbulence is statistically stationary (i.e. the forcing and viscous dissipation have come into

equilibrium). The theoretical turbulent kinetic energy spectra shown here is broken up into several

ranges (bands) of wavenumbers satisfying different properties described in Kolmogorov’s hypotheses

outlined above. The inertial range is the band of wavenumbers over which energy is inviscidly

transferred at a constant rate from large scales to smaller scales (small wavenumbers to larger

wavenumbers). The inertial range is bounded above by the integral scale (wavenumber κI , length

scale L), which is where energy is injected into the system, and bounded below by the dissipation

scale (wavenumber κη, scale η), where viscous effects become non-negligible. The spectral distance

between these two scales is set by the Re number of the integral scale. : κI/κD ∝ Re
3/4
κI (Pope,

2000). Because the ocean is so turbulent, this results in an inertial range of around 8-9 orders of

magnitude (Baumert et al., 2005; D’Asaro et al., 2011).

Isotropic tensor analysis combined with Kolmogorov’s hypotheses and dimensional analysis yields
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Figure 1.3: Depiction of an ideal 3D cascade in stationary, homogeneous, isotropic turbulence based
on the ideas of Richardson, Kolmogorov, Onsager, and others. Similar to Figure 1.2 in concept,
the additional assumptions of Kolmogorov permit scaling laws in terms of ε and κ to be formed,
resulting in a slope of −5/3 on a log-log plot in the inertial range.

a predictive model of the cascade processes, whose limits and applications are testable both exper-

imentally and observationally. Kolmogorov (1941b) applied these methods in real space to furnish

scaling laws for the Eulerian second-order velocity structure functions, and Onsager (1945) applied

similar arguments to arrive at a scaling law in spectral space (Jiménez, 2004; Eyink and Sreenivasan,

2006). If the statistics in the inertial range are determined by the local wavenumber κ with dimen-

sions L−1 and ε with dimensions L2T−3, then the energy spectrum with dimensions L3T−2 is given

by E(κ) = CKε
2/3κ−5/3, where CK is a universal constant found to be near 1.6 (McComb, 1990).

On a log-log plot, the energy spectrum therefore has a of slope −5/3 in the inertial range. Note

that this result is consistent with earlier work by Obukhov (1941) who arrived at the same spectral

scaling laws with a different approach (Yaglom, 1994). Under similar arguments the Lagrangian

kinetic energy spectrum, where velocities are taken along a particle trajectory, should scale as as

L(ω) = Bεω−2, where ω is the frequency and B is a universal constant (Corrsin, 1963).

1.2.2 Beyond K41: Geophysical Turbulence

While verified in many settings (e.g. Grant et al., 1962; Gibson and Schwarz, 1963; Lumley, 1964),

K41 theory is a tremendous simplification of a complex set of processes with inherent shortcomings.

For example, one deficiency is the need to include the effects of intermittency – the bursty nature

of turbulence – which results in skewed spatial and temporal distributions of turbulent statistics, as
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demonstrated for ε in idealized 3D turbulence (Yaglom, 1966) and ocean mesoscales (Pearson and

Fox-Kemper, 2018). For more examples of modifications and extensions of K41 see Frisch (1995).

In geophysical turbulence, while the same basic tenets (e.g. conservation of mass, momentum,

energy) are still present, the presence of planetary rotation, stratification, and forcing also demand

a refined scaling law for the energy spectrum, even if the flow is homogeneous and isotropic in the

horizontal dimensions. At the largest scales, the ocean is primarily forced by winds, the equator-to-

pole temperature gradient, and the gravitational forces that generate the tides. Other forces from

heating/cooling and evaporation/precipitation are smaller, and at small scales the dynamics are

three-dimensional, and vertical velocities are strong contributors to mixing (Ferrari and Wunsch,

2009). Between these regimes, the inertial range is populated with mesoscale (O(10 – 100 km, many

days)) and submesoscale eddies (O(0.1 – 10 km, hours to a few days)), as well as other features for

example inertial and internal-gravity waves. Accordingly, a suite of dynamical theories is needed

to describe these spectral subranges. While not every flavor of geophysical turbulence is worked

through here, an outline of many are presented and the reader is directed to Callies and Ferrari

(2013) for additional review.

The basin-wide general circulation features (e.g. lateral boundary currents) release energy

through barotropic and baroclinic instabilities, which manifests primarily as the generation of

mesoscale eddies with diameters near the local internal Rossby deformation radius (Salmon, 1978).

The internal Rossby deformation radius (defined here by the first baroclinic mode as L = NH/fπ,

where N is the buoyancy frequency, f is the Coriolis parameter at a prescribed latitude, and H is

the depth of the upper ocean) is the distance a parcel of water can travel before being meaning-

fully affected by Earth’s rotation and stratification; for the ocean this is typically 10-200 kilometers

depending on the latitude (Cushman-Roisin and Manga, 1995). Mesoscale eddies are important

because they play a large role in carrying heat, nutrients, and carbon across the oceans (e.g. Bryan,

1982; Volkov et al., 2008; Chelton et al., 2011; Zhang et al., 2014). The depth of mesoscale eddies

compared to their horizontal width is typically small in both the ocean and the atmosphere. For

example atmospheric cyclones are confined to the roughly 10km thick troposphere, but they have

horizontal extents of 1000s of kilometers. The parameter that describes this is the aspect ratio, λ,

given by:

λ = H/L� 1 (1.2)

whereH is the typical vertical scale and L the typical horizontal scale. Scale analysis of the continuity

equation suggests that the vertical velocity, W , scales as W ∼ λU , and paired with small λ implies

that W � U and the flow is nearly two-dimensional (2D) (Cushman-Roisin and Manga, 1995). 2D

flows have been investigated not only for the potential applications to large-scale meterological and

oceanic turbulence, but also the feasibility of numerical simulation as compared to 3D flows.

The mesoscales are also subject to vertical rigidity from strong rotation and stratification. This is

quantified by small Rossby number, which compares inertial and rotational forces, and small Froude

number, which compares inertial forces to stratification effects:
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Ro =
U

fL
� 1, F r =

U

NH
� 1 (1.3)

where U is the characteristic velocity, f is the Coriolis parameter, L is the characteristic horizontal

length scale, N is the buoyancy frequency (density stratification), and H is a typical vertical length

scale. In the limit of Ro, Fr → 0, the flow is termed quasi-geostrophic (QG), with dynamics similar

to 2D turbulence aside from the retention of a 3D-like vortex stretching term and vorticies confined

to isopycnal surfaces (i.e. surfaces of constant potential density) (Charney, 1971). In both 2D

and QG turbulence there are two conserved variables that are inviscidly transferred across scales.

In 2D flows energy cascades upscale with slope −5/3 and enstrophy (ω2/2), that is the squared

vorticity (ω = ∇× u), cascades downscale as −3 (Kraichnan, 1967, 1971). In QG flows energy still

cascades upscale as −5/3 but the potential enstrophy (q̃2/2), that is the squared potential vorticity

(q̃ = f +∇2
hψ+ ∂

∂z ( fbN2 )), cascades downscale with slope −3 where f is the Coriolis parameter, ∇hψ
is the horizontal gradient of the velocity streamfunction, and b is the buoyancy (Charney, 1971).

At smaller scales, the flow is subject to other forms of turbulence. The gradient Richardson

number is defined as

Ri =
N2

|dUdz |2
(1.4)

where dU
dz the vertical shear of the background horizontal flow, and is a measure of both the stability

of the stratification through the sign of N2, as well as the competition of stratification and mean

vertical shear through the magnitude. Shear provides kinetic energy for turbulence, while stable

stratification limits turbulent motions. When Ri < 0, the stratification is unstable and the flow

is conditionally subject to convective turbulence. When the 0 < Ri < 0.25 the flow is subject

to shear instability (Miles, 1961; Howard, 1961). This Kelvin-Helmholtz style instability tends to

break up large scale features, as well as create patches of 3D turbulence, leading to a downscale

cascade of energy known as stratified turbulence (Riley and Lindborg, 2008). From dimensional

arguments, among other assumptions, the horizontal wavenumber spectra for stratified turbulence

is presumed to scale as E(κh) = CKEε
2/3κ

−5/3
h where CKE is a constant for the kinetic energy

spectrum distinguished with the subscript ‘KE’ because there is also a predictable potential energy

spectrum (Lindborg, 2005, 2006). While Lindborg (2006) argued that this could be an explanation

for the observed mesoscale spectra of the atmosphere, it is also postulated to be the case for scales

of 100s of meters in the ocean (e.g. Riley and Lindborg, 2008). Finally, stratification effects become

unimportant when the Ozmidov scale, κo = (N2/ε)1/2, is reached. These are the largest eddies that

have enough kinetic energy to overcome stratification and overturn, and thus is the outer scale of

3D turbulence where the scalings of K41 theory of the previous section apply.

At intermediate scales where Ro, Fr ∼ 1, submesoscale eddies act to churn the upper ocean,

and are present alongside gravity waves, fronts, filaments, and tides. These motions contribute to

conundrum of bridging the gap between the large-scale anisotropic but balanced mesoscale eddies

and the isotropic 3D motion at small scales (e.g. McWilliams et al., 2001; McWilliams, 2003). While
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the timescales of submesoscale eddies and near-inertial internal gravity waves often intersect, their

motion is distinct because it is assumed that submesoscale motion is largely in balance (Thomas

et al., 2008; McWilliams, 2016), and can therefore be described by a scalar field such as potential

vorticity or a velocity streamfunction (McKiver and Dritschel, 2008). Further, submesoscale motion

is characterized by O(1) Ro and O(1) Ri ∼ Fr−2, distinguishing them from the small and large

values of Ro and Fr associated with mesoscale and small scale motion respectively (Thomas et al.,

2008; McWilliams, 2016, 2019).

At the ocean surface, a vanishing vertical velocity permits strain at the edges of mesoscale eddies

to sharpen horizontal buoyancy gradients (i.e. submesoscale fronts) (Lapeyre et al., 2006). This is

unlike the ocean interior, where lack of an air-sea interface allows slumping of fronts, that is the

movement of light waters to be above denser waters. Submesoscale fronts and associated eddies are

ubiquitous in the upper ocean, and important because they act as conduits for carbon and heat

to enter the deep ocean, they bring nutrients to the surface, and they restratify the mixed layer.

Analagous to the internal Rossby deformation radius for mesoscale eddies, the deformation radius

for submesoscale eddies is found by taking into account the depth and stratification of the mixed

layer instead of the depth and stratification of the thermocline. Several classes of models have been

developed to describe the dynamics of fronts. When the interior potential vorticity is assumed to be

uniform, and motion is driven by buoyancy (or potential temperature) anomalies at the surface, a

version of QG called surface quasi-geostrophy (SQG) applies (Blumen, 1978; Held et al., 1995). This

type of flow is essentially 2D, where surface boundary conditions for buoyancy uniquely determine

the fluid motion through an inversion principle. The stirring of surface buoyancy isolines leads to

horizontal buoyancy gradients, and straining by a mesoscale eddy field sharpens fronts (e.g. Lapeyre

et al., 2006). Secondary instabilities arise at the fronts and lead to a cascade of energy (Held et al.,

1995; Juckes, 1995). With constant stratification and an infinitely deep ocean, an energy cascade

with slope −5/3 is expected (Held et al., 1995). For finite-depth SQG primarily, setting the bottom

potential temperature boundary to zero results in spectra this is QG/2D like with slope −3 at large

scales and transitions into an SQG like slope of −5/3 at smaller scales (Tulloch and Smith, 2006).

While many studies are devoted to applications of surface quasi-geostrophy in the ocean (e.g

LaCasce and Mahadevan, 2006; Tulloch and Smith, 2009; Wang et al., 2013; Liu et al., 2014),

the restrictions of strong stratificaton and rotation in QG and SQG turbulence (Ro ∼ Fr � 1)

exclude ageostrophic motion necessary for submesoscale dynamics, and thus also realistic develop-

ment of fronto- and filamentogenesis, restratification, and asymmetry between cyclones and anti-

cyclones (Lapeyre et al., 2006; Klein et al., 2008). With weaker stratification (Ro ∼ Fr2 � 1),

semi-geostrophy (SG) (Hoskins and Bretherton, 1972) is less restrictive than QG dynamics, and al-

lows for a more realistic generation of surface divergence and vorticity fields. Andrews and Hoskins

(1978) predicted that for an isolated 1D front allowed to reach infinite vorticity, the kinetic energy

and potential energy would have an energy spectrum with slope −8/3. Ageostrophic effects acceler-

ate frontogenesis, and following the development past this singularity to account for the continued

steepening of isopycnals a cascade with slope −2 is expected (Boyd, 1992), which is also the slope
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given by spectral analysis of submesoscale resolving numerical models (Capet et al., 2008b; Klein

et al., 2008). The surface semi-geostrophy (SSG) (Badin, 2013) is another model formally similar

to SQG in it’s boundary conditions that better represents the development of fronts, filaments, and

secondary ageostrophic instabilities below the deformation radius, where SG lacks proper vortex

dynamics to do so (Malardel et al., 1997). In this regime the spectra are found to be steeper due to

the development of more filaments, near −5/3 (Ragone and Badin, 2016).

Many mathematical frameworks are in place for different classes of turbulence. However, the

ocean is often more complex than the simplifying assumptions underlying the theories proposed

above, and observations and models are needed for validation. This thesis is devoted to aiding

interpretations of structure functions (metrics related to the kinetic energy spectrum)

through both observations and numerical models, with emphasis on the impacts of

submesoscale features.

1.3 Statistics

1.3.1 Eulerian Structure Functions

While the complexity of turbulence resists an analytic representation (e.g. Carlson et al., 2006), a

statistical description is more tractable and offers desirable information about transport and mixing

rates. This involves analyzing the moments of velocity differences, that is the structure functions.

The nth-order Eulerian velocity structure function corresponding to the nth-moment is given as

Snγ (x, r, t) = 〈[uγ(x+r, t)−uγ(x, t)]n〉, where 〈...〉 denotes an ensemble average, n is the order of the

structure function, γ is the velocity component. Under the assumption of stationarity, the structure

function is independent of time (i.e Snγ (x, r, t) ≡ Snγ (x, r)). Under the assumption of homogeneity

the structure function is only dependent on r (i.e Sn(x, r) ≡ Sn(r)). And finally the assumption of

isotropy implies the structure function is only dependent on magnitude of r (i.e. Sn(r) ≡ Sn(r)).

This reduces the previous equation to

Snγ (r) = 〈∆unγ 〉 (1.5)

where the velocity difference is condensed with notation ∆u.

It is the significant distortion of eddies that leads to energy transfer across scales (Frisch, 1995).

An absolute framework is not capable of detecting this distortion, and therefore a relative framework

is employed. To obtain the relative coordinate system, the velocity differences are projected along

the line of separation between two points (longitudinal), or projected along the line perpendicular to

the direction of separation (transverse). The structure functions corresponding to these directions

are denoted by γ values of l and t for longitudinal and transverse respectively, with the projected

velocity differences given by
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∆ul = k̂ · ([u(x + r)− u(x)]× r̂)

∆ut = (r̂× k̂) · (u(x + r)− u(x))
(1.6)

where k̂ is a unit vector in the vertical direction.

Second-Order Structure Functions

Of primary interest to turbulence studies are the second- and third-order structure functions. The

second-order structure function, under homogeneity and stationarity, is a linear transformation of

the auto-covariance function, defined as 〈uγ(x)uγ(x + r)〉. Specifically,

S2
γ(r) = 2[〈uγ(x)2〉 − 〈uγ(x)uγ(x + r)〉] (1.7)

In the limit of no correlation, the structure function levels off to twice the variance, 〈uγ(x)2〉.
On the other end, when correlation is high, the structure function is relatively small. In-between

these two extremes, the structure function is expected to grow with scale, as particles separated by

larger and larger distances become less correlated.

Through the auto-covariance function, the second order structure function is also related to the

stationary, isotropic, homogenous kinetic energy spectrum by

S2
γ(r) = 2

∫ ∞
0

Eγ(κ)(1− J0(κr)dκ (1.8)

where Eγ(κ) is the longitudinal or transverse component of the energy spectrum such that u2γ =∫∞
0
Eγ(κ)dκ, and J0(κr)) is the zeroth-order Bessel function (Bennett, 1984; LaCasce, 2016). Under

the asymptotic limits of (1− J0(κr)), this is approximated as

S2
γ(r) ≈ r2

2

∫ 2/r

0

κ2Eγ(κ)dκ+

∫ ∞
2/r

Eγ(κ)dκ (1.9)

which shows that second-order structure function for k corresponding to scale π/r is the sum of the

enstrophy of the eddies larger than πr/2 and the energy from eddies smaller than πr/2 (Davidson

and Pearson, 2005; Balwada et al., 2016). Additionally, structure functions are often preferred over

spectra because they can be calculated from a wide array of platforms, and do not depend on even

sampling intervals or continuous data-streams in either space or time (e.g. drifters, satellites).

For 3D turbulence, K41 theory suggests that statistics in the inertial range of scales (between

the integral and dissipation scales) is solely determined by the local scale r with dimension L and

ε with dimensions L2T−3. Thus to be dimensionally homogeneous, the second-order longitudinal

structure function with dimensions L2T−2 is given by S2
l (r) = C2ε

2/3r2/3, where C2 is a universal

constant. On a log-log plot, the second-order structure function has a slope of 2/3 in the inertial

range. Further, the longitudinal and transverse structure functions in incompressible 3D flows are

related by
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S2
t (r) = S2

l (r) +
r

2

dS2
l (r)

dr
(1.10)

(De Karman and Howarth, 1938). Then the scaling for the transverse second-order structure function

follows as S2
t (r) = 4

3C2ε
2/3r2/3 and thus both longitudinal and transverse structure functions have

similar power laws but difference magnitudes. Aside from relationships to energy and enstrophy,

these statistics are desirable due to their relationship with the mean dissipation rate per unit mass

ε = 2ν〈sijsij〉, where sij is the rate of strain tensor. To measure ε requires knowledge of the full

velocity gradient tensor, and the structure functions are often a more practicable way to measure

this quantity. However, use of this method is precluded without knowledge of the universal constant

C2, which has been experimentally determined as 2.13± 0.22 (Sreenivasan, 1995)

In geophysical turbulence, a suite of non-3D dynamics are often relevant. For a self similar

kinetic energy spectra defined by E(κ) ∼ κα the second order structure function scales as S(κ) ∼
κ−α−1 (Bennett, 1984), provided 1 < α < 3 (Babiano et al., 1985). In two dimensional (2D)

and (surface) quasi-geostrophic (QG) flows, in the energy cascade region the second-order structure

function scales as r2/3. In the (potential) enstrophy cascading range the second order structure

function scales as r2 for (QG) 2D flows. Here the spectra is on the boundary allowed for the

transformation of spectra to structure functions, and in this case the second order structure function

of vorticity can be more informative (e.g. Kramer et al., 2011). Finally in the presence of strong

frontogenesis, the second order structure function scales as r1 (Capet et al., 2008b).

Helmholtz Decomposition

The ratio of the transverse and longitudinal structure functions are related to the rotation and

divergence within in a flow. For two-dimensional non-divergent flow the transverse and londitudinal

structure functions are related by S2
t (r) = d

dr (rS2
l (r)) (Batchelor, 1953; Lindborg, 2007). Structure

functions with a power law formulation S2
γ(r) ∼ rm in a purely divergent flow have the ratio S2

t /S
2
l =

1
m+1 , and in a purely rotational flow have the ratio S2

t /S
2
l = m+ 1 (Lindborg, 1996; Bühler et al.,

2014; Balwada et al., 2016). Further, a Helmholtz decomposition is also possible, which isolates the

rotational and divergent components of the relative velocity (Bühler et al., 2014; Lindborg, 2015):

S2
d(r) = S2

l (r)−
∫ r
0

1
r (S2

t (r)− S2
l (r))dr

S2
r (r) = S2

t (r) +
∫ r
0

1
r (S2

t (r)− S2
l (r))dr

(1.11)

In two-dimensional or QG flows, the velocity field is expected to be non-divergent, or nearly so, such

that the rotational component is dominant (i.e. S2
d << S2

r ). In the submesoscale range, to include

frontogenesis and internal wave dynamics, the divergent component is expected to be as or more

important depending on the type of regime.
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Third-Order Structure Functions

While second-order statistics are proportional to ε, the proportionality constants for all dynamical

regimes are not well defined, and because the second-order structure function is positive definite,

the direction of energy transfer across scales in the cascade process is lost. To quantify this flux

Kolmogorov (1941a) derived the “4/5th law” in which the third-order longitudinal structure function

is related to ε by

S3
l (r) = −4

5
εr (1.12)

through the Karman-Howarth equation for the two-point velocity correlation function (De Karman

and Howarth, 1938). The negative sign here indicates a flux toward small scales, termed a direct

cascade. The benefit of this equation is that it does not rely on unknown proportionality constants

or dimensional arguments, and is thus one of the few “exact” laws of turbulence (of course still under

the assumptions of stationarity, homogeneity, and isotropy).

For d-dimensional turbulence, a more general law is formulated as (Falkovich et al., 2001):

S3
l (r) =

−12

d(d+ 2)
εr (1.13)

Thus for 2D turbulence S3(r) = − 3
2εr with ε < 0 indicating an inverse, upscale cascade. In the

enstrophy cascade regime it is found that

S3
l (r) =

1

8
εZr

3 (1.14)

with the enstrophy dissipation rate εZ > 0 indicating a forward cascade of energy to smaller

scales (Lindborg, 1999). Additionally alternate forms have been derived combining information

from both the transverse and longitudinal components 〈∆u3l 〉 + 〈∆ul∆u2t 〉 = −2εr (Lindborg and

Cho, 2001).

