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Abstract

The Ocean State Ocean Model (OSOM) spans the Rhode Island waterways from the Long

Island Shelf to the region around Nantucket, including Narragansett Bay, Mt. Hope Bay, major

rivers and the Block Island Shelf. In this work, the OSOM has been implemented in the Regional

Ocean Modeling System to set up a forecasting system and understand the physical aspects of

the regional oceanic circulation. Ensemble simulations have been performed by perturbing the

initial conditions of the model. This data, when evaluated with information theory-derived metrics,

quantifies the predictability of the OSOM to infer the temporal persistence of anomalies. The

predictability timescales informs the effectiveness of a forecasting system and prepare for coupling

with biogeochemistry and fishery models with extensively varying timescales. The predictability

of the OSOM is ∼ 7 to 40 days, varying with parameters, region, and season.

In this work, a new metric is proposed using two quantities from Information Theory -

Shannon entropy and Mutual Information - to measure grid point internal and forced variability

in ensemble ocean, atmosphere, and climate models. The proposed metric delineates intrinsic

and extrinsic variability by measuring the visited probability distribution, as opposed to a variance

metric that captures only its second statistical moment. The proposed metric respond to correlated

fields, applies to any data without assuming its probability distribution, is insensitive to outliers

and changes of units or scale. Additionally, Shannon Entropy and Mutual Information has been

applied to measure sensitivity of temperature and salinity affected bymodifying the external forcing

conditions.

The OSOM has been used to compare three different turbulence models, two of which

are standard one- or two-equation models, while the third is a modified one-equation model that

viii



includes effects of a symmetric instability due to horizontal gradients of the buoyancy and Coriolis

effects. The results from the two-equation model are the most statistically distant from the other

two, as given by the Mutual Information measure, while those from the one-equation models are

close. These results suggest that possible SI effects on turbulence parameterization are limited in

the present context.

This work highlights Information Theory as a useful tool by demonstrating its use in

analyzing outputs from ocean and climate models. These metrics rank the potential impacts

of improving boundary forcings, mixing parametrizations and forcing conditions across multiple

variables.
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Chapter 1

Introduction

Recently, interest towards regional modelling has been growing due to the relevance of coastal

systems and their impacts on our daily lives. As models become sophisticated, questions such as

how accurate they are, how far can they predict the future state, how close do they capture variability

arise. I apply metrics from information theory on a regional model to answer these questions. The

methods described in this text, even though applied to a regional model, are general and can be

used on global models. As our primary motivation has been to understand the water bodies in and

around Rhode Island our regional model focuses on a particular region of the Northeast coast of

the USA.

OSOM is a coastal model implementation of Narragansett Bay and surrounding regions. The

region has been modeled to understand various physical and biogeochemical processes and their

impact on the health of the bay. In the current chapter, I have explained the basic concepts of

information theory for the uninformed reader and Chapter 2 serves as an introduction to OSOM.

I relate the various times scales (predictability and flushing timescale) of OSOM and provide a
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probable explanation governing the physical process setting the time scales. To find predictability,

an ensemble having initial conditions drawn from a single spin up run is compared with an ensemble

possessing perturbed initial conditions. The former has been referred as the climatology ensemble

and the later as the forecast ensemble. I use information theory to compare the statistical distance

between the two ensembles. In Chapter 3, I have derived an information theoretic metric to

measure variability in a non-parametric way. The metric was applied to the OSOM ensemble and

a global large ensemble climate model dataset to reveal the proportion of intrinsic and extrinsic

variability in ensemble models. Along with the metric, Chapter 3 establishes the use of Shannon

entropy and mutual information to solve a problem in coastal dynamics: measuring the sensitivity

of field variables due to altered or degraded forcing conditions. In Chapter 4, OSOM is realized in

CROCO, which stands for Coastal and Regional Ocean COmmunity model (provided by https:

//www.croco-ocean.org), and I have simulated three vertical mixing schemes to check their

level of agreement. Information theory metrics reveal the statistical distances between various

physical parameters under the influence of different parameterizations. Chapter 5 concludes the

text.

Within the statistical framework of communication theory, ocean model is a communication

channel where forcings and initial conditions send “messages" and the observer has to decipher the

correct “message" in the presence of noise. We could attribute the noise to the model assumptions

or nonlinearities in the governing equations. I use this analogy of ocean model as a communication

channel and apply concepts from information theory to analyze predictability and variability of a

realistic coastal ocean model of Narragansett Bay and surrounding oceanic regions.

Narragansett Bay becomes hypoxic under detrimental conditions, leading to the prevalence of
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oxygen dead zones and fish kills. Physical and biogeochemical factors conducive to hypoxia are

poorly understood (Codiga et al., 2009). Rivers transport nutrients (e.g. Nixon et al., 2008) into

the bay, leading to eutrophication, a process in which water bodies become enriched with minerals

and nutrients. Nutrients lead to algal blooms causing rapid depletion of dissolved oxygen (DO),

culminating in dead zones and fish kills. A pathway to restore DO levels at a specific location

is to replace the water parcel with oxygen rich DO. Another mechanism is absorbing oxygen

through atmosphere and mixing oxygen rich surface water with deep water. On the contrary,

stagnant water masses would hinder or delay replacing water parcels while density stratification

will prevent mixing. Flushing by river runoff would affect nutrient and DO transport. A detailed

hydrodynamic model with high skill is essential which can predict the physical conditions affecting

the flushing and mixing. An accurate model would not only be useful for forecasting of physical

parameters, but would lead to developments for incorporating biogeochemical modeling. Hence,

the Narragansett Bay and surrounding water bodies are modeled using Regional Ocean Modeling

System (ROMS) and Coastal and Regional Ocean COmmunity model (CROCO) with a long-term

goal of establishing a forecasting system.