1.3.2 Lagrangian Structure Functions and the Autocorrelation Function

Structure functions can also be formulated in a Lagrangian framework by following particle trajecto-

ries. It is important to note that while the theory outlined below is for truly Lagrangian particles, the

surface drifters utilized throughout this thesis are not truly Lagrangian because they are buoyantly

confined to the surface ocean – at regions of subduction, they cease to follow the three-dimensional

flow. However, there are many instances for which this type of trajectory is desirable in resembling

a particular transport application (e.g. oil, plankton), and surface drifters are taken as proxies for

these buoyant tracers. Thus, in the proceeding chapters “Lagrangian” is used interchangeably with

“semi-Lagrangian”.

The relationships between the Lagrangian kinetic energy spectra are analogous to the sections

above regarding Eulerian spectra and structure functions, but in contrast to Eulerian structure
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functions, Lagrangian velocity structure functions are the averaged powers of the Cartesian velocity

difference between time t+ τ and the time t along a trajectory:

SL
n
γ (a, t, τ) = 〈(uγ(a, t+ τ)− uγ(a, t))n〉 (1.15)

where the subscript γ is the Cartesian velocity increment along a particle trajectory (either zonal

or meridional), a is the initial particle position (and remains as a particle label for all time, even

though at later times it is not directly related to the particle position), t is time, τ is the time lag, n

is the order of the structure function, and 〈·〉 is an average over all differences at a particular lag for

a given trajectory, and typically over all particle trajectories as well. As before, several simplifying

assumptions are often applied. Statistical stationarity and homogeneity imply the structure functions

are independent of translations in space and time. Thus the structure function is only dependent

on the time lag τ , and not the absolute time t or initial position a. This reduces Equation 4.3 to

SL
n
γ (τ) = 〈∆unγ 〉.
Note that as the particle position continues to evolve following the trajectory, the second-order

structure function of this variety is not related via cosine transform to the power spectrum in time

of the velocity at a fixed location. It is however, related in the same manner as Section 1.3.1 to the

Lagrangian power spectrum, L(ω), where ω is frequency. If the Lagrangian kinetic energy spectrum

is given by L(ω) ∝ ωα, then S2
L(r) ∝ r−α−1 provided both follow a power law (Babiano et al., 1987).

In this thesis, the primary concern is not with the Lagrangian frequency spectrum, but it’s Fourier

transform pair: the temporal autocorrelation function given by

RLγ(a, t, τ) =
1

σ2
γ

〈
uγ(a, t)uγ(a, t+ τ)

〉
(1.16)

where σ2
γ is the velocity variance of the γ component of velocity. In isotropic, stationary, and

homogeneous flows, the autocorrelation function is also only dependent on the time lag τ . Under

these assumptions, the temporal autocorrelation function is related to the Lagrangian second-order

structure structure function by

RLγ(τ) = 1−
SL

2
γ(τ)

2σ2
γ

. (1.17)

For short time lags RLγ is expected to be close to one, and for long time lags the correlation is

expected to go to zero. For more details, please review Babiano et al. (1987).

1.3.3 Eddy Diffusivity and the Lagrangian Integral Time

By assuming the scales of turbulence are very small compared to those of the mean field (Taylor,

1921), the evolution of a conservative tracer field can be represented by an advection-diffusion

equation

∂C

dt
+ U · ∇C = −∇ · 〈u′c′〉 ≡ ∇ · (K∇C) (1.18)
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where U = (U, V,W ) is the mean velocity vector, C is the mean concentration, c′ is the fluctuation,

u′ = (u′, v′, w′) is the turbulent velocity vector, and K is the eddy diffusivity tensor that accounts

for the unresolved scales of turbulence (e.g. Fox-Kemper et al., 2013; Bachman et al., 2015). It is

important to note that when the large scale flow is, for example, heterogeneous or non-stationary,

the scale separation hypothesis may not hold such that the averaging procedure does not correctly

resolve the mean, and the applicability of the advection-diffusion equation may be questionable (Gage

and Nastrom, 1986; Davis, 1987; Zambianchi and Griffa, 1994; Falco et al., 2000; Zang and Wunsch,

2001). Although alternatives are available (Davis, 1987), the advection-diffusion equation is often

used because of its utility and ease of implementation (e.g. Griffa, 1996; LaCasce, 2008; Falco et al.,

2000) regardless of whether a scale separation is realized.

Equation 4.11 also results from Lagrangian trajectories experiencing random walks (Einstein,

1906, 1956). That is, the advection-diffusion equation is a macroscopic manifestation of molecular

Brownian motion. The relationship stems from assuming the individual particle motion is given by

the zeroth-order stochastic model

dx = Udt+
√

2σdW (1.19)

where x is the particle position, U is the background velocity, σ is the rms velocity, dW is the nor-

mally distributed random increment of a Weiner process (e.g. Griffa, 1996; Berloff and McWilliams,

2002; Brickman and Smith, 2002). Under this model, the probability of the particle position evolves

according to the Fokker-Plank equation

∂P

∂t
+ U · ∇P = ∇ · (K∇P ) (1.20)

which evolves exactly as the tracer in Equation 4.11 for appropriate choices of advection and diffusion.

While a useful first approximation due to mathematical simplicity, this model fails to capture

some of the physical features of Brownian motion. In particular, this model misses the inertia of

particles that recoil after their collisions and gain correlations between successive steps in time,

the ballistic motion of particles when collisions are not well separated in time, and the particle

interactions themselves that may preclude the use of individual noisy walkers that are independent

of each other. To overcome the first two issues, Taylor (1921) used the notion of a “persistent random

walk”, where for finite times Lagrangian particle velocities are correlated, to develop a relationship

between the autocorrelation function and absolute eddy diffusivity in homogeneous and stationary

turbulence. This can be generalized to three dimensional, homogeneous, stationary, incompressible

turbulence (Batchelor, 1949), however the simplified theory is presented here.

In a Lagrangian framework, the eddy diffusivity is defined as the rate of turbulent absolute (i.e.

single-particle) dispersion, and given by the time derivative of the particle displacement covariance

in the γ direction,

Kγ =
1

2

d

dt
〈(X ′γ)2〉 (1.21)
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where X ′ is the residual particle displacement. Note here that the absolute diffusivity is distinct from

the relative diffusivity (i.e. the time derivative of the relative (multi-particle) dispersion). Unlike

absolute diffusivity, which describes the absolute rate of spreading at large-scales, the relative diffu-

sivity determines the rate of spreading around of a a tracer cloud around it’s center of mass Corrsin

(1963); LaCasce (2008).

The single-particle dispersion is related to the autocorrelation function via

〈(X ′γ)2〉 = 2σ2
γ

∫ t

0

(t− τ)RLγ(τ)dτ. (1.22)

Provided the autocorrelation function decreases to zero sufficiently fast as t → ∞, the Lagrangian

integral time is defined as

TLγ =

∫ ∞
0

RLγ(τ)dτ (1.23)

and describes the memory of a particle along it’s trajectory. It is a basic measure of predictability,

and utilized in many Lagrangian Stochastic Models to parametrize the the transport and dispersion

of scalars subject to a turbulent velocity field (e.g. Griffa, 1996; Haza et al., 2014). The Lagrangian

integral time can be used to investigate the asymptotic limits of the absolute dispersion, and therefore

the absolute eddy diffusivity. In the limit of short times, RLγ(τ) ∼ 1 and therefore

〈(X ′γ)2〉 ≈ 2σ2
γ

∫ t

0

(t− τ)dτ = σ2
γt

2 t� TLγ (1.24)

This is the initial growth phase, where particles disperse ballistically and the Eulerian field is

best represented by a wave equation instead of a diffusion equation. In the limit of long times, the

integral of RLγ(τ) approaches TLγ , and provided the integrals converge

〈(X ′γ)2〉 = 2σ2
γt

∫ t

0

RLγ(τ)dτ − 2σ2
γ

∫ t

0

τRLγ(τ)dτ (1.25)

≈ 2σ2
γtTLγ t� TLγ (1.26)

This is the random walk phases, where dispersion grows linearly in time. This implies that the

eddy diffusivity is constant, and the motion is captured by a diffusion equation. Under the same

limits, the diffusivity is

Kγ ≈


1
2
d
dt

[
σ2
γt

2
]

= σ2
γt t� TLγ

1
2
d
dt

[
2σ2

γtTLγ

]
= σ2

γTLγ t� TLγ

(1.27)

Thus, if the Lagrangian integral time is known as well as the velocity variance, an estimate of the

absolute eddy diffusivity can be made. A good review of these properties is given in LaCasce (2008).
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1.3.4 Probability and Travel Time Maps

The probability map characterizes the number of trajectories that passed through a given bin (only

counted at the first arrival) and the travel time map indicates the mean time at which the trajectories

that passed through a bin first arrived there. This provides context for drifter sampling patterns

and interpretations for the spatial maps of variables presented in the previous sections. To calculate

the probability, the domain is broken up into boxes with lengths dlon ≈ dlat ≈ 0.05km, and the

percentage of drifters that visit the ith box is given by

Pi =
Ni
N

(1.28)

Where Ni is the number of trajectories that made it to the ith bin at least once in the roughly

three month period for each season and N is the total number of trajectories that could have made

it to the ith bin over that timeframe. For GLAD, N = 297 and for LASER N = 956.

The travel time map is constructed such that the average time of arrival of the successful trajec-

tories entering the ith bin is given by

T i =
ΣTi
Ni

(1.29)

where the overbar indicates an average and the sum is over all ’first-hit’ times Ti for the successful

trajectories Ni.

1.4 Outline of Thesis

This thesis utilizes drifter observations and numerical simulations to understand how parcels of water

experience and respond to oceanic turbulence. Specifically, how the features over the submesoscale

range of motion affect their single- and two-point statistics.

In Chapter 2, numerical simulations of the Northern Gulf of Mexico are paired with Lagrangian

particle tracking to understand the impact of convergence zones and vortices on turbulence statistics

derived from synthetic surface drifters. Differences between Eulerian and semi-Lagrangian velocity

structure functions are explained by correlated divergence and curl structure functions over the

submesoscale range of motion.

In Chapter 3, observations are used to corroborate and refine the drifter bias noted in Chapter

2. Velocity structure functions from Eulerian X-band radar measurements and semi-Lagrangian

surface drifter measurements are shown to disagree in a way consistent with the results of the previous

chapter. Further, in addition to the accumulation bias from oversampling frontal regions and vortices

noted in Chapter 2, the differences between Eulerian and surface drifter velocity structure functions

are also found to be due to a background bias from non-zero first-order structure functions.

In Chapter 4, Lagrangian structure functions provide estimates of the Lagrangian integral time

and eddy diffusivity. These are corrected for mean gradients in the flow, similar to the methods

developed in Chapter 3. Spatial maps of both the Lagrangian integral time and absolute eddy
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diffusivity are used alongside probability and travel time maps to characterize the transport and

dispersion of GLAD and LASER drifters in the Northern Gulf of Mexico.

Finally, Chapter 5 summarizes the main conclusions of this thesis and the implications for using

surface drifters to study submesoscale and mesoscale turbulence.



Chapter 2

Identifying the Bias: Systematic

Biases in Eulerian Structure

Functions Derived from Synthetic

Surface Drifters

This chapter was published as Jenna Pearson, Baylor Fox-Kemper, Roy Barkan, Jun Choi, Annalissa

Bracco, and James C. McWilliams, 2019: Impacts of Convergence on Structure Functions from Sur-

face Drifters in the Gulf of Mexico. J. Phys. Oceanogr., 49, 675–690, https://doi.org/10.1175/JPO-

D-18-0029.1. Recent analysis of GLAD-derived Eulerian structure functions indicate shallower sec-

ond order structure-functions, as well as larger and negative third-order structure functions than

expected (Poje et al., 2017). Other studies using the same or similar datasets also highlight that

drifter motion in this region is strongly dependent on divergence and vorticity fields (D’Asaro et al.,

2018; Chang et al., 2019). To diagnose the impact of convergence zones and vortices on turbulence

statistics derived from synthetic surface drifters, numerical simulations of the Northern Gulf of Mex-

ico are paired with Lagrangian particle tracking. Differences between Eulerian and semi-Lagrangian

velocity structure functions are explained by correlated divergence and curl over the submesoscale

range of motion. This chapter sets the stage for the analysis in Chapter 3, where Eulerian and

drifter statistics are compared with observations to corroborate and refine the analysis presented here.

Finally, the benefits of the biases identified in this chapter, as well as Chapter 3, are used alongside

other semi-Lagrangian statistics to describe flow features related to convergence and rotation.
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Abstract

There are limitations in approximating Eulerian statistics from surface drifters, due to biases from

surface convergences. By contrasting second- and third-order Eulerian and surface drifter structure

functions obtained from a model of the Gulf of Mexico, the consequences of the semi-Lagrangian

nature of observations during the summer Grand LAgrangian Deployment (GLAD) and winter

LAgrangian Submesoscale ExpeRiment (LASER) are estimated. By varying launch pattern and

location, the robustness and sensitivity of these statistics are evaluated. Over scales less than 10 km,

second-order structure functions of surface drifters consistently have shallower slopes (∼ r2/3) than

Eulerian statistics (∼ r), suggesting that surface drifter structure functions differ systematically, and

don’t reproduce the scalings of the Eulerian fields. Medians of Eulerian and cluster release second-

order statistics are also significantly different across all scales. Synthetic cluster release statistics

depend on launch location and weakly on launch pattern. The observations suggest little seasonal

difference in the second-order statistics, but the LASER third-order structure function shows a sign

change around 1 km, while GLAD and the synthetic cluster releases show a third-order structure

function sign change around 10 km. Further, synthetic surface drifter cluster releases (and therefore

likely the GLAD observations) show robust biases in the negative third-order structure functions,

which may lead to significant overestimation of the spectral energy flux and underestimation of the

transition scale to a forward energy cascade. The Helmholtz decomposition, and curl and divergence

statistics, of Eulerian and cluster releases differ, particularly on scales less than 10 km, in agreement

with observations of drifters preferentially sampling convergences in coherent structures.

2.1 Introduction

The global expanse of the ocean paired with seawater’s small viscosity permits motion over a wide

range of scales. The submesoscale range (O(0.1-10 km, hours to days) has important effects on upper

ocean dynamics (Thomas et al., 2008; Boccaletti et al., 2007; Klein et al., 2011; Fox-Kemper et al.,

2011; McWilliams, 2016). The Gulf of Mexico (GoM) is a unique example of these dynamics, due

to the rich array of submesoscale features seen in ocean color, its coastal geometry, and interactions

between the Mississippi River plume and large eddies. Specifically, significant submesoscale activity

is present near De Soto Canyon (Schiller et al., 2011), as revealed by two recent experiments using

large numbers of semi-Lagrangian surface drifters along with other instruments (Poje et al., 2014;

Haza et al., 2018; D’Asaro et al., 2018).

Surface drifters are one of the most promising technologies to resolve submesoscale flow charac-

teristics well below the deformation radius of 10-50 km in the GoM (Chelton et al., 1998; Carrier

et al., 2014a). Gridded satellite products and shiptrack data are too coarse to resolve submesoscale

activity in this region (McWilliams, 2016). High-resolution models have been the prime exploratory

tool of these scales (Luo et al., 2016; Barkan et al., 2017a,b; Choi et al., 2017), to include those uti-

lizing data-assimilation (Carrier et al., 2014b), but direct observational evaluation of the statistics

of submesoscale phenomena are more challenging to obtain and analyze. Their utility has led to
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Figure 2.1: (a) Deployment patterns and launch locations for the gridded (blue) and cluster (black)
surface drifter releases. For each location (East and West insets) an S-shape and Clover pattern was
implemented to reproduce those of the GLAD (S-Shape) and LASER (Clover shape) experiments.
S-shape patterns contain 90 drifters each, Clover patterns contain 300 drifters each, and the gridded
release contains 28870 drifters. (b) Cluster trajectories for the entire 3 month period. Note the
outline of the model domain is plotted in green.

several releases of surface drifters throughout the GoM in the last decades, from which previous work

has made estimations of velocity statistics–sometimes without distinguishing between Eulerian and

semi-Lagrangian sampling in interpretation–in the submesoscale range (Poje et al., 2014; Beron-Vera

and LaCasce, 2016; Mariano et al., 2016; Balwada et al., 2016; Sansón et al., 2017). We revisit some

of the conclusions made in those papers by exploiting releases of simulated surface drifters (Choi

et al., 2017) mimicking the design of the Grand LAgrangian Deployment [GLAD, (Poje et al., 2014)]

and LAgrangian Submesoscale ExpeRiment [LASER, (D’Asaro et al., 2018)].

While drifter data is crucial for obtaining information at the submesoscale, care must be taken

when interpreting statistics derived from semi-Lagrangian datasets. Buoyant drifters are confined

near the surface, and as they traverse the velocity field following water parcels in the horizontal, they

often remain trapped in convergent zones such as fronts or windrows, or in long-lived eddies (D’Asaro

et al., 2018; Barkan et al., 2017b; Choi et al., 2017). Surface drifters are therefore not capable of

sampling the 3D, divergenceless velocity field (i.e. vertical motions). Specifically, the drifters in the

studies identified here (GLAD, LASER) were drogued at O(0.5m) and moved under the influence

of the currents at this depth. If the tendency of surface drifters to remain in convergent features is

stronger than the tendency for wind slippage or other dynamics to break up the convergences, there

is potential for biased statistics from surface drifter data versus Eulerian field statistics. Motivated

by the probability density function (PDF) analysis of Choi et al. (2017), which showed that semi-

Lagrangian data produces biased probability density functions in both divergence and vorticity, the

primary objectives of this paper are to examine the ability of semi-Lagrangian data to reproduce

Eulerian velocity structure functions, and to better understand differences by examining curl and

divergence structure functions. The use of curl and divergence structure functions, in place of the

PDF methods mentioned earlier, is advantageous because it is scale-selective. That is, both structure
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functions and PDFs are capable of detecting differences between Eulerian and semi-Lagrangian

estimates of the same object, but of the two methods only the structure function is capable of

sorting these differences by scale.

The two Gulf of Mexico (GoM) cluster release considered in this work differ in the season they

were conducted (GLAD in summer, LASER in winter) and in the deployment pattern used. Both

modeling studies (Mensa et al., 2013; Brannigan et al., 2015) and observational studies (Callies et al.,

2015; Buckingham et al., 2016) have focused on the seasonality of the submesoscale, and generally

agree that there is stronger submesoscale activity in winter. The submesoscale, when dynamically

defined (Thomas et al., 2008; Boccaletti et al., 2007), varies considerably in scale from summer to

winter as the ocean mixed layer depth varies, and tends to be larger/stronger the deeper the mixed

layer. One major consequence is that models with fixed resolution across seasons, including those

used here, likely overestimate the degree of seasonality because summer submesoscale circulations

are more difficult to resolve (Barkan et al., 2017b).

In the GoM river outflow induces strong lateral buoyancy gradients and shallow mixed-layer

depths, which compete to induce or suppress submesoscale circulations in models, respectively.

In summer, when mixed layer depths are typically shallow and thus more difficult to resolve in

models, the river outflow buoyancy gradients induce stronger submesoscale activity than in the open

ocean. In winter, a deep mixed layer would ordinarily have active submesoscales, but the effects

of river forcing shoal the mixed layer and slightly reduce submesoscale activity. In model outputs,

however, the submesoscales remain typically more active in winter than summer. This is especially

true for the integrations analyzed here, where the representation of these circulations in summer

is underestimated due to the fixed/limited resolution, and the use of climatological wind forcing

(Barkan et al., 2017b) that confined the propagation of the river outflow too close to the coast

between May and September compared to observations (https://waterdata.usgs.gov/nwis/rt).

Structure function analysis offers additional diagnostics of model fidelity–including comparing

seasons–and comparing the summer and winter modeled Eulerian and semi-Lagrangian structure

functions suggests very strong seasonality. This contrasts with our particular subset of observations

from the GLAD and LASER campaigns which show weak seasonality, potentially due to hurricane

activity during GLAD. Additional ongoing tests adjusting the wind forcing show that the use of

climatological winds as in the simulations considered here rather than winds including synoptic and

inertial variability influences significantly summer statistics, but only moderately winter statistics.

Therefore, detailed simulation analysis has been limited to the winter simulations, which we deem

most realistic. Within the winter runs, the pattern of release of synthetic drifters as well as location

from GLAD and LASER is imposed to robustly assess which of these distinctions is most important,

and a gridded large-scale release is performed to isolate the bias induced purely from the semi-

Lagrangian nature of surface drifters. The results of the gridded release in summer are also briefly

discussed, albeit not shown, to complement the evidence presented in the winter simulations.

Second-order structure functions (Kolmogorov, 1941b; Lindborg, 1999, 2007) offer comparable

information to the kinetic energy spectrum (Callies and Ferrari, 2013; Bühler et al., 2014) under

https://waterdata.usgs.gov/nwis/rt
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certain limits (Babiano et al., 1985), and given their functionality and practicality for use with

irregularly-sampled data, they are often preferred and therefore the focus of this paper. As struc-

ture functions of varying orders have been identified theoretically for a variety of turbulent cascades

(Kolmogorov, 1941b; Lindborg and Cho, 2000; Lindborg, 2007; McCaffrey, 2015b), the behavior of

a turbulent regime can potentially be identified by examining the slope and magnitude of structure

functions of different orders. This approach is particularly useful in the upper ocean, where it is

postulated that there exists a transition within the submesoscales from quasi-geostrophic turbulence

at large scales to a forward energy cascade or inertia-gravity waves at the small scales (Thomas

et al., 2008; Callies and Ferrari, 2013). While is it not to goal of this paper to make theoretical com-

parisons, drifter observations, paired with structure function analysis, could provide an opportunity

to substantiate this conjectured transition in the Gulf of Mexico.

Supporting this class of conjecture, Bühler et al. (2014) developed a technique for performing a

Helmholtz decomposition of a section of Eulerian velocities into its rotational and divergent parts.

Lindborg (2015) adapted this idea to structure functions, which do not require a continuous section of

observations, to estimate the rotational and divergent contributions to the flow statistics, again under

certain limits (Babiano et al., 1985). Since we hypothesized that the convergence of semi-Lagrangian

trajectories would be significant in understanding the biases of surface drifter observations, this

decomposition method is applied here to the surface drifter statistics, for which the decomposition

is otherwise hard to come by, and the modeled Eulerian field is Helmholtz decomposed directly. To

add a complimentary line of evidence, we compute the second order curl and divergence structure

functions. Through this analysis, insight into the contributions of oceanic trapping features to the

structure functions, as well the relative importance of balanced (nondivergent) geostrophic motion

and unbalanced divergent motion across scales, is gained.

2.2 Model Configuration and Trajectory Details

The Regional Oceanic Modeling System (ROMS) (Shchepetkin and McWilliams, 2005) was config-

ured using a sequence of one-way nesting following the procedure outlined in Mason et al. (2010),

and focuses on solutions in the Northern Gulf of Mexico near De Soto Canyon with approximately

500 m, nearly isotropic horizontal resolution. To test the effect of resolution on our results, we

released 4 clusters of drifters in the center of a higher-level nested domain covering only De Soto

Canyon at 150 m horizontal resolution in winter (Barkan et al., 2017a), and found similar outcomes,

suggesting that, if there is sensitivity, it occurs at much higher resolution than we can currently

afford with the given domain. The atmospheric forcing is climatological, with a QuikSCAT-based

daily product of scatterometer wind stresses (Risien and Chelton, 2008), CORE (Large and Yeager,

2009) monthly heat-flux atmospheric forcing, and HOAPS (Andersson et al., 2010) monthly fresh-

water atmospheric forcing. No tidal forcing is used, and a daily river forcing is applied based on

daily river volume flux data from the USGS for the year 2010. The analysis is carried out on the

winter months (January, February, March) of year-long equilibrated solutions, using a twice-per-day
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output frequency for Eulerian structure function calculations, and higher frequency output to sim-

ulate trajectories using the method described below. Additional information about the numerical

setup is provided in Barkan et al. (2017b).

Near-surface drifters (hereafter surface drifters) are advected off-line by LTRANS v.2b (North

et al., 2011) with a 30-minute averaged Eulerian velocity field located a half-grid cell beneath the

surface, and produced by ROMS. All particles are released and confined near the surface through

runtime, driven by the upper grid cell current, and the trajectories are sampled hourly for analysis

(Choi et al., 2017).

A set of drifter clusters was released to mimic the Grand LAgrangian Experiment (GLAD) and

LAgrangian Submesoscale ExpeRiment (LASER) in terms of release location (West vs. East), and

release pattern (S- vs. Clover-shaped patterns) for a total of four deployments. To better span the

model domain, 28870 particles on a regular grid with an initial separation of 0.02◦ and centered in

the northern Gulf of Mexico were released where the water column is deeper than 50 m, considering

that the mixed-layer baroclinic deformation radius cannot be resolved near the shore by our model

resolution (Luo et al., 2016; Barkan et al., 2017b).

The deployment locations and patterns for both the gridded and cluster releases are shown

in Figure 2.1(a). The S-shape (GLAD-like) and clover (LASER-like) clusters include 90 and 300

particles, respectively. A basic unit of S-shape and clover clusters is a triplet, and there is no fractal

setup for the clover clusters. Both clusters are deployed at the centered locations of West or GLAD

S1 (88.13◦W, 28.8◦N) site near the Deepwater Horizon site and East or LASER (87.68◦W, 29.05◦N)

site near De Soto Canyon. The deployment period (day of year 20-109) mimics LASER, however

the deployment patterns and locations mimic both GLAD and LASER. Statistics collected following

these semi-Lagrangian trajectories are contrasted versus those evaluated at the Eulerian locations

of the model grid. To provide the closest observational analogue, observed trajectory statistics only

from the the P1 LASER and S1 GLAD deployments are included, and restricted to lie within the

model domain.

When any particle reached the boundary of the domain, it was removed from the structure

function calculations. Over the three-month experiment, many surface drifters in the cluster releases

eventually reached the boundary. Even though sufficient pair separations remain at each scale, half

of the western deployments were removed after about 52-54 days, likely due to the proximity to the

Mississippi river plume, while the eastern deployment maintained more than half of its drifters for

the entire duration of the experiment. Due to the drifters leaving the domain, under- or non-ergodic

sampling could potentially explain some of the wiggles at the larger scales present in the second order

statistics of the western deployments, but not as strongly present the eastern statistics. Therefore

the focus of this study is on the submesoscale and lower end of the mesoscale (i.e. scales less than

30 km), where the impacts of this boundary condition are likely minimal. The second order velocity

statistics of the gridded surface drifter release converge well to the Eulerian statistics a the largest

scales, and we feel that any impacts of losing surface drifters for this release are negligible.
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2.3 Methods

2.3.1 Structure Functions

The structure function is a two-point statistical measure of a fluid property, typically used to evaluate

turbulent variability over a given separation (Lindborg, 2015; McCaffrey, 2015a,b). The n-th order

velocity structure function is defined as

Dn
γ (x, r, t) = 〈[uγ(x + r, t)− uγ(x, t)]n〉. (2.1)

Here 〈...〉 is an ensemble average, n refers to the order of the structure function (or equally the power

of the velocity differences, which are called increments in the turbulence literature), and subscripts

refer to either the longitudinal (L) or transverse (T ) velocity component.

∆uL = (u(x + r)− u(x)) · r

|r|
,

∆uT = k̂ ·
[
(u(x + r)− u(x))× r

|r|

]
.

(2.2)

Note that surface drifters are the target of this study, which means that all r separations are

restricted to the horizontal, as are all measured velocity components. The magnitude of the trans-

verse velocity component is arrived at by considering only the vertical component (k̂·) of the cross-

product between the surface velocity and surface distance. On horizontal separation scales larger

than the boundary layer depth, it is expected that horizontal velocity increments will dominate (i.e.,
w
v ∼

H
L << 1).

Equation 2.1 represents the average product of velocity differences for the collection of points

separated by a distance r. Under homogeneity, the structure function does not depend on absolute

location x, just the relative location r. Under isotropy, the statistic does not vary with the absolute

direction of r, although it still depends on velocity direction relative to the separation, i.e., transverse

versus longitudinal. Thus, the angle brackets will also be taken to average over x and orientation of

r, so r = ||r|| is the sole independent coordinate of the structure functions. It is also assumed that

over the three month window, stationarity holds, and therefore time averaged statistics are used.

These assumptions lead to the simplified form

Dn
γ (r) = 〈∆unγ 〉 (2.3)

Where γ is the placeholder for either the transverse or longitudinal velocity component.

Theories predicting power law dependence of the second order structure function in turbulence

cascades go back to Kolmogorov (1941b), and the kinetic energy spectrum equivalents are well

known (Webb, 1964; McCaffrey, 2015a). These relationships may also be inferred for multiple

cascades at different scales, as is common in geophysical flows (McCaffrey, 2015a; Frehlich and

Sharman, 2010). Structure functions are a smoothed version of spectra, in the sense that they are

related through a Fourier cosine transform (Babiano et al., 1985). Additionally, there are limits

in converting from structure function to power spectrum if the spectral slope is too steep or too
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shallow. In these limits, the structure function saturates and its slope is not related to the power

spectrum slope. Due to the subsampling scheme used for the Eulerian fields, it is only possible

to approximate the power spectrum with schemes allowing for gappy or irregular data (e.g., the

Lomb-Scargle technique: Press and Rybicki, 1989). Further, with real semi-Lagrangian observations

the spectra are poorly constrained (LaCasce, 2016), and so we refrain from detailed estimates of the

spectral slope here. The conversion from structure function slope to power spectrum slope is only

valid under spectral slopes between −1 and −3 (Babiano et al., 1985), and fortunately the surface

submesoscale spectral slopes tend to be near −2 (Capet et al., 2008b). Here, the comparisons

emphasize Eulerian structure function to semi-Lagrangian structure function without any implied

conversion to spectral slope. Thus, these comparisons avoid the limits of Babiano et al. (1985) both

physically and methodologically.

Theories relevant to submesoscale dynamics of kinetic energy spectra are summarized by LaCasce

(2008); Callies and Ferrari (2013); Poje et al. (2017); Balwada et al. (2016). For third-order structure

functions, see Lindborg (1999, 2007); Poje et al. (2017); Balwada et al. (2016). While past studies

have utilized these theories to infer characteristics of the Eulerian field, we emphasize that the focus

here is not on the evaluation of observations or models versus theories, but on the sensitivity of the

amplitude and slope of structure functions to Eulerian and semi-Lagrangian sampling.

Assuming homogeneity, the second-order Eulerian structure function is equivalent to twice the

variance minus the auto-covariance D2
γ(r) = 2(〈uγ(x)2〉−〈uγ(x)uγ(x+ r)〉). Thus, when comparing

two second-order structure functions at a given separation r, a larger Eulerian structure function

amplitude may result from larger average energy or decreased correlation at that separation scale.

Likewise, a shallower structure function slope indicates a slower decay of correlation with separation

scale. Although the real ocean is anisotropic, heterogeneous, and non-stationary, frequently it is as-

sumed in observations that the statistical behaviors of homogeneous, stationary, isotropic turbulence

scalings are informative, as is often found in idealized simulations operating in the oceanographic

parameter range (Soufflet et al., 2016; Bachman et al., 2017). Here the primary concern of how

closely Eulerian velocity statistics compare versus semi-Lagrangian surface drifter velocity statistics

is added to any concerns about whether idealized turbulence scalings are meaningful in a realistic

setting. In a 3D forward energy cascade, the Eulerian expectation is D2
γ(r) ∝ r2/3 (Richardson,

1922; Kolmogorov, 1941b). In 2D (Kraichnan, 1971) or quasigeostrophic (Charney, 1971) turbu-

lence, the Eulerian expectation is D2
γ(r) ∝ r2 in the (potential) enstrophy cascade and D2

γ(r) ∝ r2/3

in the inverse energy cascade. In the front-dominated submesoscale regime (Capet et al., 2008b), the

Eulerian expectation is D2
L ∝ r. To give meaning to the third-order longitudinal structure function,

the Eulerian expectation is D3
γ(r) ∝ −εr in an energy cascade, where ε is the energy cascade rate.

The cascade may be forward (ε > 0) or inverse (ε < 0). This proportionality holds for inverse and

forward energy cascades in homogeneous, isotropic turbulence of any dimension (Lindborg and Cho,

2000; Falkovich et al., 2001). We reiterate that surface drifters only sample in two dimensions and

where they happen to be, and inertial cascades are an idealization that only partly holds in the real

world. Thus, there is no reason to suspect the drifter statistics will correspond to any of the Eulerian
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expectations proposed above, which are formulated for homogeneous, isotropic, divergenceless flows.

However, elsewhere in the literature theoretical inferences based on drifter statistics have been made,

and it is therefore paramount to understand if surface drifter sampling is sufficiently different from

Eulerian sampling to bias statistics.

2.3.2 Wilcoxon Rank Sum Test

To assess the statistical significance of differences between surface drifter and Eulerian structure

functions, a Wilcoxon rank sum test (WRST) is performed. This non-parametric test is suitable for

addressing continuous distributions that are non-Gaussian, have few elements, or compare datasets

of different lengths. As with other positive-definite variables subject to extreme events, probability

density functions (PDFs) of the structure function values at every scale (not shown) are extremely

right-skewed. The observed distribution function makes the WRST an ideal test for our datasets.

Rank tests are based on the place of each observation in ordered data (the rank), and assesses

the closeness of two datasets by comparing the medians. The highly skewed PDFs of both Eulerian

and surface drifter structure functions (potentially due to intermittency, GPS positioning errors

etc.) suggest the median may be the preferred center of the data, in contrast to the mean, which

is traditionally used when calculating structure functions. Unlike the mean, the median is not very

sensitive to outliers. Structure functions calculated with means are likely to be even less similar

due to sampling biases, and therefore we suggest that the median may be preferred when using

semi-Lagrangian data to gain the best estimates of the Eulerian statistics, as the effects of sampling

bias and any added instrumentation noise are somewhat mediated by its use. Moore et al. (2014)

provides the detailed procedure.

The null hypothesis is that the two samples, s1 and s2, with size n1 and n2 respectively, are from

distributions with equal medians, tested against the alternative that the medians are not equal. Both

data sets are grouped into one larger set, S, with size N = n1 + n2. S is ordered from largest to

smallest, and the rank corresponding to the position in the ordered dataset is noted for each element.

The ranks for each piece of data belonging to the smaller of the original sets is summed, forming the

corresponding variable W (the fact that we use the smaller set does not influence the results, see

Moore et al. (2014)). If W varies much from its expected value (i.e., probability-weighted mean), it

is determined that the samples are pulled from distributions with different medians. More precisely,

if the probability (p-value) of getting such a value W , given that the populations are drawn from

distributions with equal medians, is high, then the null hypothesis is accepted.

2.3.3 Helmholtz Decomposition

Any velocity field can be decomposed into longitudinal and transverse components. If the velocity

field is well-behaved, it can also be decomposed into rotational and divergent components, although

uniqueness is not guaranteed in a bounded domain (Fox-Kemper et al., 2003). For isotropic flows in
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which the component motions are uncorrelated,1 then

u = uL + uT = uR + uD,

〈∆u2〉 = 〈∆u2L〉+ 〈∆u2T 〉 = 〈∆uR ·∆uR〉+ 〈∆uD ·∆uD〉, (2.4)

D2 = D2
L +D2

T = D2
R +D2

D.

D2
R and D2

D are the rotational and divergent structure function respectively. For the Eulerian field,

we directly compute the Helmholtz decomposition of the velocity field to generate the divergent and

rotational velocity structure functions using independently vanishing boundary conditions. In order

to minimize the effects of boundaries, where non-uniqueness may be concentrated, a subset of the

data far from the coast and model domain edges is used.

The semi-Lagrangian versions of D2
R and D2

D could in principle be estimated by sampling the

Eulerian fields nearest the positions of the model trajectories and observations. However, the subset

domain for the Helmholtz decomposition removes many drifters from consideration, and prevents

a full range of scales from being realized when calculating the structure functions, so instead the

method of Lindborg (2015) is used to decompose the semi-Lagrangian velocities.

Stemming from the spectral approach to decompose the velocity field by Bühler et al. (2014),

Lindborg (2015) showed that similar techniques can be used to estimate the second order diver-

gent and rotational structure functions from the second order transverse and longitudinal structure

functions

D2
R = D2

T +

∫ r

0

1

r
(D2

T −D2
L)dr,

D2
D = D2

L +

∫ r

0

1

r
(D2

L −D2
T )dr.

(2.5)

and we employ this method to estimate the semi-Lagrangian rotational and divergent structure

functions. Each of these equations contains two terms, one being the related velocity component, and

the other the integrated exchange of dominance between the longitudinal and transverse structure

functions necessary to maintain the budget of the rotational and divergent components. Note that all

second-order (and indeed all even-order) structure functions should be positive from (2.3), although

the Lindborg (2015) procedure in (2.5) does not guarantee positive-definiteness.

In preparation for integration, and solely for this purpose, the structure functions were first

interpolated using a cubic spline. The residuals (not shown) suggest a reasonable fit, and these

interpolated curves were used as arguments for (2.5), and the trapezoid rule was utilized for inte-

gration. It is important to point out that our discrete scheme does not have an accurate lower limit

below the smallest sampled length scale of around 500 m. To address this, we fit both DL and DT

to power laws, allowing for varying slopes and coefficients, c1,2 and s1,2 respectively. That is, we

represent the structure functions as D2
T = c1r

s1 , D2
L = c2r

s2 . Under the assumption that the ob-

served scales follow the same power laws as the unobserved scales, we can estimate the contributions

1In homogeneous, isotropic, stationary non-divergent turbulence it is straightforward using Fourier expansions to
show that both transverse and longitudinal and rotational and divergent components should be uncorrelated.
However, in divergent flows, transverse and longitudinal components can be correlated. Rotational and divergent
components are expected to be correlated in a bounded domain or heterogeneous flow (Fox-Kemper et al., 2003).
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of the small scales to the integrals in the Helmholtz decomposition method as∫ rmin

0

1

r
(D2

T −D2
L)dr = (c1/s1)rs1 − (c2/s2)rs2

∣∣∣rmin
0

. (2.6)

where rmin is the smallest observed scale, taken to be around 500 m, and the coefficients and powers

of r are found using the fit parameters from the observed scale power laws. These contributions

were typically small.

2.3.4 Specifications

For this project, both semi-Lagrangian and Eulerian versions of the second order structure function,

as well as the corresponding Helmholtz decompositions were calculated. Due to a large domain

with high resolution, the model grid was randomly subsampled to obtain Eulerian statistics, with

bootstrapping uncertainties calculated in the process. While the advantages of a structured grid are

lost in this process, the structure function, unlike most Fourier methods, does not rely heavily on

a uniformly sampled grid. To ensure this sampling did not significantly affect the results, random

sampling of various levels of spatial and temporal coverage was performed. With relatively high

spatial coverage especially at the small scales, and low but diverse temporal coverage, the Eulerian

structure function statistics were deemed representative of the true Eulerian statistics. Thus 7,000

spatial points were considered (5,000 points were initially randomly sampled, and then another

2,000 points were added by taking 20 points near 100 of the original 5,000 points to ensure the

small scale separations were well observed), and 19 time steps (about 6 per month roughly evenly

distributed between days and nights). A similar setup was used to subsample the gridded Lagrangian

releases such that 7000 drifters were ultimately tracked on the same 19 time steps used for the

Eulerian structure functions. For the cluster release second and third order structure functions, no

subsampling was implemented, and all drifters within the domain were used at every time step.

However, for the divergence and curl structure functions, the grid was not sampled randomly as

for the Eulerian statistics, but rather the nearest grid point to each drifter at every time step was

found from the Eulerian fields. All structure functions were binned by separation distance such that

roughly every fourth bin was a factor of 10 increase in scale.

2.4 Results

2.4.1 Second Order Structure Functions

Before introducing the results of the comparisons between the gridded and cluster release structure

functions and the Eulerian statistics, we direct the reader once more to the relationship, assum-

ing homogeneity, between the second order structure function and the auto-correlation function:

D2
γ(r) = 2(〈uγ(x)2〉 − 〈uγ(x)uγ(x + r)〉). Thus, at a given separation r, if one is larger than the

other, it could be the result from larger average energy or decreased correlation, and vice versa.
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Figure 2.2: The gridded semi-Lagrangian and Eulierian second order longitudinal (D2
L) and trans-

verse (D2
T ) velocity structure functions. All structure functions here are calculated by using means,

in contrast to the medians used in the WRST. Structure functions found at each time step are
bootstrapped with 10,000 resamples to obtain 95% confidence intervals, as noted by shading around
them. A guideline of slope 1 and 2/3 is provided.

The semi-Lagrangian second order structure functions for the gridded release (hereafter GSF2s,

green) and Eulerian second order structure functions (hereafter ESF2s, blue) are plotted in Figure

2.2. The ESF2s at each time step were bootstrapped to obtain a 95% confidence interval using

10,000 resamples, as indicated by shading. Striking is the similarity between the GSF2s and ESF2s

at large scales, and dissimilarity at smaller scales. Below about 10 km the GSF2s move from scaling

as r to scaling nearer r2/3, while the Eulerian statistics continue to scale as r. We note here that

the summer simulations exhibit similar behavior, although the departure is for scales less than 8km.

This suggests that if enough drifters are released, it is possible to accurately represent the largest

scales well in terms of slope, albeit still not the magnitude of the structure functions since the

Eulerian and gridded structure functions are outside of each other’s confidence intervals for nearly

the entire range of scales due to the offsets. This is in keeping with the idea that divergenceless

quasi-geostrophic dynamics tend to dominate the mesoscale, and thus we may expect biases induced

from convergent zones alone to be less present here.

The semi-Lagrangian second order structure functions for the cluster releases (hereafter CSF2s,

dashed and dotted) and ESF2s (solid) are plotted in Figure 2.3. It is worth pointing out that the

CSF2s (and observations) are more variable across scales than both the ESF2s, which tend to be
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Figure 2.3: The second order structure functions of (a) longitudinal D2
L and (b) transverse D2

T

velocities, and (c) the third order structure function of longitudinal velocity D3
L. All structure

functions here are calculated by using means, in contrast to the medians used in the WRST. The
Eulerian structure functions found at each time step are bootstrapped with 10,000 resamples to
obtain 95% confidence intervals, as noted by shading around them in (a) and (b). The dashed
and dotted lines represent semi-Lagrangian structure functions with different deployment locations,
and differences between lines with the same line-style represent varying deployment patterns. The
deviations due to differing deployment patterns are typically small or under-resolved with our model
resolution. Guidelines with slopes of 2,1,and 2/3 are provided by the solid brown lines for reference.
Only the absolute values of negative data points are plotted here. Note that LASER P1 and one of
the summer eastern trajectories only had one negative value in this range at the smallest bin, and
are not plotted. A guideline of slope 1 and 2/3 is provided.

smooth and linear in log-log space, and the GSF2s, which show dramatically less variability across

scales. As discussed previously, this could be an effect of choosing to remove drifters that reach the

boundary, and thus much of the analysis presented focuses on scales where the impact is assumed

to be smallest, those less than 30 km. Additionally we note that the effective resolution for the 500

m simulations is estimated as 4 km, and this should be kept in mind when interpreting flows on the

low end of the submesoscale.

The slopes for the ESF2s and CSF2s differ systematically. The ESF2s share nearly the same

slope, scaling as ∼ r, or a bit more steeply, but far short of r2. In contrast, there are variations

among slopes in the CSF2s, particularly in D2
T . However, the CSF2 slopes are typically shallower

than the ESF2 slopes, especially at small scales and in D2
T . When shallower, the CSFs slopes are

near r2/3. The LASER drifter observations, which are also semi-Lagrangian, have shallow slopes

near r2/3, although at roughly an order of magnitude less energy in the transverse velocity. Overall,

the semi-Lagrangian structure functions are typically shallower than Eulerian structure functions,

and this opens the question as to whether the scaling observed in the trajectories and observations

may result in part from biased sampling.