An ensemble modeling approach has been used to find the forecasting (predictability) time

scales. Finding forecasting timescales of a coastal ocean model with perturbed initial conditions

is explained in Chapter 2 and is the first study of its kind. Forecasting timescale is fundamental,

as it enables an understanding of the model’s predictability limits. The statistical concepts from

information theory have been used to find the predictability time scales of a coastal model of

the Narragansett Bay. Previous literature on using information theory measures has focused on

atmospheric weather prediction. In the present study, I will apply it to a coastal model where I define
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predictability as detecting anomaly persistence due to the perturbations in the initial conditions.

Ensemble models show variability because of initial conditions, intrinsic chaos, and external

forcings. Predictability is related to variability in the initial conditions, while intrinsic chaos and

external forcings govern the variability after forecasting timescales. Chapter 3 highlights estimating

variability in ensemble models due to intrinsic factors and extrinsic forcings by using a novel metric

devised using known measures from information theory. In the literature, information theory has

been used to analyze variability by making parametric assumptions (Gaussian assumptions) about

the probability distributions.

I will explain how to understand and estimate variability using non-parametric approaches from

information theory. In the analogy of communication channel, intrinsic variability is equivalent to

the channel noise. It is an inherent feature of the system arising out of nonlinearities. Extrinsic

variability is due to extrinsic forcings. Extrinsic forcings evolve the state variables, similar to

changing the sent message. I will explain these concepts in Chapter 3. I will derive a metric

using information theory, which estimates intrinsic and extrinsic variability in the unit of bits in the

first part of Chapter 3. In the second part of Chapter 3, I have used Shannon entropy and mutual

information to compare effects of differences in the external forcings. In coastal models, it is

important to understand the sensitivity of physical quantities to the external forcing. For example,

does the river runoff from observations give the same upper surface salinity as the time-averaged

river runoff? To know this difference, I apply mutual information between the two fields to know

the ‘cost’ of using a degraded river runoff. Mutual information is suitable for such applications

because it quantifies the information retained by switching to a different forcing in the unit of bits.

In Chapter 4, the effect of different mixing parameterizations on quantities such as surface
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temperature, boundary layer depth, Ertel potential vorticity will be evaluated using well-known

concepts from information theory: Shannon entropy and mutual information. This is equivalent to

altering the inner workings of a communication channel in order to reduce “noise", that is getting

an accurate representation of real world physics in ocean models.

In the current chapter, I have defined the governing equations used in ocean modeling which

make up the ‘communication channel’ followed by an introduction to information theory. Pre-

dictability, variability, and mixing have been explained subsequently.

1.1 Ocean modelling: primitive equations

The governing equations used to model oceans comprises the Reynolds Averaged Navier-

Stokes (RANS) equations. There is always an averaging involved, with RANS being the most

common. A detailed derivation of averaging and RANS can be found in any standard graduate

level fluids mechanics textbook (e.g. Cushman-Roisin and Beckers, 2011; Kundu et al., 2016). I

have summarized the equations with Boussinesq approximations below. The variables D, E, ?, d

are Reynolds averaged quantities. d is density perturbation. u is the velocity vector. Reynolds

averaging enables to focus on the temporaly averaged quantities without the need to resolve all the

scales.

Continuity equation: ∇ · u = 0 (1.1)
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d = d (), () (1.6)

G, H are the horizontal coordinates, I is the vertical coordinate, D, E, F are velocities in G, H, I

direction respectively, C is time, �/�C is the material derivative. 5 is the coriolis parameter

given by 5 = 2Ω sin \, Ω is rotation rate of the Earth in rad/s and \ is the latitude , d is density

anomaly from a reference density d> and ? is pressure anomaly from a reference pressure ?>

(Cushman-Roisin and Beckers, 2011). � is the forcing term and is applicable when q = ), (.

Equation 1.6 is the equation of state and provides a linkage between active tracers ), ( and the

momentum equations. ^ is diffusivity and a is the viscosity and are parameterized to close the
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difference equations. The governing equations can be thought of as a ‘communication channel’ and

the channel noise is due to the nonlinear terms in the momentum equations and approximation in

turbulence parameterizations. The equations are discretized and the resulting difference equations

are solved using numerical techniques. Some of the numerical methods and procedures alongwith

boundary conditions for solving them can be found in Cushman-Roisin and Beckers (2011).

1.2 Communication Channel and Information Theory

A communication channel is a medium used for transmitting information. An ocean or

atmospheric model was viewed as a communication channel in the work by Leung and North

(1990). In communication theory, it is used when an entity A wants to communicate a message

to a receiver B using a code such that the usage of the channel is optimized or the effort in

communicating is minimized. A typical channel is shown in Figure 1.1. It comprises an encoder,

a channel, and a decoder. The encoder converts the message into a set of symbols which can pass

through the channel and decoder converts them back into the message. The channel can add noise

and the aim of B is to decipher what message A intended to sent. Figure 1.1 shows a sketch of

a typical communciation channel shown in information theory texts and Figure 1.2 sketches the

anology for an ocean model.

Figure 1.1: Communication channel Cover and Thomas (2012)
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Figure 1.2: Ocean model as a communication channel. Initial conditions and forcings set the trajectory for evolution
of model variables. The message (forcings and initial conditions) gets converted to extrinsic signal via the ‘encoder’.
The channel adds intrinsic noise which might depend on the signal. The observer receives the output. To decipher the
“message”, the signal has to be transmitted repeatedly to minimize noise. This is equivalent to ensemble modeling,
where repeated simulations are performed to get an accurate representation of the processes. This analogy has its
limits. In a typical communication channel, the observer has to decipher the correct message sent but in an ocean
model, the observer can only guess the extrinsic signal due to repeated experiments and may not reconstruct the forcing
fields and initial conditions.

A simple example can be construed which can explain communication channel as well the

concept of variability. Let us say that A wants to communicate a single alphabet from the set

- ∈ (0, 1, 2, 3, 4, 5 , 6, ℎ) to B using a communication channel which can only send either of two

symbols 0 or 1, an unlimited number of times. What would be the shortest length of message for

communicating a number, say 2, over this communication channel? A simple method would be to

send 0 if the number belongs to (0, 1, 2, 3) or 1 if it belongs to (4, 5 , 6, ℎ). Subsequently, 0 if the

number belongs to (0, 1) or 1 if it is among (2, 3). Finally, 0 if it is 2 and 1 if it is 3. Hence, the

message sent will be 010. It is known a-priori by B that A can send any of the numbers with equal

probability of 0.125.

0 1
0 1 0 1

0 1 0 1 0 1 0 1
0 1 2 3 4 5 6 ℎ

Table 1.1: Coding for the set 0, 1, 2...ℎ. To send any letter, two symbols are required: 0 or 1. A sequence requiring
only three symbols is needed to be sent to send one letter. In other words, the receiver needs three symbols (or three
bits) to decipher the message. Two symbols implies logarithm to the base 2 is used in entropy evaluations.
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Table 1.1 visualizes this procedure. Hence we need to send a message of 3 characters to

convey a single letter out of 8. If we were playing a game of twenty questions, we would need 3

questions to obtain the right answer. For our communication system, we need exactly 3 units to

convey every letter without ambiguities, so 3 characters contain information about the entire set.

Three selections (010) of the two symbols(0,1) are required to convey a letter out of 23 possibilities.

A natural question is can we quantify information in a set of possibilities and if yes, what is the

right measure for it.

Hartley (1928) identified the logarithm function as a measure of information. If there are #

objects in a set and all are equally probable in their occurrence, then the amount of information is

given by log2 # . When base is 2, the information is in the unit of bits, standing for binary digits

as termed by J. W. Tukey (Shannon, 1948). The meaning of the term information is not knowledge

that we gain by reading a text or interacting with any media, but it means information we gain when

one message is received among several possibilities. Hartley’s measure assumed that all the objects

have equal probability, that is the # elements belong to a uniform distribution and each element 8

has probability ?8 = 1/# . Hence, as per Hartley, the information gained after an outcome having

probability ?8 is log # = log (1/?8). Claude E. Shannon in his classic paper of 1948 (Shannon,

1948) generalized it for any probability distribution. The Information content ℎ(G) in an outcome

G having probability ?(G) is given by (Cover and Thomas, 2012)

ℎ(G) = log2
1
?(G) , (1.7)

this is informtion gained by knowing G. As per Shannon, the average information content in all the
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elements G8 belonging to the set G is given by

� (G) =
∑
8

?(G8) log2
1

?(G8)
. (1.8)

Shannon’s article (Shannon, 1948) states the properties required by a measure of information or

uncertainty and gives proof that equation 1.8 is the only qualifying measure.

Usually in the information theory literature the term� (G) iswritten as� (G) = −∑#
8=1 ?(G8) log2 ?(G8)

but I will use log2 (1/?(G8)) as it is more intuitive and avoids any ambiguity because of the negative

sign. � (G) is the average amount of bits required to convey an element G over repeated use of the

communication channel. For the receiver B, before A sent a message, B had some uncertainty as

to what would be the message. After B has received the message, the uncertainty was reduced by

an amount � (G). B needs � (G) bits to decode the message accurately or with some error due to

channel noise.

The average information entropy � (G), will be referred as entropy. It should not be confused

with the entropy used in statistical thermodynamics. The term log2 (1/?(G8)) can be interpreted in

various ways. The term log2 (1/?(G8)) measures the uncertainty in the sense that high probability

events have low uncertainty because there is a high chance they will occur. Low probability events

have higher uncertainty as they might not occur at all. The prefix ?(G) weighs the information in G

with its probability. Higher probability events are given more weight than lower probability events

because the former occur more than the later.

Once a low probability event has passed, we gain a lot of information. The entropy term

also measures the amount of surprise. Higher probability events cause lesser surprise than low
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probability events. There are multiple interpretations of � (G). It can be thought as uncertainty, or

certainty. Entropy can also be considered as freedom, measurement of disorder, lack of information

and gain of information simultaneously. Brissaud (2005) has given the various interpretations of

Shannon entropy. An interpretation of Shannon entropy is that of freedom. Shannon entropy

describes how much freedom a variable has in occupying any of its possible “states”. For example,

in the set X considered earlier, the variable G could take any of the alphabets from 0 to ℎ. Hence, G

was free to take any of the 8 states or it required 3 bits to specify the amount of states it can occupy.

For a fresh set Y which consists of only two letters 0 and 1, it would require 1 bit to specify H or

there would be 21 states that H could take. We can easily see that G has more variability than H.

Traditionally, variability has been thought of as howmuch spread exists in the underlying data.

This has led to the second statistical moment, variance, for measuring the variability. Variance is

defined as the expectation of the square of deviation of a variable from its mean value. Although

variance estimation requires knowledge of probabilities, it is convenient to use arithmetic variance,

which only uses the value. Existing literature is abundant in using arithmetic variance because

of its ease of use. There are multiple downsides of using variance or arithmetic variance such as

outliers get more weight, clustering of values is neglected, only Gaussian distribution is favored.

Estimating variability by using Shannon entropy avoids these pitfalls.

Variability is an important interpretation of Shannon entropy as it can be used to estimate

variability in a non parametric way. Carcassi et al. (2019) has detailed how Shannon entropy

characterizes variability for data sets which are non Euclidean. In the example explained in

Table 1.1, Shannon entropy measures variability of the set - . The letters contained in - can be

replaced with temperature over the city of Providence to obtain its variability. Each letter in - can
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be thought of as a range of temperature for example, 0 ∈ [0, 5], 1 ∈ [5, 10], ....ℎ ∈ [35, 40] with

equal probabilities for all alphabets. As the temperature can fall into any of the 8 bins with equal

probability, the variability measured using Shannon entropy is 3 bits. In other words, 3 bits are

required to pinpoint the temperature value from the whole range of possibilities. Shannon entropy

is the average number of bits required to go from the collection of objects to a particular object.