The CSF2s generally overestimate the ESF2, particularly in D2
T . To put this into context, when

the submesoscale is more energetic and ubiquitous, it is expected that drifters are actively drawn into

features more energetic than the typical velocity field, such as fronts, which could cause an increase
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in magnitude of the CSF2s. The effect, however, will not necessarily expand across all scales, and

local effects at key length scales could result in enhanced variability, or if increases persist across a

subset of scales, the slope could be altered.

It is notable that within the CSF2s, D2
T shows a larger jump in magnitude from the ESF2 than

does D2
L. This could be attributed to drifters trapped in more persistent eddies, which might amplify

the magnitude of the transverse velocity component across scales. We also note that for the western

deployments, the large jump in magnitude in D2
T around 12km could be due to non-ergodic sampling,

but that the eastern deployments are less likely subject to this problem. Further, as structure

functions are formulated in a relative coordinate system, the conversion to frontal coordinates is not

obvious. Therefore expected impacts onto the longitudinal and transverse components of drifters

being drawn into fronts are not clear, except to say that the semi-Lagrangian and Eulerian structure

functions are likely to be different as the energy and variability sampled are different.

Other differences within the CSF2s arise due to deployment location and launch pattern (note

the ESF2 and GSF2 do not have these dependencies). Figures 2.3(a,b) show distinct groupings of

East vs. West sets present in both D2
L and D2

T , but is especially strong in D2
T . The structure

functions are not sensitive to whether particles are deployed in a clover or S-patterns, so they are

given the same line-type in Figure 2.3. It is possible that these distinctions would be larger in

simulations at higher resolution, as the patterns are small when compared to the model grid, so

advection differences are only due to interpolation rather than turbulence on sub-kilometer scales.

In our additional analysis of the simulation at 150m horizontal resolution, we find the differences

between the structure functions are more pronounced, but are still weak compared to those from

deployment location. Thus higher resolution yet may still be needed to isolate any deployment

strategy effects on the structure functions.

We note that the model results do not reproduce LASER P1 observations exactly, particularly

in DT where the synthetic CSF2s overestimate the LASER P1 second order structure function by

an order of magnitude. These differences could be attributed to numerical errors of the advection

scheme used to propagate the particles, or more likely the limitations of the climatological forcing

in the model. Climatological winds reduce the forcing of internal waves typically generated from

high-frequency wind events (e.g. hurricanes or winter storms), and can be a major contributer to the

small-scale spectrum (Callies and Ferrari, 2013), and therefore significantly alter structure functions

(Beron-Vera and LaCasce, 2016).

Additionally, seasonal and inter-annual variability of river forcing have significant effects on the

statistics of submesoscale circulations in the Northern GoM (Barkan et al., 2017b). A strong El Niño

during LASER produced larger river discharge than during GLAD (https://waterdata.usgs.gov/

nwis/rt) – an effect that is not included in the climatological wind, river, and heat flux forcing for

the synthetic CSF2s– and could have also altered the structure functions enough to be different from

what average conditions would have produced.

Finally, the eddy kinetic energy in the model is likely to be overestimated at all scales due to

the absence of atmospheric coupling (Luo et al., 2016). The convergence of drifters in energetic

https://waterdata.usgs.gov/nwis/rt
https://waterdata.usgs.gov/nwis/rt
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submesoscale structures, responsible for the ESF2-CSF2 differences, however, is well documented in

both the model (Choi et al., 2017) and observations (Poje et al., 2014; D’Asaro et al., 2018).

2.4.2 Third Order Structure Functions

The negative portions of the Eulerian and semi-Lagrangian third order cluster release structure

functions (ESF3s and CSF3s) are shown in Fig. 2.3c. Generally, winter energetics are amplified by

semi-Lagrangian sampling: overestimating here by a factor of 2 to 8 in ε according to the standard

linear fit to the homogeneous, isotropic energy cascade prediction. However, the power laws observed

are more sensitive to launch pattern, as noted by curves with similar linestyle producing different

slopes–consistent with added sensitivity of this higher-order statistic. As in other studies, only

the negative third order structure function magnitudes are plotted which correspond to the values

theoretically linked to a forward energy cascade (Lindborg and Cho, 2000; Poje et al., 2017). Both

ESF3s and synthetic CSF3s generally scale as ∼ r. Interestingly, the shallowest slope is from the

GLAD observations, which is shallower still than r2/3. A sign change is present in both ESF3s

and all synthetic CSF3s across this range of scales. The LASER P1 third-order structure function

only contains one negative value within the smallest bin (not shown), in contrast to GLAD, which

shows a transition scale similar to the model CSF3s. The CSF3s consistently change sign at smaller

separation scales than their corresponding ESF3s. Thus modeled CSF3s underestimate the largest

scale of the sign change by 2-20 km, and CSF3s are consistently larger in magnitude by a factor of

2-8 than the ESF3s. The energy flux estimate in Figure 7b of Poje et al. (2017), which assumes the

homogeneous, isotropic, arbitrary dimensionality d scaling for an energy cascade ε = −d(d+2)
12r D3

L(r)

following Falkovich et al. (2001)–but uses the CSF3 instead of the ESF3–will systematically and

significantly overestimate the estimated spectral energy flux (ε) and underestimate the transition

scale to a forward energy cascade regardless of dimensionality. The large scale separations could

be affected by the non-ergodic sampling imposed by the domain boundary, but we assume these

effects all occur on scales less than 30 km. Further, it should be emphasized that even though some

modeled (and observed) structure function slopes appear to be consistent with some predictions of

3D Kolmogorov turbulence, the nature of the modeled flow at these scales can not be 3D turbulence

due to resolution, numerics, and the length scales of the flows in question.

2.4.3 Wilcoxon Rank Sum Test

Figure 2.4 shows the medians for the grouped CSF2s and the ESF2s, with shading denoting the

interquartile range. Superimposed on each data point is a marker which signifies the result of the

Wilcoxon rank sum test (WRST). A circle means the test rejected the null hypothesis that the

Eulerian and semi-Lagrangian data at each scale come from distributions with equal medians. A

star implies the null hypothesis is accepted with a supporting p-value greater than 0.05.

When we consider the measures of center, that is the mean or median, rather than samples drawn

from this distribution, the comparison is more selective. In addition, the median is less sensitive
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Figure 2.4: Medians of ESF2s and LSF2s in winter. The interquartile range is represented by
shading. Circles represent rejection of the null hypothesis that the two datasets have equal medians.
Stars represent acceptance of this hypothesis with a corresponding p-value of greater than 0.05.

to outliers, and may be a more representative measure of center than the traditional mean. For

comparison of medians by WRST, the ESF2s and CSF2s disagree across all scales. This is largely

due to the size of the sets being compared. With deployments of 90-300 drifters, and a time frame

of 3 months, there are millions of data points within a given bin of the CSF2s, and the ESF2s also

contain a comparable amount of points. This makes knowledge of the median quite certain, and

the test becomes extremely sensitive to any differences between the two datasets, even though the

qualitative similarity in Fig. 2.4 is striking. At the rawest level however, the structure function

interquartile range only overlaps sufficiently across scales in DL, suggesting that even within the

spread of the data there are differences between CSFs and ESFs. In sum, a statistically significant

difference is the rule between the Eulerian and semi-Lagrangian second order structure functions.

2.4.4 Helmholtz Decomposition

The divergent and rotational structure functions of the cluster releases are plotted in Fig. 2.5(a,b).

A challenge of interpretation is that the Lindborg (2015) method frequently arrived at negative

divergent structure functions for both CSF2s and ESF2s due to the large differences between the

longitudinal and transverse statistics. While this method fails to reproduce the Eulerian divergent

structure functions well, the rotational structure functions are captured much better, both in terms

of sign and magnitude (not shown). Note from the Eulerian structure functions in Fig. 2.5(a,b)

that the rotational structure functions are significantly larger in magnitude than the divergent ones,

especially on larger scales, which suggests that small errors in the rotational part may overwhelm the

divergent part in (2.5). This point is highlighted by the fact that the transverse components are more
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Figure 2.5: The second order structure functions of (a) divergent D2
D, and (b) rotational D2

R motions.
Eulerian structure functions are calculated by decomposing the velocity field directly. The semi-
Lagrangian cluster release structure functions are calculated from the longitudinal and transverse
structure functions following Lindborg (2015). Note that for (a) the semi-Lagrangian divergence
structure functions are faded gray, as they were all negative, but have been reproduced as positive
values on this plot to make clear their magnitude is similar to that of other positive structure
functions.

consistent if the number of drifters increases. Furthermore, note that the Eulerian modeled rotational

and divergent parts do not share the same slope or largest correlation scale, which is perhaps

expected from theory (McWilliams, 1985), but should inform the understanding of errors in (2.5).

Beyond the significance of these internal discrepancies, however, the Eulerian and semi-Lagrangian

structure functions are drastically different from one another, in support of the hypothesis that

semi-Lagrangian statistics are biased in ways that may correlate with convergent zones.

The divergent structure functions for the synthetic cluster trajectories were completely negative

(denoted by faded colors in the plot, see caption). The negative values are problematic, as (2.3)

demands that D2
D and D2

R should be non-negative. Lindborg (2015) also comes across this problem,

albeit only at the largest of scales, and suggests anisotropy is the issue. We examined the anisotropic,

or angle dependent, structure functions by removing averaging over angles (not shown) and similarly

the spatially-dependent structure functions by removing averaging over location (x). However, due to

the particular sampling patterns of the trajectories, gaps in directional and spatial information exist,

making it impossible to attribute the presence of negative values to anisotropy or heterogeneity. A

number of issues could ultimately affect the results of this decomposition. Aside from those addressed

above, we find that the cross-correlations between rotational and divergent parts of the velocity (not

shown) are non-negligible, and as suggested above the difference in magnitude between rotational

and divergent parts makes estimating the minor (divergent) contributor error-prone.
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To get a handle on the limitations of this theory for our data, we assess how large D2
T needs to

be in order to produce negative values of D2
D due to the difference of D2

T and D2
D in the integral

term of (2.5) alone. Assuming positive and equal slopes (s), and positive yet different magnitudes

( c1 for D2
L and c2 for D2

T ), we find the ratio β = c1
c2

=
D2
L

D2
T

to be bounded as: 1
1+s ≤ β ≤ s + 1.

For the ESF2s, s ≈ 1 → 1/2 ≤ β ≤ 2. Callies and Ferrari (2013) and Balwada et al. (2016) use

similar ratios to argue for wave-like or vortex-like cascades from ESF2s. By contrast, the modeled

rotational and divergent ESF2s do not have the same slope. Here, using the CSF2s, β is estimated

by averaging the ratios of y-intercepts of D2
L and D2

T . From this analysis, β ≈ 0.0798, well below

the threshold for which we expect the divergent structure function to be negative.

If these concerns with the Lindborg (2015) method are put aside and the structure functions in

Fig. 2.5(a,b) are taken at face value, then overall the divergent part of the observations is larger

than in the model, perhaps indicating that forced variability (e.g., internal waves) or resolution

limitations are significant. However, it is difficult to eliminate the possibility that the particular

boundary conditions chosen for the Helmholtz decomposition may be the source of these divergent

motions. The large discrepancy between modeled Eulerian and semi-Lagrangian rotational structure

functions and the failure of the Lindborg (2015) method to predict positive semi-Lagrangian diver-

gent structure functions both suggest significant caution in interpreting the Helmholtz-decomposed

observed structure functions without comparable Eulerian observations.

Another approach to understanding the impacts of convergent zones is directly calculating the

structure functions of the curl and divergence of the velocity field, denoted (ECSF,EDSF) for Eule-

rian, and (CCSF,CDSF) for the semi-Lagrangian clusters. These fields can be interpreted as twice

the enstrophy or divergence-squared minus the autocorrelation of the curl or divergence. It is pos-

sible to apply this approach to real drifter trajectories by estimating divergence and vorticity fields

(e.g. D’Asaro et al. (2018)). However, in the model these fields are readily available. Further,

unlike the Helmholtz decomposition, there are no issues of non-unique decompositions, and we do

not have to subset the domain. Therefore we are capable of producing semi-Lagrangian estimates

of the structure functions by utilizing the Eulerian fields to estimate the Lagrangian fields. These

structure functions are plotted in Fig. 2.6, with bootstrapped 95% confidence intervals from 10,000

resamples denoted by shading for the Eulerian structure functions.

It is expected that curl and divergence structure functions will be flatter than the velocity

structure functions, as they are related through derivatives with respect to r when in power-law

regimes. Interestingly, the EDSFs are nearly flat for the entire range of scales, while the CDSFs and

both CCSFs and ECSFs show a significant power law on the smaller scales, and only flatten out

above 10 km (well above the estimated effective resolution and below the range of scales at which

boundaries may come into play). Over this range of scales the CSFs are sloped more steeply than

the ESFs, and this implies there is greater autocorrelation of divergence, and also of curl, in the

CSFs than in the ESFs. This is probably indicative of convergent coherent structures with correlated

divergence and curl, as evidenced by the cross-correlations noted previously between the divergence

and vorticity. Further, both the Eulerian transverse and longitudinal velocity structure functions
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Figure 2.6: Second order structure functions from the cluster releases of (a) divergence, and (b)
curl calculated using means. Bootstrapped 95% confidence intervals for the Eulerian statistics from
10,000 resamples are denoted by shading.

of Figure 2.2 scale as r, which, if taken as representative of a front-dominated regime, means it is

possible to not only have non-zero, but also different divergence and curl structure function slopes

for this class of turbulence.

The scale of the largest coherent features for which the semi-Lagrangian and Eulerian structure

functions differ in slope is about 10 km, and this correlation over smaller length scales agrees with

expectations that gradients increase the appearance of finer scale features. This is also in agreement

with the gridded releases, whose second order velocity structure functions deviate from the Eulerian

statistics most strongly at 10 km and below. Note that it is the correlation across scales that we

treat as evidence of ’drifter trapping’. Assuming homogeneity and that variables decorrelate at

the largest scales then D2
γ(r) = D2(∞) − 2〈uγ(x)uγ(x + r)〉), and the correlation at separation r

is equal to half the difference between the largest-scale structure function D2(∞) and D2(r). In

reality decorrelation occurs at finite r and both the Eulerian and drifter structure functions plateau

to similar values (≈ D2(∞) = 2〈uγ(x)2〉). As a result, smaller structure functions at a given scale

imply more correlation at that scale, rather than decreased variance, and equivalently steeper slopes

imply a greater increase in correlation with decreasing r. Our results show that drifter structure

functions fall below Eulerian structure functions below 10km where the drifters have biased sampling

and are therefore more correlated.

The positive definiteness of this statistic tends to blend convergence and divergence together,

and separating them explicitly is not possible with these metrics. However, we suggest at the scales

over which the semi-Lagrangian structure functions are strongly correlated, and therefore within

features of similar convergence (possibly divergence), coincide with submesoscale frontogenesis or
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other convergent features, and use that as the primary interpretation as demonstrated in D’Asaro

et al. (2018, e.g. see Figure 5), although others may be possible. This interpretation is also in

keeping with the results of a PDF analysis from a similar setup in Choi et al. (2017), where it

was shown through the Kullback-Leibler divergence measure (Kullback and Leibler, 1951) that the

semi-Lagrangian PDFs of both vorticity and divergence were different from the Eulerian PDFs for

the duration of the experiment.

Most of the CDSFs and CCSFs fall approximately within confidence intervals of the Eulerian

structure functions at scales above 10 km. The curl and divergence decorrelation length scale, that

is the scale above which the respective structure functions flatten out, is generally consistent be-

tween Eulerian and semi-Lagrangian estimates, with the exception of the eastern deployment which

overestimates the ECSF across most scales. Below 10 km, the Eulerian fields tend to have shallower

slope, indicating less detected small-scale correlation than in the semi-Lagrangian sampling. This

effect is more pronounced in the divergence structure function, rather than the curl, suggesting that

small scale convergences could indeed be oversampled in the semi-Lagrangian locations. In contrast,

the breakpoint in scale between correlated and uncorrelated variability is fairly consistent between

the Eulerian and semi-Lagrangian estimates.

2.5 Conclusions

By examining the sensitivity of structure functions to semi-Lagrangian data it is revealed that semi-

Lagrangian structure functions are susceptible to changes in both magnitude and slope compared to

corresponding Eulerian statistics. The degree of this effect in the cluster releases depends strongly

on launch location and weakly on launch pattern, preventing a direct correction of observed semi-

Lagrangian statistics to an equivalent Eulerian slope and magnitude. Gridded releases help to isolate

the biases solely due to the semi-Lagrangian nature of the surface drifters, and like the cluster releases

show systematic differences when compared to the Eulerian structure functions, although unlike

the cluster releases better approximate the structure function slope at the large scales, but not the

magnitude. Generally, both the GSF2s and CSF2s tend to indicate preferential sampling of energetic

submesoscales, confirming the PDF analysis in Choi et al. (2017), with slopes that are shallower

than Eulerian statistics. All third order CSFs show a change of sign reliably, but overestimate the

energy flux and underestimate the largest scales involved in the cascade. When taken collectively,

the CSFs are statistically distinct from ESFs. The breakdown of the Helmholtz decomposition

method in the trajectories causes concern for clear interpretation. However, evaluating the curl and

divergence structure functions directly shows important differences between semi-Lagrangian and

Eulerian correlations of these fields on scales below 10 km–i.e., the submesoscales. The Eulerian

structure functions are flatter, and therefore less strongly correlated at small scales than the semi-

Lagrangian structure functions. This is consistent with the notion that drifters collect in convergent,

coherent structures (D’Asaro et al., 2018), and calls to question the interpretation of previous studies

using drifter statistics at pair separations below 10 km (e.g Balwada et al., 2016; Poje et al., 2017)
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to extrapolate information about the Eulerian flow field. Surface drifter statistics for separations

below 10 km consistently exhibit scaling laws close to 2/3, which are shallower than the Eulerian

second order statistics, as shown in this work. From our analysis it is apparent that the effects of the

submesoscale trapping structures diminish with scale, and drifter statistics at mesoscale separations

remain reliable, provided that sampling is sufficient.
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Chapter 3

Refining the Bias: Accumulation

vs. Background Bias from Surface

Drifter Observations

This chapter is in revision for the Journal of Geophysical Research: Oceans with the title “Biases in

structure functions from observations of submesoscale flows”, with lead author Jenna Pearson and

coauthors Baylor Fox-Kemper, Brodie Pearson, Henry Chang, Brian K. Haus, Jochen Horstmann,

Helga S. Huntley, A.D. Kirwan, Jr., Bjöorn Lund, and Andrew Poje. This chapter has two objec-

tives: (1) to utilize regional and local observing platforms to validate the numerical modelling results

presented in Pearson et al. (2019), and (2) to refine the types of biases that manifest in structure

functions due to sampling of regions of strong convergence and vorticity. Comparison of Eulerian and

semi-Lagrangian structure functions yield similar results to that of Pearson et al. (2019), shallower

semi-Lagrangian than Eulerian second-order structure functions, and larger magnitude third-order

structure functions. However, this biases identified here are two-fold. The first is an accumulation

bias, similar to that discussed in Chapter 2. The second is a background bias related to a non-zero

first-order structure function, which is correctable unlike the accumulation bias. The benefits of the

biases identified in this chapter are then used in Chapter 1 alongside other semi-Lagrangian statistics

to describe flow features related to convergence and rotation.

Abstract

Surface drifter observations from the LASER campaign in the Gulf of Mexico are paired with Eulerian

(ship-borne X-band radar) data to demonstrate that velocity structure functions from drifters differ

systematically from Eulerian structure functions over scales from 0.4 to 7 km. These differences

result from drifters oversampling surface convergences and regions of intense vorticity. The first-

, second-, and third-order structure functions are calculated using quasi-Lagrangian (drifter) and

42
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Eulerian data from approximately the same location and time. Differences between quasi-Lagrangian

and Eulerian structure functions are attributed to two forms of bias. The first bias results from the

mean divergence or vorticity of the background flow creating non-zero first-order structure functions.

This background bias affects both quasi-Lagrangian and Eulerian data when insufficiently time-

averaged. It severely biases the drifter third-order structure functions, but is smaller in Eulerian

structure functions at both second and third order. This bias can be corrected for using lower-

order structure functions. The second form of bias results from drifters accumulating in regions

with flow statistics that differ from under-sampled regions. This accumulation bias is diagnosed by

identifying the dependence of the Eulerian structure functions on divergence and vorticity as well

as scale. Together both biases suggest that caution is needed when interpreting second-order drifter

statistics, and that linking raw third-order drifter statistics to energy fluxes is often erroneous in

ocean data: even with background correction and sufficient time-averaging, drifters overestimate

the Eulerian estimate of the third-order structure function by up to a factor of 5 when signs are

consistent.

Plain Language Summary

Structure functions are a statistic used to measure the spreading of material floating in the ocean,

such as plastics or spilled oil, as well as the transfer of properties like energy across scales. Their

calculation requires knowledge of velocities of nearby particles. These can be measured either by

(nearly) stationary instruments, such as a radar, or by tracking drifters. Offshore drifter tracking

is generally easier, but they are known to be attracted to specific flow features, such as fronts,

windrows, and vortices, leading to less sampling of other areas. By considering a unique dataset

of nearly simultaneous velocity measurements from both radar and drifters, this paper investigates

how the uneven sampling by drifters, as well as the limited area coverage of radar measurements,

impacts the structure function statistics and their interpretation.