Inversely, Shannon entropy is the number of bits of freedom required to attain any of the possible

states.

A second important term presented by Shannon is mutual information. Mutual information

involves comparison between two variables G ∈ - and H ∈ . . For discrete probability distributions,

it is given by

� (-;. ) =
#∑
8=1

#∑
9=1

?
(
G8, H 9

)
log2

(
?

(
G8, H 9

)
? (G8) ?

(
H 9

) ) (1.9)

Mutual information is the common information or common (un)certainty between two vari-

ables. It is the information that the observer receives on average about the sent messages in the

presence (or absence) of noise. This can be demonstrated using the previous example where A

communicates with B with the channel adding noise. Figure 1.3 shows joint distribution between

messages sent (set -) and messages received (set . ). Each symbol was sent 100 times over the

communication channel. For example, the symbol 5 was sent, but the channel added noise and

instead of sending 5 correctly 100 times, it sent 5 50 times and 4 50 times. The Shannon entropy

of choosing 5 is 3 bits, given by the sequence 101. The receiver did not know a-priori that 5 was

sent. The receiver only sees 100 or 101 corresponding to 4 or 5 with equal probability. Only the
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first two symbols 10 are common to 100 and 101, and the third symbol, which is either 0 or 1, must

be due to the channel noise. Hence, the pointwise mutual information for this particular example

is 2 bits. Adding and averaging all the pointwise mutual information for all the elements gives the

mutual information of this communication channel.

0 1

0 1 0 1

0 1 0 1 0 1 0 1

a b c d e f g h

0

0
0 a 

1 b

1
0 c 

1 d 

1

0
0 e

1 f

1
0 g

1 h

50 50

50 50

50 50

50 50

50 50

50 50
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50 50

Figure 1.3: Joint distribution of events shown on the left margin and their observations through a noisy communication
channel shown at the top margin. Each event 0 to ℎ occurs 100 times and is correctly sent 50 times. When 5 is sent
(101), either 4 or 5 are received given by (100) or (101). The first two bits are correct and third bit is noise. This gives
the pairwise mutual information as 2 bits and noise as 1 bits. As soon as 4 or 5 is received by the receiver, the receiver
gets 2 bits of information about the message sent. The diagonal represents error free transmission and off diagional
elements represent noise for this case.
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1.3 Estimating entropies

Estimating Shannon entropy and mutual information is not straightforward. Information

entropies are sensitive to binning because binning is equivalent to accuracy of measurement.

For example, a thermometer measuring temperature with an accuracy of ±1◦� will have higher

uncertainty than a thermometer having an accuracy ±0.1◦�. Difficulty arises in estimating the

probability distributions from the raw data. Throughout this thesis, entropies are estimated by

using discrete probability distributions obtained by binning the raw data. This approach is called

the histogram approach and is the most common approach. Using histogram binning approach

causes biases in estimating Shannon entropy and mutual information (Papana and Kugiumtzis,

2008). Throughout this manuscript, I have employed equidistant partitioning to estimate probability

distributions from raw data. Work here involves comparing the value of entropies between two

time series or grid points. As the binning has been kept consistent for the time series data (or

spatially varying data), the biases in estimating entropy won’t affect the qualitative interpretation of

the results. Wherever it is important to quantify entropies, sensitivity to binning has been checked

and reported.

1.4 Predictability and Variability

The variability observed in an ocean model is due to three factors: differences in initial con-

ditions, external forcings (atmospheric, tidal, etc.), and intrinsic chaos due to the non-linear and

chaotic nature of fluid flow. In phase space, the state moves along a trajectory whose trend is deter-

mined by initial conditions, forcings, and variability. With no dissipation and external forcing, the

trajectory would remain confined because of an invariance, say � , of energy conservation (Lorenz,
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1963). Due to intrinsic chaos, two initial conditions which are very close in the phase space would

separate after some time scale as observed in the Lorenz system of equations (Lorenz, 1963) but

would still be on the surfaces of constant � . This time scale is the predictability time scale g.

Within this time scale, the initial conditions dominate variability. When forcing is introduced,

the trajectory will change to a different � and in case of strong damping due to high diffusivities,

��/�C will be negative lowering � leading to a change in the trajectory. In coastal models, this

damping is usually observed to be very strong and hence, unlike the Lorenz system, even a large

anomaly in the initial conditions will cause the trajectories to get attracted towards paths that are

same as those with relatively small perturbations. ROMS-OSOM shows this kind of predictability

in which an anomaly, small or large, in the initial conditions decays with the same time scale g

depending on region of the estuary and season (winter or summer). Beyond the predictability time

scale g, the forecast ensembles merge with the climatology ensembles, implying the trajectories in

phase space of forecast ensembles forget about the anomaly in the initial conditions. After time g,

there is no extra information in forecast ensembles than there is in climatology ensembles and it is

futile to run the forecast simulations because they yield the same output with same information as

that in climatology.

In the literature, idealized studies have been performed and predictability time scales have

been found using the information theory metric (e.g. Kleeman, 2002). The idealized studies

are not expensive and can have large number of ensemble members. In realistic regional models

like OSOM, it is not possible to have large ensemble members to obtain probability distribution

from state vector of individual members. To circumvent this issue, a running window approach

was utilized which allowed wider sampling. In the running window, the Shannon entropy � (-)
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of the values of model mean of climatology members (MCM) was found. This was compared

with the mutual information � (-;. ) between MCM and the values of the model member for

the forecast ensemble within that running window. � (-;. ) between forecast and climatology

measures how much information is shared between the time series with the anomaly and the

time series without the anomaly. Lower � (-;. ) implies the forecast shows independence from

climatology. � (-) − � (-,. ) measures how many bits are needed to close the gap between the

forecast and the climatology. After time g, � (-;. ) shows higher values implying that the forecast

is statistically similar to climatology marking the end of the predictability period and start of the

projections period. The running window approach, even though approximate, mitigates the lack of

large number of ensemble members.

Generally, strong damping occurs in coastal models and the ocean flow represented by ROMS-

OSOM displayes low to modest chaos. This is because the lateral diffusivities in ROMS are large,

which give rise to less chaotic tracer fields (temperature, salinity). If an anomaly gets introduced,

say a perturbation in the state vector, the perturbation can diminish due to two reasons: (1) Intrinsic

variability (chaos) will cause the anomaly to mix and dissipate (2) the anomaly will flush out of the

boundaries. As the intrinsic chaos is low, the most plausible explanation for reduction of anomaly

is the flushing mechanism of the bay. The time scale associated with flushing mechanism is the

flushing time scale and is given by +/& where + is the volume of the quantity under consideration

and & is the flux of the quantity. The flushing time scale is estimated easily, though it requires

accurate knowledge of the volume and fluxes. It is a physical property of the estuary unlike a

predictability time scale which is a feature of the numerical ocean model. As the predictability

time scale might be governed by flushing of the anomaly, the connection between these two time
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scales has been explored in Chapter 2.

Once the predictability time scale g passes, the variability is set only due to intrinsic and

extrinsic factors and is the focus of Chapter 3. An information theory based metric has been

proposed to estimate the relative contributions of intrinsic and extrinsic variability. The metric

uses Shannon entropy and mutual information. In addition to applying it here to the OSOM

ensemble, it has been applied to idealized random vectors and ensemble simulation output from

the GFDL-ESM2M large ensemble (Rodgers et al., 2015; Deser et al., 2020).

1.5 Mixing parametrizations

Mixing is a process in which different fluid parcels mix with each other. To accurately

understand and predict the physical processes, it is pertinent to have the correct parameterizations.

Mixing can be because of molecular diffusion or tubulent eddy mixing, the later being the dominant

one. Parameterizing the effects of turbulent mixing is required because the model resolution limits

the scales at which processes can be resolved. Mixing will occur along both horizontal and vertical

directions and is represented by the viscous and diffusive (a and ^) terms in Equations 1.2 - 1.6.

The subscript � terms of =D, ^ are associated with horizontal mixing and the subscript / terms

with vertical mixing. In ROMS, the lateral mixing eddy viscosity and diffusivity terms are set

as constant values and numerical discretization schemes cause large numerical viscosities. In

geophysical models, the aspect ratio (ratio of vertical length scale of motion to horizontal scale

of motion) is very small and this leads to higher vertical velocity shear as compared to horizontal

shears (Cushman-Roisin and Beckers, 2011). This simplifies the turbulence models as turbulent

eddy viscosity/diffusion is predominantly in the vertical direction.
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Diapycnal mixing, mostly vertical, causes exchange between the surface parcels and the water

column beneath it. This exchange can be of water mass, temperature, salinity, or any other active or

passive tracer. For example, wind driven cooling during nighttimewill cause the formation of a cold

layer at the surface and the cold parcels will sink because of buoyancy loss. ROMS-OSOM uses the

General Lenght Scheme (GLS) to represent mixing. As will be shown in Chapter 2, GLS scheme

works with reasonable accuracy and model matches observational data from buoys. To check

sensitivity of different schemes, OSOM was modelled using CROCO and compared by activating

GLS scheme (Umlauf and Burchard, 2003), KPP scheme (Large et al., 1994), and modifed KPP

scheme. The modified KPP scheme paramterizes the effects of symmetric instability (Bachman

et al., 2017) (hereby called SI scheme). The physical processes observed in all the three simulations

of CROCO-OSOM should be the same, but the results show otherwise. Metrics from information

theory have been used to quantify these differences. Shannon entropy and mutual information are

well suited for the comparison because they capture all the correlations. Information theory metrics

capture the amount of common information or missing information in two data sets. For example,

if the mutual information between GLS and KPP is less than between KPP and SI for surface

temperature, it indicates the extent of information lost when using GLS over KPP. The scheme

details (in brief), methodology to compare the three simulations, and results have been described

in Chapter 4.
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Chapter 2

Predictability

Preface to Chapter 2

Chapter 2 is a verbatim version of a manuscript accepted in the Journal of Geophysical

Research-Oceans (Sane, Fox-Kemper, Ullman, Kincaid, and Rothstein, Sane et al.). The title

of the submitted article is: “Consistent Predictability of the Ocean State Ocean Model (OSOM)

using Information Theory and Flushing Timescales". The authors of the manuscript are: Aakash

Sane, Baylor Fox-Kemper, Dave Ullman, Christopher Kincaid, Lewis Rothstein. AS and BFK

are affiliated with Brown University and DU, CK, and LR are affiliated with University of Rhode

Island. The manuscript can be found at the permanent DOI: https://doi.org/10.1029/

2020JC016875.

DU was involved in setting up the initial model: creating forcing and grid files and evaluating

the performance of model with respect to observations. CK and LR were involved with the earlier

version of OSOM. AS and BFK contributed in setting up ensemble runs, applying information
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theoretic metric and writing the manuscript. AS applied the total exchange flow formulation to find

the flushing time scales.