3.1 Introduction

Surface dispersion of plankton, contaminants, and plastics is largely controlled by the variability of

surface currents over a rich array of scales. While absolute dispersion is dominated by mesoscale and

larger (≥ O(100 km)) motion, for relative dispersion the submesoscales — characterized by horizontal

scales of O(0.1 – 10 km), timescales of hours to days, and O(1) Rossby and Richardson numbers

— are of particular importance. The equal competition of planetary vorticity with horizontal shear

at submesoscales leads to a transition from large quasi-geostrophically balanced motions to smaller

forward-cascading turbulence, providing a pathway for dissipation of both energy and tracer variance

McWilliams et al. (2001); McWilliams (2016). Submesoscale phenomena are pervasive in the mixed

layer as seen in observations Poje et al. (2014); Omand et al. (2015); Callies et al. (2015); Buckingham

et al. (2016); Johnson et al. (2016); Ohlmann et al. (2017); du Plessis et al. (2019) and suggested
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by numerical models and theory Thomas et al. (2008); Capet et al. (2008b,a,c); Fox-Kemper et al.

(2011); Zhong et al. (2012); Luo et al. (2016). They are strong contributors to the transfer of energy

between scales and energy dissipation Molemaker et al. (2005); McWilliams (2008); D’Asaro et al.

(2011); Poje et al. (2017) and affect the distribution of biogeochemical variables throughout the near-

surface ocean Mahadevan and Tandon (2006); Klein and Lapeyre (2009); Zhong et al. (2012); Li et al.

(2012); Omand et al. (2015). Although ubiquitous, submesoscale turbulence is difficult to detect

with most observational platforms due to limited resources, remoteness, and the ephemeral nature of

submesoscale currents McWilliams (2016); D’Asaro et al. (2011); D’Asaro et al. (2018). Lagrangian

instruments are well suited for this purpose because they approximately follow currents at depth

Riser (1982); Davis (1991b) and at the surface Novelli et al. (2017) on submesoscale timescales, and

thus targeted deployments of Lagrangian instruments are capable of capturing the spatiotemporal

evolution of the fronts, eddies, and filaments associated with the submesoscale.

Drifters provide a low-cost measurement platform with the potential for high-resolution in both

space and time, but they have a tendency to cluster in regions of convergence associated with hor-

izontal density gradients and positive vorticity Choi et al. (2017); D’Asaro et al. (2018); Pearson

et al. (2019); Chang et al. (2019). Numerical simulations of the Northern Gulf of Mexico by Choi

et al. (2017) and Pearson et al. (2019) show that impacts of this biased sampling on turbulence

statistics are strongest in the submesoscale. At scales less than 30 km, large releases of ∼30,000 syn-

thetic drifters produced shallower second order structure functions and larger third order structure

functions than Eulerian structure functions calculated using the model grid. Individual releases of

clusters of synthetic drifters (∼300 - 1000) to emulate previous drifter launches in the Gulf of Mexico

were also analyzed. The structure functions from cluster releases were similarly shallow and large

for second- and third-order structure functions respectively but much more variable across scales.

Divergence and vorticity structure functions suggest that coherent and correlated submesoscale fea-

tures are responsible for different Eulerian and drifter statistics, findings that can now be verified

with observations from the LAgrangian Submesoscale ExpeRiment (LASER) in winter of 2016.

LASER generated both Eulerian and quasi-Lagrangian surface velocity observations, in the form

of shipboard X-band radar measurements Lund et al. (2018) and GPS-tracked drifters drogued at

60 cm Novelli et al. (2017); D’Asaro et al. (2018). The drifters are only ‘quasi-Lagrangian’ as they

are confined to the surface and therefore do not capture the full three-dimensional velocity field in

the true Lagrangian sense. Thus, throughout this paper “convergences” in the drifter trajectories

do not imply three-dimensional convergence, only surface convergence. Simultaneous and co-located

Eulerian and quasi-Lagrangian measurements are rare, and this is the first experiment we know of

where the measurements are close enough and dense enough in space and time to provide comparable

statistics. See Section 2 for more details.

Structure functions are a common tool for quantifying dispersion properties of fluid flows and

placing the statistics into the context of turbulence theory. Following Pearson et al. (2019), differ-

ences between Eulerian and Lagrangian structure functions are investigated through an analysis of

the impact of specific flow conditions on the statistics. These methods are described in Section 3.
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Figure 3.1: (a) Trajectories for the P1 (green), P2 & P3 (pink) and LDA (orange) drifter
deployments. The shiptrack X-band radar footprint is shown in black. To ensure the best overlap
between the two datasets, the drifters and X-band measurements were analyzed only in the indicated
domains and the time-frames shown in Table 1. (b) – (d) Scaled divergence δ/f from X-band radar
for the time-frames and domains for (b) P1, (c) P2 & P3, and (d) LDA.

Section 4 describes the results, and discussion and conclusions follow in Section 5.

3.2 Data

3.2.1 LASER Drifters

Roughly one thousand GPS-tracked CARTHE-type surface drifters Novelli et al. (2017) were released

in the Northern Gulf of Mexico as a part of the LAgrangian Submesoscale ExpeRiment (LASER)

between 18 January and 13 February 2016 (see Figure 3.1(a)). These drifters were specifically

engineered to be cheap, easy to assemble, and biodegradable to reduce pollution. They reported

position data nominally every 5 minutes for several months and were drogued to follow the integrated

flow of the top 60 cm of the water column Novelli et al. (2017). Tank experiments show the drifters

are subject to less than 0.5% windage at 10-m wind speeds of 8 – 23 m/s Novelli et al. (2017). The
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drifter trajectories were processed by removing outliers, low-pass filtering Yaremchuk and Coelho

(2015) and interpolating positions to uniform 15-minute intervals. Some of the drifters lost their

drogues during or following deployment, and the data following drogue-loss was discarded, based on

the drogue-loss detection method of Haza et al. (2018).

To examine sampling bias caused by different local flow regimes, we consider separately three

groups of observations, across four deployments (one group combines two deployments). The three

groups are denoted ‘P1’, ‘P2 & P3’, and ‘LDA’. P1 was a deployment of 300 drifters in a cloverleaf

pattern over an 8 km x 8 km region with submesoscale activity and a modest horizontal density

gradient, east of the freshwater front from the Mississippi River, on 21 January 2016. LDA was a

deployment of 326 drifters on an approximately uniform grid over a 20 km x 20 km region targeting

a vortex identified in satellite images and aerial sea surface temperature maps on 7 February 2016

(D’Asaro et al., 2018). This launch overlapped more substantially with the ship-track data than

other available launches (see Figure 3.1). Lastly, P2 & P3 were distributed drifter releases from 25

January through 31 January 2016 (265 drifters in all) targeting submesoscale fronts, filaments, and

Langmuir circulation. This group samples conditions when frontogenesis is the primary feature.

3.2.2 X-band Radar

A Doppler (coherent-on-receive) marine X-band radar developed by Helmholtz Zentrum Geesthacht

(HZG), Geesthacht, Germany, was installed on the R/V Walton Smith in support of LASER. It

consisted of a commercial GEM elettronica marine X-band (9.4 GHz) radar with a 2.3 m long HH-

polarized antenna and a scanning period of 2 s. The antenna was situated at a height of ∼12.5 m

above the sea surface with an unobstructed view in all directions. The radar transceiver operates

with 12 kW output power and a pulse repetition frequency of 2 kHz in short pulse mode (i.e., a pulse

length of 50 ns). The corresponding range and azimuthal resolutions are 7.5 m and 0.8◦, respectively.

The radar was modified by HZG to measure both intensity and phase of the radar backscatter signal

from the sea surface Braun et al. (2008). The raw, uncalibrated radar measurements are linearly

amplified and digitized at 20 MHz with 13-bit precision per channel. The A/D converter and

amplifier are located inside the radar transceiver. The system samples the radar backscatter signal

up to a maximum range of ∼3.1 km.

The X-band radar backscatter from the sea surface is due to a combination of Bragg scattering

Barrick and Peake (1968); Wright (1968) and sea spikes associated with wave breaking Wetzel

(1990); Trizna et al. (1991). This study uses near-surface current vectors derived from the long

(>15 m) surface wave signal within the X-band radar backscatter intensity imagery. Surface waves

appear as bands of enhanced and weakened backscatter primarily due to tilt modulation, i.e., wave-

induced changes to the local incidence angle Lyzenga and Walker (2015); Støle-Hentschel et al.

(2018). Additional wave imaging mechanisms are partial shadowing and hydrodynamic modulation

Nieto Borge et al. (2004). The ship-motion-corrected and georeferenced radar backscatter intensity

measurements were partitioned into evenly distributed and partially overlapping circular analysis

windows with a radius of 480 m and 30 min periods, with the actual number of data points per
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analysis window and period depending on the ship track. We note that smoothing from overlapping

analysis windows lowers the total variability, and may affect scales below 1km. While comparison

with tests from synthetic data suggests this contribution is likely small, a more detailed analysis of

the effects of overlap size is necessary to account for the full effects and will be investigated in future

studies.

Simultaneous georeferenced measurements in a field of view surrounding the ship allow the radar

data to be interpreted as an Eulerian field of near-continuous observations. The methodology em-

ployed here is based on the well-established three-dimensional Fourier transform technique, which

identifies the wave-related wavenumber-frequency coordinates within a radar image power spectrum,

and then solves for the current vector by minimizing the wave coordinates’ distance from the linear

wave dispersion relationship Young et al. (1985); Senet et al. (2001). The effective depth of the

resulting current vector depends on the lengths of the underlying surface waves Lund et al. (2015);

Campana et al. (2017). Here, the currents are based on ocean wavenumbers ranging from 0.1-0.3

rad m−1, which corresponds to an approximate effective depth of 1-5 m Stewart and Joy (1974).

Based on a comparison between the X-band radar and CARTHE drifter measurements analyzed

here, the X-band radar currents have an accuracy better than 0.04 m s−1 in terms of speed and

12◦ in terms of direction. For additional details on the X-band radar processing and validation, the

reader is referred to Lund et al. (2018).

3.2.3 Data Windows

To ensure robustness of the statistics, windows in space and time were chosen that were densely

sampled by drifters and the X-band radar. These are summarized in Table 3.1. The geographic

domains for each launch group are shown in Figure 3.1. The drifter times were also constrained to

match the time step of the Eulerian data by taking the nearest available drifter measurement for each

Eulerian time-step. These data subsets were used for the structure function analysis presented in

Sections 4.1 and 4.2.1. For the joint probability density function and structure function dependent on

scale and divergence or vorticity presented in Section 4.2.2, all available X-band radar data was used

covering the domain (lat ∈ [27.9049, 29.2305], lon ∈ [-88.7640, -87.3916]), time ∈ [20 January 2016,

15:56:10, 12 February 2016, 19:40:50]). Additionally, the structure functions of both drifters and

X-band radar were compared for two individual snapshots of a front on 31 January 2016, 12:16:19,

and a vortex on 12 February 2016, 6:00:59.

3.3 Methods

3.3.1 Structure Functions

Velocity structure functions are the moments of velocity increments between two points, and provide

information about the properties of turbulent dynamics at different scales. Given two drifters, the

velocity components of interest are those projected onto the longitudinal (along-separation) and
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Table 3.1: Data Windows

Launch Time-frame No. Drifters Features Sampled

P1 21 January 2016, 13:51:04 to 300 submesoscale activity,

21 January 2016, 19:08:39 modest density front

P2 & P3 26 January 2016, 00:16:44 to 197 submesoscale fronts, filaments,

01 February 2016, 19:40:23 and Langmuir circulation

LDA 07 February 2016, 02:47:41 to 326 vortex

12 February 2016, 19:40:50

transverse (cross-separation) directions. If the positions of a pair of drifters are (x1, y1) and (x2, y2),

then the horizontal separation vector between them is given as r = ∆x̂i + ∆ŷj, where ∆x = x2−x1,

∆y = y2 − y1. The drifter positions can be rewritten in terms of the separation vector, r, by letting

(x1, y1) correspond to x and (x2, y2) correspond to x + r. The longitudinal velocity increment is the

projection of ∆u = u(x + r)− u(x) in the direction of r, and given by ∆uL = (u(x + r)− u(x)) · r̂.

The transverse velocity increment is perpendicular to both r and the local vertical k̂, and is given by

∆uT = k̂ ·([u(x + r)− u(x)]× r̂) or equivalently ∆uT = (r̂×k̂) ·(u(x+r)−u(x)). These increments

are used to construct the isotropic and homogeneous nth-order structure function, defined as

Snγ (r) = 〈(∆uγ)n〉 (3.1)

where 〈·〉 is an ensemble, time, or spatial average, n is the order of the structure function (or

equivalently the nth raw statistical moment of the velocity increment field), and γ refers to the

velocity components (either longitudinal (L) or transverse (T)).

While Eq. 3.1 can be constructed with any value of n, it is the second- and third-order (n = 2, 3)

structure functions that are most commonly analyzed and relevant in turbulence studies. Note that

the higher the moment, the more sensitive it is to the tails of the distribution. Thus, with limited

sampling the higher-order statistics are noisier and harder to estimate than the lower-order statistics.

The second-order structure function, which is the variance of the velocity increments, is related to

the kinetic energy spectrum through a Fourier cosine transform Webb (1964). This results in a

linear relation between the respective slopes of structure functions and spectra McCaffrey (2015b),

provided the spectral slopes fall between −1 and −3 Babiano et al. (1985). Spectral power law

predictions for different turbulent regimes can therefore be transcribed to make structure function

predictions for these regimes Bennett (1984); Babiano et al. (1985); LaCasce (2008); Callies and

Ferrari (2013), even when multiple power laws are present at different scales as is sometimes the

case for geophysical flows Frehlich and Sharman (2010); McCaffrey (2015a); Pearson et al. (2019). In

this paper guidelines comparing theoretical structure function slopes for particular classical cascade

theories will be provided by dashed gray lines alongside observed structure functions, but these

are provided only for reference: power spectra are poorly constrained by drifters LaCasce (2016).

We evaluate the biases of structure functions regardless of whether conversions between spectra

and structure functions are possible (per Babiano et al., 1985). Third-order structure functions may
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offer information about energy transfer between scales, and when paired with first- and second-order

structure functions provide a more complete classification of turbulence statistics. The details of

relevant third-order structure function theories can be found in Lindborg (1999, 2007); Poje et al.

(2017); Pearson et al. (2019).

In homogeneous flows, statistics do not vary from location to location. This implies the mean

velocity must be constant and there are no mean gradients of scalars or vectors in the flow. Con-

sequently, the first-order structure function is zero. As a result there is no distinction between the

central moments and the raw moments of the velocity increments as calculated using Equation 3.1

for homogenous turbulence. In isotropic turbulence, the statistics have no preferred directionality,

implying there can be no mean vectors. With this restriction even a constant mean velocity is

disallowed.

However, in observed flows a Reynolds decomposition (where u = 〈u〉+ u′, 〈u′〉 = 0, and 〈...〉 is

an ensemble, space, or time average) is often assumed where the background flow is generally nonzero

and not uniform, and thus not homogeneous or isotropic. Due to these variable flow properties, the

first-order structure function of the total velocity (background plus perturbation) calculated using

Equation 3.1 is expected to be nonzero. For example, when the longitudinal first-order structure

function is positive, the background flow has mean divergence. Similarly, a positive transverse first-

order structure function implies a counter-clockwise background flow. If the first-order longitudinal

and transverse structure functions are negative, it indicates a background flow with average conver-

gence and clockwise rotation, respectively. Figure 3.2 illustrates these kinematic effects. Note that

in the general definition, ∆uγ1 = uγ2 − uγ1 , where γ is any velocity component, and we wish to

evaluate the effect on the longitudinal (uL) and transverse (uT ) components through projection of

the Cartesian meridional (uy) and zonal (ux) velocities given as ∆uL = (∆ux∆x + ∆uy∆y)/r and

∆uT = (−∆ux∆y + ∆uy∆x)/r.

Under a Reynolds decomposition the first-order structure function calculated by Equation 3.1 is

related algebraically to the second- and third-order statistics by

〈
(∆uγ)2

〉
=

〈
〈∆uγ〉2 + 2 〈∆uγ〉∆u′γ + (∆u′γ)2

〉
= 〈∆uγ〉2 +

〈
(∆u′γ)2

〉
〈
(∆uγ)3

〉
=

〈
〈∆uγ〉3 + 3 〈∆uγ〉2 ∆u′γ + 3 〈∆uγ〉 (∆u′γ)2 + (∆u′γ)3

〉
= 〈∆uγ〉3 + 3 〈∆uγ〉

〈
(∆u′γ)2

〉
+
〈
(∆u′γ)3

〉
= 〈∆uγ〉3 + 3 〈∆uγ〉

[〈
(∆uγ)2

〉
− 〈∆uγ〉2

]
+
〈
(∆u′γ)3

〉
= 3 〈∆uγ〉

〈
(∆uγ)2

〉
− 2 〈∆uγ〉3 +

〈
(∆u′γ)3

〉

Thus, when the perturbation statistics are subdominant, the nonzero first-order structure function

can determine the sign and magnitude of the third-order structure function (if the first terms on the
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Figure 3.2: Demonstration of the relationship between the first-order structure function and drifters
subject to (a) convergent flow, (b) divergent flow, (c) counterclockwise rotation, and (d) clockwise
rotation. When subtracting the variables of the second drifter from the first (an arbitrary choice),
the sign of the first-order structure function is determined. The signs of the differences that go into
forming the S1

L = 〈∆ux∆x+ ∆uy∆y〉 and S1
T = −∆ux∆y + ∆uy∆x are provided.

right side are much larger than the second), and can determine the magnitude of the second-order

structure function. In this paper, these effects are termed background biases, to indicate that the

background flow biases the uncorrected structure function statistics. To isolate the central (i.e.,

with the mean removed) moments when the mean increment is non-zero due to background flow,

the corrected structure function, Sn
′

γ (r) =
〈
(∆u′γ)n

〉
, is defined by the following equations to find

the centralized distributions for the perturbation field statistics, which may then be potentially

homogeneous and isotropic even if the background flow is not,

S2′

γ (r) =
〈
(∆uγ)2

〉
− 〈∆uγ〉2 = S2

γ(r)−
[
S1
γ(r)

]2
(3.2)

S3′

γ (r) =
〈
(∆uγ)3

〉
− 3 〈∆uγ〉

〈
(∆uγ)2

〉
+ 2 〈∆uγ〉3 = S3

γ(r)− 3S1
γ(r)S2

γ(r) + 2
[
S1
γ(r)

]3
(3.3)

The use of a Reynolds decomposition implies that there is a meaningful dynamical distinction

between the background and perturbation fields. The further assumption that the energy transfer

across scales is dominated by the perturbations, justifying the focus on the second- and third-order

statistics of the perturbation fields (without the mixed background-perturbation and background-

background nonlinear interaction terms) also implicitly assumes a scale, organizational, or amplitude

separation between the mean and the perturbation fields. The idealization in this approach, then, is



51

similar to that used in boundary layer turbulence, where mean shear leads to shear production ener-

gizing the perturbation fields which then transfer energy across scales, but that the transfer across

scales of the mean field by the mean field is negligible. If this assumption holds, then the standard

derivations of the energy transfer terms via the Karman-Howarth equation (e.g Kolmogorov, 1941b;

Frisch, 1995) are readily constructed from the perturbation equations instead of the total equa-

tions, retaining the background-perturbation shear production terms as a source in the perturbation

equations (and a sink in the background equations) and assuming the background-background in-

teractions are negligible in transfers across scales. Alternatively, one might choose not to distinguish

between background and perturbation fields and using the total flow structure function. However,

as the background field is neither homogeneous nor isotropic, this limits the applications of this

approach. For example, the Karman-Howarth equation that relates the structure functions to the

energy transfer across scales fails at the outset when considering heterogeneous, isotropic structure

functions. The total flow structure function may be useful as a statistical descriptor of the flow (al-

beit a very high dimensional one), but most existing theory cannot be reconciled with this statistic.

Frisch (1995) notes that there is an anisotropic generalization of this the Karman-Howarth equation

in earlier works by Monin and Yaglom, but pursuing this approach is not feasible with the limited

set of observations here.

3.3.2 Computational Details

At each time a structure function is found across all available scales. This is accomplished by binning

the velocity increments from individual pairs at the given time-step into logarithmically defined

separation scale bins with width 0.2 and averaging over all pairs in each bin. For data windows with

multiple time-steps, these structure functions were then averaged over time, excluding any bin with

less than 10 measurements to ensure the robustness of the statistics. The 95% bias corrected and

accelerated confidence interval of the time-mean is found by bootstrapping with 10,000 resamples.

For the specific snapshots of a front (Sections 4.2.3 and 4.3.3) and vortex (Sections 4.3.4 and 4.3.4),

the structure function at the single time-step is calculated across all scales and binned in the same

fashion, except that no time-averaging is done and the bootstrapped bias corrected and accelerated

confidence intervals are found using all the data at each scale from the single time-step with 10,000

resamples. For the joint probability distributions and the structure function dependent on divergence

and vorticity (sections 3.4.2 and 3.4.3), divergence and vorticity are given by the two-point (pairwise)

average of the single-point divergence and vorticity values for each value within a pair.

3.4 Results

3.4.1 First-Order Structure Functions

The first-order velocity structure functions (denoted S1
γ) are plotted in the upper panels of Figure 3.3.

A detectable background flow is indicated by non-zero values in either the longitudinal or transverse
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Figure 3.3: The (top row) first-order and (middle row) second-order longitudinal (solid) and
transverse (dashed) velocity structure functions, and (bottom row) the absolute values of negative
(circle) and positive (plus) third-order longitudinal velocity structure function values for the P1
(left), P2 & P3 (middle), and LDA (right) launches. The drifter deployments are given by the
colored lines and symbols and the corresponding Eulerian X-band radar data by the black lines and
symbols. Bootstrapped 95% bias corrected and accelerated confidence intervals for the time mean
of the first- and second-order structure functions are provided as shading around each line. Dashed
gray guidelines through zero are shown in the upper panels. Dashed gray guidelines for the middle
panels correspond to theoretical second-order structure function slopes in 3D (2/3) and frontogenesis
or an internal gravity wave field (1). A guideline of slope 1 is also shown for the lower panels for the
linear slope of the 3rd order structure function predicted in the energy cascade region of 3D, 2D, or
QG turbulence. Notice the difference in the y-axes for the first and third-order structure functions.

components for all samples, except the P1 drifters. Unlike the other deployments, these were not

targeted at a strong flow feature, and because of the relatively short sample window for P1 (see

Table 3.1), the drifters did not converge on an individual flow feature, resulting in more homogeneous

sampling.