Abstract

The Ocean State Ocean Model OSOM is an application of the Regional Ocean Modeling

System spanning the Rhode Island waterways, including Narragansett Bay, Mt. Hope Bay, larger

rivers, and the Block Island Shelf circulation from Long Island to Nantucket. This paper discusses

the physical aspects of the estuary (Narragansett and Mount Hope Bays and larger rivers) to

evaluate physical circulation predictability. This estimate is intended to help decide if a forecast and

prediction system is warranted, to prepare for coupling with biogeochemistry and fisheries models

with widely disparate timescales, and to find the spin-up time needed to establish the climatological

circulation of the region. Perturbed initial condition ensemble simulations are combined with

metrics from information theory to quantify the predictability of the OSOM forecast system–i.e.,

how long anomalies from different initial conditions persist. The predictability timescale in this

model agrees with readily estimable timescales such as the freshwater flushing timescale evaluated

using the total exchange flow (TEF) framework, indicating that the estuarine dynamics rather than

chaotic transport is the dominant model behavior limiting predictions. The predictability of the

OSOM is ∼7 to 40 days, varying with parameters, region, and season.
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Plain Language Summary

A new model of waterways near Rhode Island is introduced and examined. The model is

intended for studying the physical circulation of this region and its ecosystem changes. This study

uses a variety of metrics to assess for how long a forecast with this model might be useful (i.e., how

long the model’s initial state determines its behavior) and relatedly how long to run (or spin up) the

model to have poorly known initial conditions not affect the result systematically.

2.1 Introduction

Coastal marine forecast systems are in use or development in a number of regions worldwide

(e.g. Wilkin et al., 2018; Moore et al., 2011; Lellouche et al., 2018; Pinardi and Coppini, 2010; Mel

and Lionello, 2014; Raboudi et al., 2019). As each region is unique, the length of forecast window

and relative levels of forced to internal variability differ among these systems. The Ocean State

Ocean Model (OSOM) is a new model in development, which is an extension and synthesis of past

prototype models (Bergondo, 2004; Bergondo and Kincaid, 2007; Liu et al., 2016; Wertman, 2018;

Ullman, 2019; McManus et al., 2020) being evaluated for potential use as a forecast system. In this

evaluation, key questions are: How often should a forecast be made? How far into the future can

forecasts be skillful? How long does the model take to spin up? How accurate must surface and

boundary forcing be to arrive at useful forecasts, given that these datawould also be predictions (e.g.,

from numerical weather prediction models)? Which regional societal challenges are better framed

as changes to the region’s climatology (i.e., projections) rather than as predictable futures that

depend on the model’s initial conditions (i.e., forecasts)? In this paper, a framework for addressing

these questions is developed by adapting methods from information theory and ensemble-based

21



measures of predictability, internal variability, and forced variability. The OSOM is taken as a test

example of these methods and, as a coastal model in development with unique characteristics, the

specific results of this study are useful for the future development of this particular model.

Forecasting hydrodynamic parameters is pertinent for an estuary as they play a vital role in

controlling the physical as well as biogeochemical changes. An important aspect of forecasting

is finding the predictability/forecasting timescales that limit the degree to which initial conditions

govern the future behavior of the numerical model for individual parameters. These timescales

quantify the persistence of anomalies and are a feature of the numerical model. Predictability

is a measure of a model’s ability to forecast or predict the evolution of anomalies in the future

from initial conditions given prescribed external forcing. By contrast, changing forcing due to

climate change (e.g., Xiu et al., 2018), altered topography via erosion or dredging (Hayward et al.,

2018), changes to wastewater treatment or power plant effluent (Mustard et al., 1999), etc., are

external factors affecting boundary conditions rather than initial conditions whose impact can be

assessed using projections of future climatology with altered boundary conditions over a variety

of plausible initial conditions. Thus, predictability measures a model’s potential to predict or

forecast a future state which is distinct from climatology, which is distinct from projecting the

changes to climatology forced from changes to boundary conditions. The state of the system in

a forecast can be only considered in a probabilistic way and hence predictability is a property

involving two distributions (DelSole, 2004): predictability quantifies the departure of a forecast

distribution from the climatology distribution (Shukla, 1981; Leung and North, 1990). Quantifying

this departure involves measurement of uncertainty in the forecast signal. The uncertainties in the

initial conditions can be thought of as anomalies which eventually are forgotten by the model, or
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overwhelmed by chaotic variability or the influence of boundary conditions as time proceeds until

the forecast statistical distribution becomes indistinguishable from the climatology distribution.

Beyond this time scale a forecast provides no additional information beyond climatology, and

forecasts are then no more useful than projections of the future climatological range of possibilities.

This article has three purposes: (1) To describe the OSOM; (2) To use ensemble simulations

to find predictability timescales; (3) To find estuarine flushing timescales for fresh and saline water

masses and compare these to (2). The model is forced by winds, tides, river runoff, evaporation,

precipitation and also forced by heat fluxes and open boundary conditions. So, unlike the numerical

weather predictionmodels forwhich the information theory techniques applied herewere developed,

the OSOM is a forced model where much of the variability comes from external forcing that may

determine the trend of the evolution of the state parameters, or alternatively internal variability

(e.g., hydrodynamic instabilities and chaos) may dominate. A companion paper in review by Sane

et al., 2021 develops a non-parametric information theory approach to quantifying the amount of

internal vs. forced variability similar to the ensemble approach of (Llovel et al., 2018), and uses

this metric to quantify the relative importance of different choices in boundary forcing. As the

balance of sources of variability depends on forcing, resolution, classes of flow, etc., the magnitude

of the forced vs. intrinsic variability depends on the specifics of the model, rather than being a

general description of the waterways under study. So, too, do the predictability metrics describe

the specific model being studied rather than the system. However, here a comparison to traditional

estuarine flushing timescales serves to illustrate that the model is governed by physical principles,

so quantifying these based on the real–rather than simulated–world may nonetheless be useful in

establishing physical guidelines underlying limits on predictability.
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Metrics from information theory provide a natural way of quantifying distances between two

probability distributions (Cover and Thomas, 2012). Information theory metrics have been used

in myriad ways in other fields (e.g., electronic communications, image processing, and molecular

biology). Using information theory metrics for weather prediction and climate projection is well

established (Leung and North, 1990; Schneider and Griffies, 1999; Roulston and Smith, 2002;

Kleeman, 2002; DelSole, 2004; Haven et al., 2005), but they are not commonly used in coastal

modeling. DelSole (2004) relates the requirement to quantify uncertainty with the usage of metrics

from information theory. The most commonly used metrics are entropy, relative entropy, and

mutual information (Shannon, 1948), although other variants are also useful (Kleeman, 2002;

Leung and North, 1990). A key advantage for use of these metrics in coastal modeling is that they

can be ascribed to a variety of physical or biogeochemical variables; here we examine salinity,

temperature, and kinetic energy over regions and at observation locations, but in future work we

will examine biogeochemical variables in the OSOM.

An important time scale for an estuary is the flushing time scale (Knudsen, 1900), which

is defined as the average time of a parcel of fluid inside the estuary (e.g., Monsen et al., 2002),

and thus also the average retention time of water masses in the estuary. As the numerical model

represents the physical domain, there is an inherent relation between the forecasting timescales and

the flushing time scale, because eventually tracer anomalies present in the initial conditions will

be flushed from the estuary, and the flushing timescale is an estimate of how long this process will

take (assuming the anomalies are conserved on each water parcel). Here these timescales are found

for the OSOM, a model developed specifically for Narragansett Bay and connected waterways.

Narragansett Bay (NB) is amedium-sized estuary and a natural harbor. As per the classification
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of estuaries based on physical and hydrological attributes, NB is a class 8 estuary (a moderate area,

volume, and freshwater flow estuary that is deep and salty: Engle et al., 2007). It is a prime example

of a coastal plain estuary, also known as a drowned river valley, which is the most common type

of estuary in temperate climates. In winter, it is mostly a well-mixed estuary. In summer, it is a

partially-mixed estuary. The bay covers an area of ∼ 400 km2 (Pilson, 1985). It is 16 km wide

(East-West), 32 km long (North-South), and has 412 km of shoreline. The Bay extends from the

Providence and Seekonk rivers in the north to Rhode Island Sound in the South. To the east, it

connects to Mount Hope Bay, fed by the Taunton River and connected by the Sakonnet River to

Rhode Island Sound. The whole of the Narragansett Bay, Mount Hope Bay, associated rivers, and

Rhode Island Sound is simulated in OSOM (Figure 2.1), but the emphasis in this paper is variables

within NB andMount Hope Bay. The average depth of NB is 8 m and the deepest point is 60 m. The

bathymetry varies with steep slopes in the Rhode Island Sound towards the open ocean and along

the dredged navigation channels. The Bay provides a natural habitat for many living things and is

of commercial and ecological importance to the local community. Commercial fishing and shell

fishing are important economic activities and the Bay has also been used for recreational sports

such as a harbor for the America’s Cup and the Volvo Ocean Race sailing competitions. Recently

pollution has impacted these activities; bacteria and viruses have caused beach closures, harmful

algal blooms, and shell fishing bans, and hypoxia is frequent and sometimes induces large fish kills.

OSOMwill be used to simulate the physics of the Bay and predict the physical and biogeochemical

conditions conducive to these events, as well as to assess the impact of different management and

mitigation practices. The predictability timescales studied here help reveal the utility of the model

to forecast the physical conditions for harmful events.
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This article has been structured as follows: Section 2 provides detail of the computational

model OSOM. Section 3 describes the theory of using mutual information to find predictability

timescales. Section 4 contains the ensemble simulation setup for forecasting and climatology sets.

Application of mutual information to the ensembles has also been described in Section 4. Section

5 states the results for various cases and also gives the flushing timescales obtained via OSOM.

2.2 Ocean State Ocean Model

The Ocean State Ocean Model (OSOM) is an application of the Regional Oceanic Modelling

System -ROMS (Shchepetkin andMcWilliams, 2005). The curvilinear terrain-following coordinate

system employed in ROMS is well suited for coastal applications since the bathymetric variations

in coastal systems and estuaries are large. The model has curvilinear varying horizontal resolution

as well, from ∼ 50 m towards the north to around 200 m in the south of the modelled domain.

The horizontal grid consists of 1000 × 1100 grid cells and 15 terrain-following sigma levels in the

vertical. The Generic Length Scale (GLS) scheme (Umlauf and Burchard, 2003), with parameters

chosen for the ^ − n closure (Warner et al., 2005a), is used to represent unresolved turbulence.

Salinity and temperature have been evolved using ‘Multidimensional Positive Definite Advection

Transport Algorithm’ known as MPDATA in ROMS (for example Kalra et al., 2019).

The offshore forcing at the open boundaries is provided by surface elevation and depth-averaged

velocity using 9 tidal constituents (M2, S2, N2, K2, K1, O1, Q1, M4, M6) from the eastcoast tidal

constituent database (Mukai et al., 2002) and, at subtidal timescales, with low-pass filtered output of

the hindcast version of the Northeast Coastal Ocean Forecast System (NECOFS), a regional model

covering the northeast U. S. coastal ocean (Beardsley and Chen, 2014). The surface elevation and
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Figure 2.1: a. ROMS OSOM horizontal grid resolution, which is the geometric average of that in the Z direction
(∼ East - West direction) and in the [ direction (∼ North - South direction). The finest resolution is in northern
Narragansett Bay and resolution decreases towards the open ocean. b. Bathymetry: The Narragansett Bay and Mount
Hope Bay are regions of shallow bathymetry and depth increases across the Rhode Island Sound towards the open
ocean. Wastewater Treatment Facilities (WWTFs) are shown in blue. Important rivers are highlighted in magenta: 1.
Connecticut River, 2. Thames River, 3. Pawcatuck River, 4. Maskerchugg River, 5. Hunt River, 6. Hardig Brook,
7. Pawtuxet River, 8. Woonasquatucket and Moshassuck River, 9. Blackstone River, 10 Ten Mile River, 11. Palmer
River, 12. Taunton River.
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depth-averaged velocity forcing are implemented using the Chapman (1985) and Flather (1976)

methodologies respectively. The depth-dependent velocity, temperature, and salinity at the open

boundaries are forced using the Marchesiello et al. (2001) combined radiation and nudging open

boundary condition using low-pass filtered NECOFS output. The nudging timescales vary with

stronger nudging on inflow (timescale of 1.6h) than on outflow (timescale of 24h).