The only drifter deployment that shows a statistically significant non-zero longitudinal first-order

structure function is P2 & P3, which was intentionally launched to sample frontal regions: S1
L is

generally negative, though small, suggesting convergence. For 6.4 km and above, however, it is

positive, indicating divergence. The change in sign identifies a scale at which drifters no longer

cluster but are drawn into neighboring convergence zones. See also the related discussion in Section
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4.2.3, which presents results on a single front with no accompanying sign-change in S1
L.

Both P2 & P3 and LDA drifters show a positive S1
T across all scales, indicative of counter-

clockwise rotation. For P2 & P3, S1
T is small compared to LDA. The larger values for the LDA

drifters reflect the targeted vortex structure. Individual drifter tracks also trace out the counter-

clockwise vortex of LDA repeatedly, resulting in loops (cf. Griffa et al., 2008).

In the first-order velocity structure function, quasi-Lagrangian and Eulerian statistics are overall

consistent, with a few exceptions in the P1 domain. The X-band radar yields positive S1
L for

scales above 4 km, consistent with the strong divergence seen in the domain given in Figure 3.1(b).

Eulerian S1
T for scales between 1 km and 6 km is negative, making this the only dataset where

clockwise vorticity dominates on average. These discrepancies within the smallest domain, where

sampling by both drifters and X-band radar appears to be spatially most uniform (Figure 3.1),

points to the challenges with obtaining unbiased samples.

3.4.2 Second-Order Structure Functions

The second-order velocity structure functions are plotted in the middle row of Figure 3.3. Pearson

et al. (2019) found that the second-order structure function slopes derived from a large gridded

synthetic drifter release in a model were on average shallower than the Eulerian structure functions

computed on the model grid on scales below 10 km. The authors attribute this shallowness to over-

sampling of convergence regions, consistent with previous studies Choi et al. (2017); D’Asaro et al.

(2018). The results in Figure 3.3 (middle row) compound the accumulation bias from drifters over-

sampling convergent regions with the background bias from non-zero first-order structure functions,

shown in both Eulerian and quasi-Lagrangian structure functions, particularly in the transverse

component. Here the compounded effects of both biases are discussed, and in the following two

sections the effects of the background and accumulation biases will be isolated and discussed.

The Eulerian second-order structure functions, both transverse and longitudinal, are similar

across all three sampling windows, with slopes around 1 or somewhat steeper. Only in the LDA

sampling period is the transverse component noticeably steeper than the longitudinal component.

Such steep slopes are consistent with the model results for Eulerian statistics of Pearson et al. (2019).

The results for the quasi-Lagrangian calculations are not as consistent. P2 & P3 and LDA drifters

exhibit slopes in both transverse and longitudinal second-order structure functions around 2/3, thus

somewhat shallower than the Eulerian estimates and consistent with the preferential sampling of

convergence zones by these drifters. However, P1 drifters show very little scale-dependence at all,

much different than the slope of 2/3 found in Pearson et al. (2019), and likely due to the small

window of time and spatial domain considered here. The disconnect between drifter-derived and

radar-derived second-order structure functions for P1 demonstrates that the more uniform sampling

in space by the drifters does not suffice to emulate Eulerian sampling, nor does a short time window.
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Figure 3.4: The quasi-Lagrangian second-order (upper row) and third-order (lower row) structure
functions (green, pink, and orange) and corrected structure functions (blue) from P1 (left), P2 &
P3 (middle) and LDA (right) drifter data. Confidence intervals and guidelines are the same as in
Figure 3.3.

Corrected Second-Order Structure Functions

The second-order structure functions corrected for background bias, S2′

γ , (cf. equations (4.10) –

(3.3)) are plotted in blue in the upper panels of Figure 3.4 and Figure 3.5 alongside the uncorrected

structure functions with matching line styles. Most of the second-order corrected and uncorrected

structure functions agree within uncertainty intervals, indicating a negligible background flow effect

within the limits of detection of our method. The exceptions are the LDA launch, where the quasi-

Lagrangian transverse second-order structure function is reduced in magnitude well outside the

confidence intervals of S2
T and the Eulerian one lies at the outer limit of the confidence interval.

Thus, ignoring the background flow for the longitudinal second-order structure functions may be

appropriate in ocean surface submesoscale flows, but the transverse structure functions are more

prone to bias from background flow effects.
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Figure 3.5: The X-band second-order (upper row) and third-order (lower row) structure functions
(black) and corrected structure functions (blue) in the P1 (left), P2 & P3 (middle), and LDA
(right) domains. Confidence intervals and guidelines are the same as in Figure 3.3.

S2
γ as a Function of Divergence and Vorticity

The differences between the quasi-Lagrangian and Eulerian structure functions are not predomi-

nantly due to the background bias, an effect of mean divergence or vorticity, as established above.

The features oversampled by the drifters (e.g. fronts, vortices) must have fundamentally different

structure functions than the domain as a whole, amounting to an accumulation bias. To further

diagnose this accumulation bias, we investigate how S2
γ varies with divergence and vorticity. For this

purpose, the complete time-series of Eulerian radar data (see Section 2.3) is analyzed. The (uncor-

rected) second-order structure function is computed as a function of both separation distance r and

divergence (S2
γ(r, δ)), then of r and vorticity (S2

γ(r, ζ)). The uncorrected structure function values

were chosen in lieu of the corrected values for direct comparison with other uncorrected structure

functions in the literature (including the results of Pearson et al. (2019)), as well as the relatively

small first-order structure function dependent on separation from all available X-band measurements

(not shown). This is complimentary to the results of Figure 3.5, where the correction for X-band

measurements is generally within confidence intervals of the uncorrected structure functions even

for subsetted data.

Figure 3.6 shows the results in the yellow-blue colored field. Overlaid with black-white contours

are the joint probability density functions (JPDFs) of divergence and separation distance (top) and

of vorticity and separation distance (bottom) to show the sampling distribution. Similar to the

structure functions of specific launches (Figure 3.3), both S2
γ(r, δ) of the upper panels and S2

γ(r, ζ)
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Figure 3.6: Eulerian longitudinal (a,c) and transverse (b,d) uncorrected second-order structure
functions as a function of divergence and scale (a,b) and of vorticity and scale (c,d), denoted by
the blue to yellow logarithmic colormap. The joint probability density function of divergence and
separation distance (a,b) and vorticity and separation distance (c,d) is shown by contours colored
using the black to white colormap. Both divergence and vorticity are scaled by the mean Coriolis
parameter in the domain.

of the lower panels show strong dependence on separation distance r. This is especially true at the

most frequently sampled Eulerian divergence and vorticity levels, highlighted by the maxima in the

joint PDF. Based on the overlaps between the JPDF and the structure function values across scales,

the Eulerian structure functions S2
γ(r) are expected to be steeply sloped. The panels also show that

lower divergence and higher vorticity levels (from oversampling regions of strong convergence and

counter-clockwise rotation) could lead to larger or shallower second-order structure functions.

Below two specific events are isolated that are characterized by significant convergence and

vorticity, respectively. Such strong events are hypothesized to be the primary causes of the different

slopes between Eulerian and quasi-Lagrangian structure functions, consistent with the findings of

Pearson et al. (2019).

Biases in Second-Order Structure Functions at a Front

The statistics at a front, as observed concurrently on 31 January 2016 with X-band radar and some of

the drifters launched during the P2 & P3 deployments, are presented in Figure 3.7. The front itself is

characterized by a strong convergence region near the center of the domain (Figure 3.7a), as indicated

by the blues in the Eulerian divergence field, which reaches values around −2f . This convergence can

also be detected in the drifter velocity field (pink arrows) and in the drifter distribution itself, with

many drifters drawn into the frontal region. The western side of the front shows positive vorticity
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(Figure 3.7b), with values up to 2f , while weaker negative vorticity dominates the eastern side.

The quasi-Lagrangian first-order structure functions are both significantly different from zero and

larger than for the full P2 & P3 dataset (cf. Figure 3.3). The signs reflect the drifters’ preferential

sampling of negative divergence and positive vorticity nearly equally across all scales, consistent

Figure 3.7: (a) The velocity and divergence fields at a front on 31 January 2016 at 12:16:19 UTC.
Eulerian velocities are given by black arrows, and the P2 & P3 velocities by the pink arrows.
Underlain is the Eulerian divergence field scaled by f . (b) Same as (a) but with the scaled vorticity
field instead of divergence. P2 & P3 drifter (left) and corresponding X-band (right) (c, d) first-
order, (e, f) second-order, and (g, h) third-order structure functions. The corrected second- and
third-order structure functions are given by the blue markers in (e)–(h). Negative and positive
values for the third-order structure functions are plotted with dots and pluses, respectively. The
95% bias corrected and accelerated confidence intervals are shown with shading. Note that these
confidence intervals are formed from the mean value at a given scale for this particular snapshot.
Guidelines are the same as in Figure 3.3.
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with Figure 3.7a and b. The Eulerian field extends farther away from the front than the drifter

samples and thus incorporates regions of quite weak divergence and vorticity (Figure 3.7a and b).

This leads to the Eulerian S1
T being indistinguishable from zero, except at the largest scale. The

Eulerian S1
L, on the other hand, is only near-zero for small scales and significantly negative at large

scales (Figure 3.7c). This is a result of the presence of relatively strong negative divergence in the

domain, east of the front, while any positive divergence in the domain is weak (Figure 3.7a and b).

As previously seen in Section 3.4.2 for the larger sample domains, the background bias correction

does not significantly alter the second-order structure functions, except at the largest scales, which

may not be sampled sufficiently. Both longitudinal and transverse S2
γ are nearly flat for the drifter

data (Figure 3.7e) — in contrast to the statistics for the full P2 & P3 domain (Figure 3.4). The

Eulerian S2
γ , on the other hand, exhibit slopes comparable to those from the full P2 & P3 domain

(Figure 3.5), and are therefore much steeper than the quasi-Lagrangian statistics observed directly

at the front.

These results are consistent with the discussion in Section 3.4.2, considering the divergence and

vorticity values being sampled. Figure 3.6a and b shows that S2
γ at an average divergence around

−2f should be relatively flat, although Figure 3.6c and d suggest that for vorticity values near 2f ,

lower values are expected at the small scales for S2
L and to a lesser degree also for of S2

T . The lack of

a slope at small scales in the frontal data indicates that the presence of strong divergence dominates

the vorticity in the second-order structure function. Since the small scales of the X-band radar data

are less biased toward strong convergence and not biased toward positive vorticity (as is seen both

in Figure 3.7a and b and in the Eulerian S1
γ), the same flattening of the S2

γ slopes is not observed

in the Eulerian statistics. This is an illustration of the strong impact the accumulation bias in the

drifter data can have on the statistics.

Biases in Second-Order Structure Functions in a Vortex

Figure 3.8 illustrates a different event: a vortex sampled with X-band radar and some of the drifters

from the LDA deployment on 12 February 2016. The vortex is characterized by strong positive

vorticity everywhere, reaching values up to 4f (Figure 3.8b). While the domain is generally marked

by weak divergence (less than 1f), it contains small pockets of stronger positive divergence (up to

3f); see Figure 3.8b. The sampling by the drifters is strongly non-uniform and takes the shape of a

counter-clockwise spiral into the vortex.

Figure 3.8c and d, showing the first-order structure functions, suggest that both the X-band radar

and drifters tend to sample larger divergence and vorticity at larger scales. Unlike in the frontal

example, the corrections for non-zero S1
γ to S2

γ are significant for the transverse components. Note

that S1
T is 2 to 3 times larger here than either S1

T or S1
L near the front. The impact of background

bias on the slope is not clear for the drifters, but appears to be flattening for the Eulerian data.

As before, the variability of S2
γ as a function of vorticity and divergence examined in Section 3.4.2

can link the observed slopes to an accumulation bias. The increasing vorticity sampling with increas-

ing scale suggests a diagonal cross-section through the fields in Figure 3.6c and d is appropriate, from
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Figure 3.8: Same as Figure 3.6 but for data from a vortex on 12 February 2016 at 6:00:59 UTC,
using LDA drifters instead of P2 & P3 drifters.

the left just above zero to the top right, or from low to high S2
γ values. The increasing divergence

sampling with increasing scale reinforces this pattern. Note that the drifters are not in an obvious

convergence region in this sample. Nonetheless, the non-uniform sampling of vorticity produces an

accumulation bias effect. It is, therefore, important to keep in mind over what variety of flow fields

the structure functions are computed when interpreting them.

3.4.3 Third-order Structure Functions

The third-order longitudinal structure function, S3
L, is plotted in the lower panels of Figure 3.3 for

the drifters and the X-band radar data available during each launch. In contrast to the second-

order structure function, the third-order structure function is not positive definite, so the absolute
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value is plotted with symbols denoting negative (•) or positive (+) values. Confidence intervals

are not plotted, but the quasi-Lagrangian estimates fall mostly outside the 95% confidence window

for Eulerian data below 2 km for P1, and P2 & P3. The exception is the LDA deployment, for

which only the largest scale falls outside Eulerian confidence intervals. Even so, the LDA drifter S3
L

exceeds the X-band radar S3
L by a factor of 3 to 5, especially over the middle range of scales where

the structure functions tend to be most reliable due to adequate sampling. In terms of sign, both the

quasi-Lagrangian and the Eulerian structure functions are consistently negative in the LDA domain.

The same is true of the Eulerian S3
L in the P2 & P3 domain, but here the quasi-Lagrangian S3

L

changes sign above 5 km. For P1, the Eulerian third-order structure function changes sign at about

1.5 km, but the drifter-based statistics do not have a single clear transition from negative to positive

S3
L. The slopes for the Eulerian estimates for P2 & P3 and for LDA are somewhat steeper than 1.

S3
L of the corresponding drifter launches are more variable across scales, but the slope for the LDA

launch is comparable, while that for P2 & P3 is shallower. These less than conclusive results limit

the utility of using this statistic to diagnose energy flux across scales.

Corrected Third-Order Structure Functions

The corrections to the third-order structure function for the background bias proposed in equation

(3.3) tends to be more substantial than that to the second-order structure function from equation

(4.10), especially at larger scales, because it contains a term proportional to S1
γ S

2
γ . Consequently,

Figure 3.9: The absolute value of the Eulerian longitudinal uncorrected third-order structure function
dependent on divergence and scale (a) and vorticity and scale (b), denoted by the blue to yellow
logarithmic colorbar. Negative values are stippled with a ’•’ and positive values are left un-stippled.
The joint probability density function of divergence and separation distance (a) and vorticity and
separation distance (b) is shown by contours and the black to white linear colorbar.
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the sign and magnitude of the third-order uncorrected structure function is potentially dependent

through background bias on the sign and magnitude of the first-order structure function. The cor-

rected quasi-Lagrangian and Eulerian third-order structure functions, S3′

L , are presented in Figure 3.4

and Figure 3.5, respectively. While the Eulerian S3′

L does not deviate much from the Eulerian S3
L

for the P2 & P3 sample, its sign changes for scales above 1.5km in both the P1 and LDA samples.

The quasi-Lagrangian S3′

L agrees in sign with the uncorrected S3
L for all estimates, but the magni-

tudes are lower for LDA and P2 & P3 (though not for P1) across almost all scales. Nonetheless,

the corrected third-order structure functions fall inside the confidence intervals of the uncorrected

third-order structure functions for both drifter and X-band data, with the exception of the P2 & P3

drifters, which fall outside across most scales, and P1 which does above 2 km. This is a consequence

of the inherent noisiness of higher order statistics and illustrates the challenges of drawing reliable

conclusions from the third-order structure function estimates from noisy observations.

S3
γ as a Function of Divergence and Vorticity

Mirroring the analysis in Section 3.4.2, the potential effect of accumulation bias on the third-order

structure function is investigated by considering the absolute value of the uncorrected S3
L as a

function of both scale and divergence (S3
L(r, δ)), and then of both scale and vorticity (S3

L(r, ζ)). See

the yellow-blue colored fields in Figure 3.9a and b, respectively. Negative values are marked with

black bullets. Overlaid with black-white contours are again the JPDF of scale and divergence (left)

and of scale and vorticity (right). The distributions are, as expected, noisier than the corresponding

results for S2
L. Nonetheless, some broad patterns can be discerned. A gradient with respect to r

exists for small values of divergence and vorticty where the bulk of the samples lie. Gradients with

respect to δ and ζ also exist. Negative values of S3
L are associated with negative values of divergence

and increase with increasing divergence, becoming positive except for a handful of bins with very

high divergence, which are likely not sampled well. The transition point to positive values is scale-

dependent. With respect to vorticity, negative values of S3
L are associated with positive vorticity

and S3
L increasing as vorticity decreases. The transition to positive values is not as clear. The figure

suggests that a disproportionate sampling of large convergence and/or positive vorticity is expected

to flatten the slope and increase the magnitude of S3
L(r).

Biases in Third-Order Structure Functions at a Front

The third-order uncorrected and corrected structure functions at a front are plotted in Figure 3.7g

and h. Note first that here the drifters and the X-band radar S3
L are significantly affected by

nonzero S1
L, which changes both the sign and magnitude of the third-order structure function across

all separation scales. Unlike S3
L for the full P2 & P3 dataset (cf. Figure 3.4 and Figure Figure 3.5),

the corrected third-order statistics for this frontal snapshot lie well outside the confidence intervals

of the uncorrected S3
L across all separations except 1.5 km for the P2 & P3 drifters , and at all

scales above 1 km for the X-band radar data (not shown). As observed in section 3.4.3, the strong

convergence ( − 2f) and the high vorticity ( 2f) sampled by the drifters are both associated with
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a flatter, negative S3
L, which is seen in Figure 3.7g. As with the Eulerian S2

L, sampling that is less

biased toward high convergence and vorticity results in an S3
L that is comparable to that from the

full P2 & P3 dataset (Figure 3.5) in slope, although with lower values across all scales.

Biases in Third-Order Structure Functions at a Vortex

The third-order uncorrected and corrected structure functions at a vortex are plotted in Figure 3.8g

and h. As with the frontal case, sign and magnitude of both the drifters and the X-band radar S3
L are

impacted across all separation scales by the correction for nonzero S1
L. Additionally, the corrected

S3
L are outside of the confidence intervals of the uncorrected S3

L above 1 km (not shown). As noted

in section 3.4.2, the first-order structure functions indicate stronger vorticity and divergence being

sampled at larger scales. Unlike for S2
L, however, this sampling bias results in contradictory trends

in S3
L, as shown in Figure 3.9. The variability, particularly in sign, seen in Figure 3.8g and h may

therefore be a consequence of the sampling biases.

3.5 Conclusions

Surface drifters are a powerful observational platform providing high spatial and temporal resolution

hard to come by via other instrumentation to assess dispersion of floating material in the ocean.

Previous studies suggest a key characteristic is that their sampling pattern is not agnostic to the flow

properties, making such a quasi-Lagrangian velocity data set fundamentally different from an Eule-

rian one. In particular, Pearson et al. (2019) demonstrate that correlated divergence and vorticity

lead to shallower second-order and larger third-order structure functions at scales below 30km. The

second- and third-order structure functions presented here are shallower and larger respectively than

the corresponding Eulerian statistics, consistent with the results of Pearson et al. (2019). Alongside

validating the prevalence of the drifter biases in observations, this study builds upon the work of

Pearson et al. (2019) by refining the impacts of convergence and vorticity on the second- and third

order structure functions. The observational analysis highlights that the preferential sampling of

convergence regions and areas with strong vorticity results in an accumulation bias. Its potential

impact on structure function statistics can be determined by considering the statistics computed

from an Eulerian velocity field as a function not just of separation scale but also of divergence or

vorticity. We found that the steepest gradient as a function of r is associated with near-zero values

of divergence and vorticity, which are also most commonly sampled by the Eulerian X-band radar

along the shiptrack in our data. At stronger convergence, the S2
γ and S3

L show shallower slopes, as

they increase more at smaller scales. Evidence of this effect is seen in the statistics of data subsam-

pled specifically to coincide with a strong front. Similarly, high positive vorticity tends to increase

the magnitudes of the structure functions and flatten them. This tendency can be identified in data

subsampled in a strong vortex.

In classic turbulence theory, the flow is assumed to be statistically isotropic and homogeneous,

so that the first-order structure function is zero for all scales. However, this assumption does not
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hold in either the quasi-Lagrangian or the Eulerian observational data. This raises the question

whether second- and third-order structure functions should be computed after the mean flow has

been removed. Such a correction for background bias can have a great impact on the statistics. In

particular, the sign and magnitude of the third-order structure function can be driven by the sign

and magnitude of the first-order structure function, not the perturbations that are related to energy

transfer across scales. The effect is smaller in the Eulerian data when sampled over a sufficiently

large domain.

The sizable influence of these biases on the structure function statistics demonstrates that any

interpretation or comparison must take the sampling schemes into account. In particular, it may

not be appropriate to attempt to link third-order structure functions to energy fluxes, especially

when based on drifter data that is almost invariably subject to both background and accumulation

biases. While Eulerian measurements can be flow-independent by design, they, too, may be subject

to background and sampling representativeness biases akin to accumulation biases, requiring caution

even when deriving statistics from them.
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Chapter 4

Benefits of the Bias: Corrected

Estimates of Transport and

Dispersion Parameters from

Surface Drifter Observations

This chapter is in preparation for submission with lead author Jenna Pearson and coauthor Baylor

Fox-Kemper. The objective of this chapter is to describe the impact of the turbulent velocity field

on particle transport and dispersion. This section builds on the methods of Chapter 3 by applying a

similar correction to second-order Lagrangian structure functions to account for heterogeneity and

non-stationarity in the flow field due to both submesoscale and mesoscale features. Estimates are

made of the absolute diffusivity from the Lagrangian structure functions, which describes the effi-

ciency of turbulence at dispersing tracers in the ocean. These are analyzed alongside probability and

travel time maps, with results spanning a wide range of applications to include coastal management,

accident mitigation, and climate problems.

Abstract

Characterizing the mixing properties of the upper ocean plays a crucial role in understanding how

buoyant material – like marine litter, plankton, and oil – spread and move throughout ocean basins.

The influence of turbulent processes on the rate of particle dispersal in the Northern Gulf of Mexico

is investigated by geographically mapping absolute eddy diffusivities estimated from surface drifters

from the Grand LAgrangian Deployment (GLAD) of summer 2012 and the LAgrangian Submesoscale

ExpeRiment (LASER) of winter 2016. The Lagrangian structure function is calculated to find the

autocorrelation function, the integral of which is used to estimate the eddy diffusivity. A correction

64
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method is applied to the Lagrangian structure function to remove the impacts of heterogeneity and

non-stationarity, and the maps of the Lagrangian integral time and absolute eddy diffusivity are

analyzed alongside probability and travel time maps. The GLAD and LASER drifters have vastly

different sampling patterns, which is a reflection of the different forcing mechanisms during the

sampling period. Maps of Lagrangian integral times and absolute eddy diffusivities are heteroge-

neous and anisotropic for both GLAD and LASER. Corrected estimates of both Lagrangian integral

times and eddy diffusivities are 2-10 times larger than uncorrected estimates, and show different

spatial structure. This suggests the importance of accounting for the effects of the mean flow when

calculating turbulence statistics.

4.1 Introduction

The dynamics of the ocean manifest over a wide range of spatiotemporally varying motion, from

ocean currents spanning thousands of kilometers down to centimeter dissipation scales. This includes

eddies of various sizes (e.g. Chelton et al., 2007), where an “eddy” is defined here as a deviation

from the mean flow. Mesocscale eddies, with length scales of 100s of kilometers and times scales

of many days, play a large role in the physical transport and dispersal of heat, oil, marine litter,

and other tracers (e.g. Bryden and Brady, 1989; McGillicuddy et al., 2007; Early et al., 2011;

Van Sebille et al., 2012). In numerical models, an eddy diffusivity, analagous to molecular diffusivity,

is often implemented to represent the unresolved and underesolved efficiency of lateral (or along an

isopycnal or isoneutral surface at depth) transport from mesoscale eddies (e.g. Fox-Kemper et al.,

2011; Bachman et al., 2015). Note here that eddies do not themselves mix tracers, but rather

fold and strain tracer isolines, which initiates a spectral flux of tracer variance towards higher,

dissipative, wavenumbers (Eckart, 1948; Batchelor, 1959; Solomon, 1971; Redi, 1982). Thus there is

an adjustment time, which in the Lagrangian sense (i.e. following water parcels), means that only

after the parcels have travelled a distance greater than the largest eddies of the flow is the transport

meaningfully approximated as a diffusive process (Taylor, 1921; Klocker et al., 2012).

Many diffusion based parametrizations also conventionally assume constant and isotropic values

for the diffusion parameters, as well as a constant background velocity, which is likely not suitable

for the heterogeneous, intermittent, and anisotropic ocean (e.g. Freeland et al., 1975; Spall et al.,

1993; LaCasce, 2000; LaCasce and Bower, 2000; Mariano et al., 2016; Kamenkovich et al., 2015;

Rypina et al., 2016). Anisotropy, intermittancy, and heterogeneity are particularly prevalent in

coastal oceans, where energy input from winds and tides compete with dissipation on the seafloor

as well as along coastlines, and shallow flows feel the effects of, and respond to, varying bathymetry.

The combination of these processes results in a complex set of multi-scale features that are notably

different from most of the open ocean (Haidvogel et al., 2000; Simpson and Sharples, 2012; Orfila

et al., 2014). In addition to intricate physics, many coastal oceans are often subject to large-scale

inputs of pollution, for example the Deepwater Horizon oil spill of 2010 in the Gulf of Mexico (Crone

and Tolstoy, 2010) or the Fukushima nuclear accident in 2011 off the eastern coast of Japan (Buesseler
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et al., 2012). Here we focus on the Gulf of Mexico, and the main purpose of this work is to quantify

the role of the eddying ocean in mixing particles and tracers, with results applicable to the accident

mitigation, biogeochemical processes, and the climate system.

Transport and dispersion of buoyant material is naturally investigated in a Lagrangian frame-

work, and surface drifters have been used to estimate absolute eddy diffusivities throughout the

global ocean (e.g., Krauß and Böning, 1987; Davis, 1991b,a; Swenson and Niiler, 1996; Poulain,

2001; Lumpkin and Flament, 2001; Zhurbas and Oh, 2004; Sallée et al., 2008; Koszalka et al., 2011;

Zhurbas et al., 2014; Peng et al., 2015; Mariano et al., 2016; Rypina et al., 2016). It is important to

note that surface drifters are not purely Lagrangian, as they are buoyantly confined to the surface.

However, many pollutants, such as oil, also remain concentrated near the surface and drifters are

taken as surrogates in this context (e.g. Poje et al., 2014; Novelli et al., 2017; D’Asaro et al., 2018;

Mariano et al., 2016; Huntley et al., 2019; Pearson et al., 2019, 2020). Throughout the paper, “La-

grangian” and “semi-Lagrangian” are used interchangeably, although the authors wish to make the

distinction very clear here, with the former being the motion following the fluid and the latter being

the motion of an observation that partly matches the fluid, such as a buoyant pollutant or drifter.

In the Gulf of Mexico, unprecedented numbers of surface drifters were released during the Grand

LAgrangian Deployment (GLAD) of summer 2012 (Poje et al., 2014) and the LAgrangian Subme-

soscale ExpeRiement (LASER) of winter 2016 (Novelli et al., 2017; D’Asaro et al., 2018). Even

with plentiful data, a number of difficulties arise under conventional methods of estimating the ab-

solute eddy diffusivity in a Lagrangian framework. This includes (but is not limited to) the proper

separation of the mean flow and eddy components (Griesel et al., 2014; LaCasce, 2008), as well as

accounting for the different turbulent regimes sampled by drifters that lead to spatial variability

of diffusivity estimates (Berloff and McWilliams, 2002; Koszalka et al., 2011; De Dominicis et al.,

2012). The novelty of the methods developed in this study expand on previous methodology to

address both of these issues parsimoniously by correcting for gradients in the mean flow as well as

determining the optimal length of trajectory to be used in the initial calculations, both of which can

have significant impacts on dispersion metrics (Taylor, 1953; Bennett, 1987; Young and Jones, 1991;

LaCasce, 2008; De Dominicis et al., 2012; Nilsson et al., 2013).

Absolute eddy diffusivities are conventionally estimated with surface drifters by computing the

correlation between the velocity and displacement (Davis, 1991b; Zhurbas and Oh, 2004), the ab-

solute (single-particle) dispersion (LaCasce, 2008; Rypina et al., 2012; Kamenkovich et al., 2015),

or integrating the velocity autocorrelation function (Davis, 1991b; Sallée et al., 2008; Griesel et al.,

2010) of ensembles of Lagrangian particles. The latter is the choice of this paper, although there are

several differences in our approach. First, the autocorrelation function is not directly computed, it

is found through the relationship to the second-order Lagrangian structure function for stationary

and homogeneous flows (Babiano et al., 1987), which is corrected to account for the effects of mean

gradients in velocity along a trajectory. The correction is a combination of persistent Eulerian spa-

tial gradients, as well as gradients due to the time dependence of the flow. Second, the length of

integration is chosen as the last time when the integral is positive, as opposed to other methods such
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as the “first zero-crossing method” (see Griffa et al. (2007) for a review). This choice is particularly

suitable for the oscillatory autocorrelation functions found in this study. To compliment the eddy

diffusivity estimates, probability and travel time maps show drifter sampling patterns as well as the

mean time of arrival to the sampled regions. Collectively these methods provide a comprehensive

picture the efficiency of turbulence at spreading material within the Gulf of Mexico across two sea-

sons, as well as offer bulk metrics for assessing the fidelity of, and informing, models used to describe

the spread of tracers.

4.2 GLAD and LASER Drifters

As a part of the Grand LAgrangian Deployment (Poje et al., 2014) about 300 GPS-tracked CODE

type surface drifters were released in the Northern GoM from 20 July to 31 July 2012, and as a

part of the LAgrangian Submesoscale ExpeRiment (LASER), roughly one thousand GPS-tracked

CARTHE-type surface drifters (Novelli et al., 2017) were released in the Northern GoM from 18

January to 13 February 2016. These drifters reported position data nominally every 5 minutes for

several months and were drogued to follow the integrated flow of the top ∼1m of the water column

(Poje et al., 2014; Novelli et al., 2017). The drifter trajectories were processed by removing outliers,

low-pass filtering (Yaremchuk and Coelho, 2015) and interpolating positions to uniform 15-minute

intervals. Some of the LASER drifters lost their drogues, and the timesteps where drifters were

without drogues were discarded based on the drogue-loss detection method of Haza et al. (2018).

While previous work has utilized specific launches (Pearson et al., 2019; Chang et al., 2019; Pearson

et al., 2020), this study uses drogued drifters for all available times.

4.3 Methods

4.3.1 Probability and Travel Time Maps

Ocean dynamics in the Gulf of Mexico are highly-variable, and consequently the exact nature of near-

surface dispersion is reliant on the time and location of release. However, there is utility in defining

drifter distributions in a probabilistic sense (Rypina et al., 2011, 2014, 2017). The probability

map characterizes the number of trajectories that passed through a given bin (only counted at

the first arrival) and the travel time map indicates the mean time at which the trajectories that

passed through a bin first arrived there. This provides context for drifter sampling patterns and

interpretations for both the Lagrangian integral times and diffusivities presented in the next sections.

To calculate the probability, the domain is broken up into boxes with lengths dlon ≈ dlat ≈ 0.05km,

and the percentage of drifters that visit the ith box is given by

Pi =
Ni
N

(4.1)

Where Ni is the number of trajectories that made it to the ith bin at least once in the roughly
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three month period for each season and N is the total number of trajectories that could have made

it to the ith bin over that timeframe. For GLAD, N = 297 and for LASER N = 956.

The travel time map is constructed such that the average time of arrival of the successful trajec-

tories entering the ith bin is given by

T i =
ΣTi
Ni

(4.2)

where the overbar indicates the arithmetic average, and the sum is over all ’first-hit’ times Ti for

the successful trajectories Ni.

4.3.2 Lagrangian Structure Functions and Autocorrelation Functions

Lagrangian velocity structure functions are the averaged powers of the Cartesian velocity difference

between time t+ τ and the time t along a trajectory (Babiano et al., 1987). Mathematically this is

given by

SL
n
γ (a, t, τ) = 〈(uγ(a, t+ τ)− uγ(a, t))n〉 (4.3)

where the subscript L emphasizes a Lagrangian structure function (as opposed to Eulerian struc-

ture functions often used in other studies), subscript γ is the Cartesian velocity increment along a

particle trajectory (either zonal or meridional), a is the initial particle position, t is time, τ is the time

lag, n is the order of the structure function, and 〈·〉 is an average over all values at a given lag and

often over all particle trajectories as well. The nth-order Lagrangian structure function corresponds

to the nth-moment of the probability density function (PDF) of Lagrangian velocity differences.

Statistical stationarity and homogeneity imply that the PDFs, and therefore the moments of the

PDFs, are unchanged under translations in space and time. This removes the dependence on the

initial position a and ensures that the structure function is only dependent on the time lag τ , and

not the absolute time t. Under these assumptions, Equation 4.3 is reduced to SL
n
γ (τ) = 〈(∆uγ)n〉

where ∆uγ is difference in velocity at time lag τ .

In stationary and homogeneous flows, the Lagrangian second-order structure is related to the

temporal autocorrelation function, RLγ(τ) = 1
σ2
γ

〈
uγ(a, t)uγ(a, t+ τ)

〉
, by

RLγ(τ) = 1−
SL

2
γ(τ)

2σ2
γ

(4.4)

where σ2
γ is the velocity variance of the γ component of velocity. Throughout this work, RLγ(τ) is

estimated using SL
2
γ(τ). There are several benefits to this method, although there are also certainly

some pitfalls (e.g. non-stationarity). Notable of the benefits are that the structure function approach

does not require an estimate of the sample mean, and also removes any linear trends present in the

time series (equivalent to first-differencing methods). Use of the structure function as traditionally

prescribed does not however account for the effects of mean gradients, which will be discussed in the

following section. To eliminate the effects of non-stationarity and heterogeneity that preclude the
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use of Equation 4.4, segmentation of the individual drifter trajectories under a variety of segment

lengths are considered such that the structure function (and therefore the autocorrelation function)

are well estimated but that the flow regimes sampled throughout a segment length do not vary much

in time or space. The details of this are laid out in section 4.3.5.

4.3.3 Corrected Lagrangian Structure Functions and Autocorrelation Func-

tions

In traditional turbulence studies, homogeneity implies that there is at most a constant background

velocity and therefore no mean velocity gradients. Under these assumptions, the first-order Eulerian

structure function is zero. However, in realistic flows this is often not well realized, and Pearson et al.

(2020) defined a mathematical relationship to correct higher-order Eulerian structure functions using

the non-zero first-order Eulerian structure function. This method is adapted here to correct for the

presence of a temporally and spatially varying mean in a Lagrangian setting. Under the assumption

of a Reynold’s decomposition, the flow is separated into it’s time mean and time-varying turbulent

components as u = 〈u〉+ u′ respectively, with 〈u′〉 = 0 . There are different choices to calculate the

mean, and the consequences of this are touched on in Section 4.3.4. For the purposes of this section,

a generic linear averaging operator is implied. Substituting this into Equation 4.3 yields

SL
2
γ(τ) = 〈(∆〈uγ〉+ ∆u′γ)2〉 (4.5)

= 〈∆〈uγ〉2 + 2∆〈uγ〉∆u′γ + (∆u′γ)2〉 (4.6)

= 〈∆〈uγ〉2〉+ 〈(∆u′γ)2〉 (4.7)

= [SL
1
γ(τ)]2 + SL

2′
γ (τ) (4.8)

where SL
2′
γ (τ) is the corrected second-order Lagrangian structure function. Solving the above for

the perturbation yields

SL
2′
γ (τ) = 〈(∆u′γ)2〉 = SL

2
γ(τ)− [SL

1
γ(τ)]2 (4.9)

Thus, the perturbation statistics can be recovered by subtracting off the square of the first order

structure function from the second order structure function calculated with the total velocity. The

corrected structure functions can similarly be used to correct the autocorrelation functions

RL
′
γ(τ) = 1−

SL
2′
γ (τ)

2σ2
γ

(4.10)

The correction removes the effects of mean gradients in the flow due to either persistent horizontal

spatial gradients, or changes in the flow field over time, which are not accounted for with other

methods (e.g. Mariano et al., 2016). In addition to removing these effects in a scale-dependent

manner, this method does not require the inclusion of additional data sources, which is likely to

reduce uncertainty.
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4.3.4 Horizontal Eddy Diffusivity and the Lagrangian Integral Time

Passive tracers are particularly instrumental for transport studies because they in principle do not

provide any feedbacks on the flow itself, and many materials such as oil, nutrients, and plankton

are often approximated as passive tracers. However, due to spatial and temporal discretization in

numerical models, parametrizations are needed to account for the scales of turbulent motion that

are not fully resolved in the modelled velocity field responsible for tracer transport and distributions.

Diffusive models are often implemented, and are analogous to molecular diffusivity except with an

enhanced diffusivity coefficient (e.g. Fox-Kemper et al., 2011; Bachman et al., 2015). Then, if there

is meaningful separation between the scales of turbulence and the mean flow (Taylor, 1921), the

evolution of a conservative passive tracer field can be represented in an Eulerian framework by an

advection-diffusion equation,

∂C

dt
+ U · ∇C = −∇ · 〈u′c′〉 ≡ ∇ · (K∇C) (4.11)

where U = (U, V,W ) is the mean velocity vector, C is the mean concentration, c′ is the concentration

fluctuation, u′ = (u′, v′, w′) is the turbulent velocity vector (i.e. unresolved eddies), and K is the

eddy diffusivity tensor, which includes an advective (antisymmetric) and diffusive (symmetric) part

that constitute the reversible and irreversible affects of turbulence respectively. While future work

will investigate all horizontal elements of the full eddy transport tensor (e.g. Rypina et al., 2016),

this study focuses on the diffusive component.

Equation 4.11 is also a macroscopic representation of particles experiencing persistent random

walks (Taylor, 1921). In this Lagrangian framework, the eddy diffusivity (Kγ) is defined as the rate

of turbulent absolute (i.e. single-particle) dispersion

Kγ =
1

2

d

dt
〈(X ′γ)2〉 =

d

dt

[
σ2
γ

∫ t

0

(t− τ)RLγ(τ)dτ
]
. (4.12)

where X ′ is the residual particle displacement. It is important to note that there are several ap-

proaches to separating the mean and residual components of displacement and velocity. Two common

methods are often implemented. For example, with the velocity field used in the autocorrelation

function, either the time averaged velocity along the particle trajectory, or a local average Eulerian

velocity from nearby drifters or from other stationary observing systems is subtracted from the total

velocity (Davis, 1991b; Zhang et al., 2001). The resulting statistics are typically dependent on this

choice (e.g. LaCasce, 2008). However it is reiterated that when using the structure function, no

sample mean is estimated and the the correction method proposed in Section 4.3.3 removes resid-

ual first-order structure functions present due to non-uniform mean fields. Thus, while the second

order structure function does not depend on the choice of a sample mean, the interpretations of the

correction itself will.

The Lagrangian integral time, TLγ =
∫∞
0
RLγ(τ)dτ , is a basic metric of predictability that

describes the memory of a particle along its trajectory, for example how long a particle remembers

it’s initial conditions. It sets the boundary between different regimes of particle motion, which
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is reflected by different shapes of the absolute dispersion curve. Thus, the Lagrangian integral

time of can be used to investigate the asymptotic limits of the absolute dispersion, and therefore

also the limits of the absolute eddy diffusivity. In the limit of comparatively short times (i.e.

t � TLγ), RLγ(τ) ∼ 1, and 〈(X ′γ)2〉 ≈ 2σ2
γ

∫ t
0
(t − τ)dτ = σ2

γt
2. This is the initial growth phase,

where particles disperse ballistically due to the local velocity field. In the limit of long times (i.e

t � TLγ), the integral of RLγ(τ) approaches TLγ , and provided the integrals converge, 〈(X ′γ)2〉 =

2σ2
γt
∫ t
0
RLγ(τ)dτ − 2σ2

γ

∫ t
0
τRLγ(τ)dτ ≈ 2σ2

γtTLγ . This is the random walk phase, where dispersion

grows linearly in time. The presence of this phase implies that the eddy diffusivity is constant, and

the motion is captured by a diffusion equation. Under the same limits, the absolute diffusivity is

Kγ ≈


1
2
d
dt

[
σ2
γt

2
]

= σ2
γt t� TLγ

1
2
d
dt

[
2σ2

γtTLγ

]
= σ2

γTLγ t� TLγ

(4.13)

Thus, if the Lagrangian integral time is known as well as the velocity variance, an estimate of the

absolute eddy diffusivity can be made. Note also that this is independent of the concentration, and

is thus generic for a given passive tracer. A good review of these properties is given in LaCasce

(2008).

4.3.5 Computational Details

To limit the effects of drifters sampling different turbulent regimes throughout their lifetimes, each

drifter trajectory was broken up into non-overlapping segments of different lengths. Initial testing

revealed that 15 days for both GLAD and LASER were a good trade off between the necessity for

long trajectories to obtain robust structure functions and short segments to limit the impacts of

heterogeneity and non-stationarity. Approximately 6% of values in each time lag bin were greater

or less than twice the standard deviation of all values within the bin for both GLAD and LASER.

This percentage was similar for 12 day long segments and did not change significantly (by about

0.5%) for 25 day segments, suggesting this was a reasonable choice. Future work will more fully

investigate the influence of trajectory length on these methods. The Lagrangian integral timescales

and eddy diffusivities were found as follows:

1. For each trajectory segment, and each drifter, the Lagrangian structure function values were

calculated for all possible time differences along each trajectory for the segment

2. These values were placed into linear bins of width 0.05 days which were arithmetically averaged

to obtain one value for each bin, for a given drifter, for a given segment.

3. The Lagrangian structure function for each segment and each drifter was then converted to

the autocorrelation function and integrated as a function of time.

4. The Lagrangian integral time was taken as the last time that the integral of the autocorrelation

function was positive.
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5. The eddy diffusvity was found by multiplying by the Lagrangian integral time by the variance

for each drifter, for each segment.

This process was repeated for the corrected Lagrangian structure function, which was found in the

same manner except that the squared first-order Lagrangian structure function was subtracted from

each binned second-order Lagrangian structure function before conversion to the autocorrolation

function.

4.4 Results

4.4.1 Probability and Travel Time Maps

To illustrate how the drifters are transported throughout the GoM in a statistical sense, the prob-

ability and travel time maps are shown in Figure 4.1 for both GLAD and LASER. The probability

maps (left column) show the likelihood of visiting a given location (here a roughly 0.05km by 0.05km

lat-lon box) at least once. The travel time maps (right column) show the average time taken to get

to a given spot by all the trajectories that visited that location. Comparing the top row to the bot-

tom row, it is evident that drifters from GLAD travelled to very different locations at very different

speeds than the LASER drifters. The yellow and orange areas of the left column of panels signify

the highest probabilities of reaching a given location. In summer this is primarily to the southeast

of the Mississippi River outflow, and patterns of counter-clockwise rotation are outlined with high

probability. This is not the case for the LASER drifters, which show a strong preference for a direct

path to the middle of the GoM, denoted by the yellow line from north to south. At around 23◦N this

region of high probability separates into two branches, likely constrained by the local bathymetry

or the Loop current.

The travel time maps paired with the probability maps and other data sources illustrate the

effect of different types of forcing on the fate of each set of drifters in the GoM. During LASER,

the region of high probability is sampled 10-20 days after launch, denoted by purple coloring on

the travel time map. Discharge, temperature, and salinity measurements from the Baton Rouge,

LA station indicate that there was an anomalously large discharge of cold, fresh water that began

shortly after the drifters were released and persisted for roughly 25 days, flushing the drifters away

from the shelf and towards the interior of the GoM. Local radar measurements also suggest strong

frontal activity during this time (D’Asaro et al., 2018; Pearson et al., 2020), and the narrow region

of high probability could be related to the along front flow at the interface of the Mississippi River

outflow and the interior loop current waters. During GLAD the drifters stay nearer the mouth of

the Mississippi river until about 30-40 days after release. On August 27th, 2012, Hurricane Isaac

entered the GoM from the southeast, and likely lead to the spread in trajectories present after 30-40

days which is supplemented by low probability.
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Figure 4.1: The GLAD (top) and LASER (bottom) probability (left) and mean travel time
(right) maps. The colorscale for probability is logarithmic and the colorscale for mean travel time
is linear. Colorbars are constrained such that the minimum value on the colorbar is the largest
minimum value between GLAD and LASER and the minimum value on the colorbar is the smallest
maximum value between GLAD and LASER. Note that because GLAD had fewer drifters total, the
probability for just one drifter is higher than that for LASER.

4.4.2 Lagrangian Autocorrelation Functions

The average Lagrangian autocorrelation functions (LACs) for each time segment are plotted for

GLAD and LASER in Figure 4.2. Lighter colors indicate earlier times, and darker colors indicate

later times. The average is over all individual drifter structure functions for each segment. The zonal

LACs are plotted in the first two columns, and the meridional LACs are plotted in the second two

columns. Uncorrected estimates are shown in the first and third column, and corrected estimates

are shown in the second and fourth column. GLAD is plotted in the first row, and LASER the

second.

All LACs for both GLAD and LASER oscillate, rather than smoothly descending to zero. This is

due to advective ‘meanders’ in the flow field, for example from the mean flow or near-inertial waves.

Visually, the prominent cycle in all LACs is diurnal. In the Gulf of Mexico, at least three processes

occur on nearly diurnal timescales: inertial oscillations, tides, and the sea breeze (e.g. Gough et al.,

2016). Inertial oscillations are the response of the ocean to winds on a rotating Earth (Ekman,
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1905), and are expected to vary in magnitude with the mixed layer depth (Pollard and Millard Jr,

1970), as well as the strength of variable wind forcing at frequencies near the inertial frequency. This

may explain the more pronounced diurnal cycle in GLAD compared to LASER, and is consistent

with other studies in this region where thin mixed layers and more consistent diurnal wind forcing

in summer lead to more energy in the inertial band, and deeper mixed layers and intermittent wind

forcing due to frontal passages lead to less energy in the inertial band in winter (DiMarco et al.,

2000; Jarosz et al., 2007; Anderson and Sharma, 2008; Teague et al., 2014; Gough et al., 2016).

Large river discharge during LASER as well as the presence of Hurricane Isaac during GLAD

is also likely to have influenced the shape and magnitude of the LACs. For GLAD, a dramatic

reduction in the amplitude of the oscillations is seen for later segments (darker colors), suggestive of

an increase in variance possibly due to changes in winds. For LASER, since the mixed layer depth is

tied to inertial oscillations, the freshwater induced shoaling of the mixed layer could have produced

enhanced inertial motion relative to other winters.

Testing with longer trajectory segments revealed that other, longer periods are also present,

and thus the LACs are not expected to asymptote to zero over the 15 day window shown here.

Regardless of the generating mechanism of these oscillations, it emphasizes the importance of refining

conventional methods for calculating the Lagrangian integral timescale. Many approaches are based

on the time to reach the first and second zero-crossing of the autocorrelation function. When

autocorrelation functions are oscillatory, as is the case here, that approach would lead to erroneously

low integral times due to the initial lobes that are negative for many segments with large amplitudes.

Note that using the relative diffusivity (i.e. from particle pairs instead of single-particles), which

asymptotes to the absolute eddy diffusivity after particles decorrolate) would likely reduce these

Figure 4.2: Uncorrected (a,c,e,f) and corrected (b,d,g,h) Lagrangian autocorrelation functions in
the zonal (a,b,e,f) and meridional (c,d,g,h) directions of GLAD (upper) and LASER (lower)
drifters. Analysis is for 15 day long non-overlapping trajectory segments, and bins that have less
then 10% of the maximum number of values in any bin for individual drifter estimates are removed.
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contributions, as long as both particles experience sufficiently similar meanders. Our method of

taking the last time that the integral is positive, while having its own limitations (for example if the

longest periods are intermediately captured in the last cycle), alleviates some of this by taking into

account the wavy motion that should in principle integrate to zero with sufficient time.

The corrections for the Lagrangian structure functions (LSFs, not shown) are largest at the

longest time lags, and therefore so are the corrections to the LACs. Note that the variance comes

into play when converting from the LSFs to the LACs (per Equation 4.4), which scales the curves

in the conversion. At larger time lags, the locations along the trajectory are also likely to be well

separated in space, and the effects of mean gradients more prominent. The general behavior of the

correction is to re-correlate at longer time lags. Note that the correction is positive definite, and thus

includes the effects of gradients that are both shearing and compressing. Thus, it is likely that there

are contributions from, for example, drifters being drawn into convergent submesoscale features as

well as shearing from gradients perpendicular to drifter motion. Visually, the correction seems to

become important for most LACs after 5 days, which is where the effects of submesoscale eddies are

likely to begin (e.g. Mariano et al., 2016). Alongside recorrelation, the correction also has the effect

of collapsing the more dispersed curves seen in the uncorrected estimates at longer time lags.

4.4.3 Lagrangian Integral Time

Spatial maps of the Lagrangian integral time (LIT= TLγ) are plotted for GLAD and LASER in

Figure 4.3. The zonal LIT is plotted in the first two columns, and the meridional LIT is plotted

Figure 4.3: Uncorrected (a,c,e,f) and corrected (b,d,g,h) Lagrangian integral time in the
zonal (a,b,e,f) and meridional (c,d,g,h) directions of GLAD (upper) and LASER (lower) drifters.
Analysis is for 15 (12) day long non-overlapping trajectory segments GLAD (LASER). The color-
bars are capped to 2 days for the uncorrected estimates and 10 days for the corrected estimates.
The maximum values for GLAD rounded to the nearest 0.1 day are LITu = 1.5; LIT ′u = 10.5;
LITv = 2; LIT ′v = 8.9. The maximum values for LASER are LITu = 1.8; LIT ′u = 9.4; LITv = 1.6;
LIT ′v = 11.7.
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in the second two columns. Uncorrected estimates are shown in the first and third column, and

corrected estimates are shown in the second and fourth column. GLAD is plotted in the top row,

and LASER the bottom row. It is expected from the literature that LITs are on the order of a day

in coastal regions, 2-4 days or more in the open ocean, and 5 days or more in energetic regions with

strong currents and eddy activity (see Mariano et al. (2016) for a literature review). The results

of the uncorrected LITs are within the range of, but on the lower end, of previous estimates in the

Northern Gulf of Mexico of a few days (Ohlmann and Niiler, 2005; Mariano et al., 2016). However,

corrected estimates of zonal and meridional LITs are drastically larger for both GLAD and LASER,

by as much as 10 times. This is in keeping with the presence of energetic mesoscale eddies and quick

southerly jets noted in Figure 4.1. The amplified LITs are a consequence of recorrelation at longer

time lags from the correction and from the method of integration of the autocorrelation function. It

should be noted however that some of the largest values are in places where low numbers of drifters

visited, for example the stray yellow and white colored trajectory on the western side of the Gulf

during GLAD.

The uncorrected LITs also have a smaller range than the corrected LITs, denoted by a smaller

difference between minimums and maximums on respective colorbars. Further, while all maps of

LITs have structure that resonates with the sampling patterns shown in Figure 4.1 (e.g. flow

bifurcations, eddies, topographic influences), it is more pronounced in the corrected estimates. For

GLAD, distinct eddying motions can be discerned, with integral times of 3-8 days. Nearshore, LITs

are smaller, particularly in the meridional direction, on the order of 2 days or less. For LASER,

a notable jet shows correlation times of 3-9 days in the meridional direction and, consistent with

Figure 4.1 which shows it took the drifters on average about 10 days to go from their initial locations

to the flow bifurcation to the south. After the bifurcation, the flow splits likely due to interactions

with the loop current and bathymetry, and zonal correlations are on the order of 3 days. Note

the strong correlation of the jet this flow bifurcation is essentially absent in the uncorrected LITs.

Mesoscale eddies are present in the western Gulf of Mexico, as well as near the loop current, with

LITs ranging from 4-9 days.

4.4.4 Absolute Eddy Diffusivity

Spatial maps of the absolute eddy diffusivity (ED) are plotted for GLAD and LASER in Figure 4.4.

The zonal ED is plotted in the first two columns, and the meridional ED is plotted in the second two

columns. Uncorrected estimates are shown in the first and third column, and corrected estimates

are shown in the second and fourth column. GLAD is plotted in to top row, and LASER the bottom

row. All EDs for both GLAD and LASER show anisotropy and heterogeneity, which stresses the

importance of including spatially varying and directionally dependent diffusivities in models. The

uncorrected values are the order of 0.1− 0.8× 104m2/s for GLAD, and less than 0.2× 104m2/s for

LASER. This is in the range but typically less than previous estimates in this region using GLAD

drifters (e.g. Mariano et al., 2016). Aside from smaller LITs, this could also be due to a change in

velocity variance using shorter segments, which would reduce the diffusivity. Additionally LASER
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Figure 4.4: Uncorrected (a,c,e,f) and corrected (b,d,g,h) absolute eddy diffusivity in the
zonal (a,b,e,f) and meridional (c,d,g,h) directions of GLAD (upper) and LASER (lower) drifters.
Analysis is for 15 day long non-overlapping trajectory segments. The colorbars are capped to
1 × 104m2/s for the uncorrected estimates and 0times104m2/s for the corrected estimates. The
maximum values rounded to the nearest 0.1 ×104m2/s for GLAD are EDu = 2.9; ED′u = 17.8;
EDv = 2.3; ED′v = 15.0. The maximum values rounded to the nearest 0.1 ×104m2/s for LASER
are EDu = 1.7; ED′u = 23.3; EDv = 4.3; ED′v = 19.2.

shows a much smaller magnitude of spatial variability than GLAD.

As with the corrected LITs, the corrected ED estimates are much larger than uncorrected esti-

mates, especially along the southerly jets where values are on the order of 3− 4× 104m2/s, and also

nearer the loop current where values are on the order of 7−8×104m2/s. Additionally the differences

between the maximum and minimum values of GLAD and LASER are less than the uncorrected

estimates. For GLAD in particular, both uncorrected and corrected estimates have lower values

near the coast than regions farther from the coast. This is also true of LASER in the corrected

estimates. For the uncorrected estimates during GLAD, the ED is typically less than 0.2× 104m2/s

near the shore and 1 × 104m2/s farther from the coast. For the corrected estimates, this is less

than 2× 104m2/s near the shore and 4− 10× 104m2/s farther offshore. Note the gradient in EDs

between nearshore and interior is larger than the same gradient for the LITs, and this is due to

the spatial variability of the velocity variance (not shown). The difference between corrected and

uncorrected estimates, however, resides in the product of the velocity variance (constant between

the two estimation methods), paired with the larger values of corrected LITs. Further, the maps

of EDs retain much of the structure of the maps of LITs in Figure 4.3. This is once again more

prominent in the corrected maps, where eddy activity, the loop current, and the southerly jets all

show distinct diffusivity values.
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4.5 Discussion and Conclusions

Understanding and modelling the transport and dispersion of tracers by mesoscale eddies is a long-

standing problem in oceanography. In addition, the complexity of obtaining mathematically and

numerically feasible approximations of eddy induced mixing is complicated by the ability to obtain

consistent estimates from observations using various techniques (e.g. Klocker et al., 2012). This

study refines existing methodology to account for residual mean gradients. By correcting the auto-

correlation function using the first-order Lagrangian structure function, it is found that estimates of

both the Lagrangian integral time and absolute eddy diffusivities are larger and have different spatial

structure than the uncorrected estimates. The corrected estimates better capture the features well

sampled by the drifters, and correlation timescales map well to the length of time drifters spend in

given features. The GLAD and LASER experiments were ground-breaking in the number of drifters

used, and this method is much better suited to large numbers of drifters. With few drifters, the esti-

mates of the first order structure function are not sufficiently well-determined to be removed. Here,

the corrected estimates are only robust where there are many location pairs available to estimate

the structure functions. In addition, while more work is needed to isolate the length of trajectories

most suitable for this analysis, the results suggest this method is a promising tool for informing

models as well as potentially reconciling differing estimates of absolute diffusivities with Lagrangian

observations.
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Chapter 5

Conclusions

Submesoscale features and processes with length scales of 1-10km strongly affect the state of the

upper ocean by providing routes for large-scale energy to be dissipated, and by altering the distribu-

tion and transport of physical quantities (e.g. heat, freshwater, sea ice), biogeochemical tracers (e.g.

nutrients and marine life) ans anthropogenic material (e.g. floating debris and pollutants). Surface

drifters are a powerful observational platform that while simultaneously sampling larger scales, id

capable of tracking submesoscale features – characteristics hard to come by via other instrumenta-

tion. This thesis utilizes drifter observations and numerical simulations to characterize turbulent

dispersion in the Gulf of Mexico, with heavy emphasis on how features over the submesoscale range

of motion, as well as heterogenous and non-stationary flows, affect their single- and two-point statis-

tics. In this chapter, I will review and summarize the major findings of this thesis, outline the

implications of these results, and discuss future work.

5.1 Summary

The Eulerian velocity structure function is commonly used as a way to describe the cascade of energy

or enstrophy in a turbulent velocity field. With the release of unprecedented drifters in the Gulf

of Mexico, the ability of (semi) Lagrangian surface drifters to provide representative estimates of

Eulerian structure functions is tested in Chapter 2 as well as Chapter 3. In Chapter 2, numerical sim-

ulations of the Northern Gulf of Mexico are paired with Lagrangian particle tracking to understand

the impact of convergence zones and vortices on turbulence statistics derived from synthetic surface

drifters. When compared to Eulerian structure functions, drifter derived structure functions were

susceptible to changes in both slope and magnitude, metrics that are typically used to diagnose the

class of turbulence present. When taken collectively, the second-order statistics of cluster releases

of synthetic drifters that emulate observations are statistically distinct from Eulerian second-order

statistics. Specifically, second-order drifter structure functions were consistently shallower, scaling as

r2/3, while Eulerian structure functions scaled as r. Finally, third-order drifter structure functions

had larger magnitudes than Eulerian third-order statistics, overestimating the energy flux across
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scales.

These differences are explained by correlated divergence and curl structure functions over the sub-

mesoscale range of motion, where unlike the mesoscales, the surface divergence due to ageostrophic

flows is non-negligible. These correlations lead to shallower second-order structure functions and

larger third-order structure functions when compared to Eulerian statistics, which has implications

for interpreting these structure functions as the cascades of energy or enstrophy. Alongside the curl

and divergence structure functions, a Helmholtz decomposition reformulated in structure-function

space was applied. The results show that drifters are ill-suited for this method due to large differ-

ences between the longitudinal and transverse structure functions. which based on the results of

Chapter 3, are in line with oversampling of vorticity and divergence. The degree of difference be-

tween drifter and Eulerian statistics depends on the launch location and pattern, making it difficult

to correct for this bias. Additionally, analysis of a large synthetic drifter release reveals the bias

appears to diminish with scale. This suggests that drifters may be appropriate for approximating

mesoscale statistics, provided sampling is sufficient, but over the submesoscale range drifter-derived

statistics are not agnostic to the flow properties which determine their sampling patterns.

In Chapter 3, observed velocity structure functions from Eulerian X-band radar measurements

and semi-Lagrangian surface drifter measurements are also compared, and disagree in a way consis-

tent with the results from the numerical simulations presented in Chapter 2. Second-order drifter

structure functions are typically shallower than Eulerian second-order structure functions, and drifter

third-order structure function magnitudes are typically larger than Eulerian third-order structure

function magnitudes. Alongside validating the prevalence of the drifter biases in observations, this

study builds upon the work of Pearson et al. (2019) by refining the impacts of convergence and

vorticity on the second- and third order structure functions.

The biases investigated with the observations in Chapter 3 are two-fold. In addition to the accu-

mulation bias from oversampling frontal regions and vortices in keeping with the results of Chapter

2, the differences between Eulerian and surface drifter velocity structure function are also shown

to be due to a background bias from non-zero first-order structure functions. The accumulation

bias is highlighted by analyzing the joint probability distribution of divergence (vorticity) and scale,

alongside the structure function dependent on divergence (vorticity) and scale from X-band radar

measurements. The steepest gradient as a function of r is associated with near-zero values of diver-

gence and vorticity, which are also the most commonly sampled measurements with our data. At

stronger convergence, the second-order structure functions have shallower slopes, consistent with the

findings of Chapter 2. The same analysis of the joint probability distribution functions and third-

order structure functions shows that they are expected to be larger at smaller scales with stronger

convergence. These findings provide additional context for interpretations of the accumulation bias

first presented in Chapter 2.

In Chapter 3 the notion of a background bias is introduced, which is the residual first-order

structure function present in higher order statistics due to a heterogeneous and anisotropic flow

field. Unlike the accumulation bias, the background bias is correctable. In classical turbulence, the
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first-order structure function should be zero. However for heterogeneous and anisotropic flows, the

first-order structure is often non-zero due to mean gradients that persist in the flow field. Assuming

a Reynold’s decomposition, these effects can be accounted for in both the second- and third-order

statistics. Analysis suggests that when averaging and coverage is sufficient, the effects can be small.

However, for isolated regions, or when not averaged over a long enough period, the effects can be

large. This is true of both the drifter and Eulerian statistics, suggesting the importance of averaging

windows and domain coverage when interpreting statistics of this nature.

In Chapter 4, transport and dispersion are investigated through probability and travel time maps

as well as the spatial distribution of the absolute eddy diffusivity. The absolute eddy diffusivity is

found by first converting the Lagrangian second-order structure function to the Lagrangian auto-

correlation function. The autocorrelation function is then integrated until the last time that the

integral was positive to obtain the Lagrangian integral time, which when multiplied by the velocity

variance yields the absolute eddy diffusivity Taylor (1921). On its own, this procedure is advanta-

geous compared to other methods, as when using the structure function the sample mean as well as

any linear trends are automatically removed, equivalent to first differencing. Second, unlike tradi-

tional methods where the first zero-crossing is used as the integration upper limit, choosing the last

time the integral itself was positive accounts for wavy autocorrelation functions from drifters that

are subject to inertial oscillations, tides, and submesoscale processes.

A corrected estimate, using the same procedure outlined previously, but with the effects of non-

zero first-order Lagrangian structure functions are also made. This procedure is analogous to that

outlined in Pearson et al. (2020) and Chapter 3, but the velocity increments are in time following

a trajectory, rather than from pairs of drifters in space. This, in principle, removes the effects of

mean shear in space or time from heterogeneous and non-stationary flows that corrupt the second-

order statistic calculated with the total velocity. It is found that estimates of both the Lagrangian

integral time and absolute eddy diffusivities are larger and have different spatial structure than the

uncorrected estimates. The corrected estimates better capture the features well sampled by the

drifters, and correlation timescales map well to the length of time drifters spend in given features.

While more work is needed to isolate the length of trajectories most suitable for this analysis, the

results suggest this method is a promising tool for informing models as well as potentially reconciling

differing estimates of absolute diffusivities with Lagrangian observations.

5.2 Implications and Future Work

The evolution of tracers (such as oil) in the ocean depends on the interaction of a wide spectrum

of time and space scales, making it inherently difficult to predict and elucidate. This is particularly

true over the submesoscale range of motion, where divergent flows challenge conventional theories

of energy cascades and particle dispersion. Lagrangian observations are a promising platform to

capture the temporal evolution and particle-statistics hard to come by with other observations. The

results and conclusions of this thesis provide insights into submesoscale turbulence by identifying the



82

limitations of using surface drifters to estimate sought after Eulerian statistics, as well as offering

corrected observational constraints on important parameters needed to model tracer transport and

dispersion by mesoscale eddies.

Future work is necessary to improve our understanding of processes that occur in an anisotropic,

heterogeneous, and non-stationary ocean. All Chapters highlight the tendency of drifters to prefer-

entially sample features with statistics distinct from other parts of the flow field, as well as statistics

that vary along the paths they travel. In Chapter 3, a correction method to account for heterogeneity

in the flow field is introduced and applies to correct both second- and third-order structure func-

tions. Chapter 4 introduces a similar method that also encapsulates nonstationarity. While these

correction methods are steps towards developing techniques suitable for realistic ocean conditions,

they are not exhaustive, and come with their own limitations. Entirely new structure functions,

where anisotropy is built in, are desirable. Additionally, many tracers such as oil and nutrients are

not conservative, but feature chemical or biological reactions in addition to advection and diffusion.

Active research by the author and others is underway to this end (Pearson and Fox-Kemper, In

Prep; Pearson et al., In Prep). The results of those studies will increase understanding of energy

dissipation and reactive tracer variance reduction across scales, with significant applications for oil

and biogeochemical modelling.
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