Surface heat and momentum fluxes are estimated from meteorological variables obtained

from models and local observations using the updated COARE bulk formulae (Fairall et al.,

2003). All meteorological forcing except for winds are assumed to be spatially uniform over the

model domain. Spatially variable winds for the region were obtained from the North American

Mesoscale (NAM) analyses, a data-assimilating, high resolution (12 km) meteorological simu-

lation (https://www.ncei.noaa.gov/data/north-american-mesoscale-model/access/

historical/analysis). Air temperature and barometric pressure were estimated by aver-

aging the measurements at the six stations of the Narragansett Bay PORTS system (http:

//www.co-ops.nos.noaa.gov/ports.html). Precipitation and relative humidity are from ob-

servations at T. F. Green Airport, in Warwick, RI. Net shortwave and downward longwave radiative

fluxes were taken from the nearest ocean gridpoint of NOAA’s North American Regional Reanal-

ysis model (http://www.emc.ncep.noaa.gov/mmb/rreanl). Upward longwave radiation was

computed based on the ocean surface temperature in the model simulations.

Freshwater discharge from local rivers and the major waste water treatment facilities (WWTF)

discharging into NB were applied as point source inflows. The discharges of many of the rivers are

measured at United States Geological Survey (USGS) gauging stations (Hunt, Palmer, Moshassuck,

Woonasquatucket, Blackstone, Ten Mile, Pawtuxet, Taunton, Pawcatuck, Connecticut, Quinebaug,
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Yantic, and Shetucket Rivers). TheMoshassuck andWoonasquatucket Rivers, which discharge into

the upper Providence River, were combined in the model. Likewise the gauged discharges of the

Quinebaug, Yantic, and Shetucket Rivers were combined to form the model Thames River. For the

small rivers entering Greenwich Bay (Maskerchugg River and Hardig Brook) which are presently

not gauged, historical flow measurements were used with simultaneous measurements from the

nearby Hunt River to develop a linear regression model predicting the discharge of the former

from gauged measurements from the latter river. The gauging stations varied in their proximity

to the locations at which the rivers discharge into the model domain. In order to account for the

river discharge from the portion of the watershed downstream of the gauging station, the measured

discharges were scaled up using estimates of the drainage areas upstream and downstream of the

gauge under the assumption that discharge/drainage area downstream is equal to its value upstream

of the gauge. Discharges from four WWTFs (Fields Point, Bucklin Point, East Providence, and

East Greenwich) in the upper/mid Bay region were obtained from the plant operators.

The WWTF point sources were implemented at a single ROMS gridpoint but the discharges

for the rivers are spread over 2–5 gridpoints to reduce the tendency for model instability. River

forcing in ROMS requires, in addition to the river discharge discussed above, specification of

the vertical profile of the river inflow transport and the concentration of tracers in the inflowing

water. The vertical profile of the river inflow was specified as linearly varying with zero transport

at the bottom. Salinity of the inflowing water was set to 0. In the simulations discussed here,

the river water temperature was also set to 0 which eventually leads to artificially cold rivers, but

experimentation versus using more realistic temperatures reveals modestly lower temperatures at

the observation sites in the Bay over the integration times used (especially in winter). Setting river
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temperature to 0 only affected the temperatures in zone 1 and 5 for winter where rivers have more

influence (Figure 2.5 illustrates zone boundaries). The cold bias found was about 4-6 K in zone 1

and 1-2 K in zone 5. The temperature at the grid points closest to buoys were not affected as all

the observation locations shown in Figure 2.2 are sufficiently away from river sources. However,

it is recommended for future operational simulations that time varying river water temperature be

estimated using a regression equation involving air temperature as well as water temperature on the

previous day.

2.2.1 Basic model validation

The model output has been compared with buoy data obtained from the Rhode Island Data

Discovery Center (http://ridatadiscoverycenter.org), where a variety of regional data are

accessible. In particular, the model has been compared with moored observations collected at

locations shown in Figure 2.2. Figure 2.3 illustrates the best and worst matches for temperature

and salinity of the model with the historical observations. Comparison of the model versus surface

temperatures derived fromLandSat also confirms that the patterns of heating and cooling are similar

to the satellite data, although seasonality in OSOM is somewhat larger than in the satellite record

(by roughly 1◦C in climatological comparisons).

Figure 2.3 indicates that the model has skill at the high frequency variability (tides and diurnal

cycle), although variability at the bottom level is underestimated. The lower frequency temperature

and salinity have biases of up to 2◦C at the surface and 1◦C at the bottom, and 3 and 2 psu at the

surface and bottom of MtHB. At GB, the errors at surface and bottom are up to 5◦C and 6 psu and

2◦C and 4 psu respectively. Table S1 in supplemental information shows root mean square error
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Figure 2.2: Stations where surface as well as bottom temperature and salinity observations are continuously collected
during the months of July-August of 2006: Greenwich Bay (GB), Bullock’s Reach (BR), Conimicut Point (CP), North
Passage (NP), Mount Hope Bay (MtHB), Poppasquash Point (PP), Mount View (MtV), and Quonset Point (QP). Model
data is compared with observations from these stations. The background colormap shows an example salinity field.
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Figure 2.3: (a-d) Comparison of the Mount Hope Bay moored buoy observations of salinity and temperature at the
surface (a, b) and maximum depth (c, d). This case is the closest match of the OSOM to the observations during the
two months shown: July and August of 2006. (e, f, g, h) Comparison of the Greenwich Bay moored buoy observations
of salinity and temperature at the surface (e, f) and maximum depth (g, h). This case is the poorest match of the OSOM
to the observations during the two months shown: July and August of 2006. Red color represents the observed values
and blue color show different ensemble members. Figures S1 to S6 in the supporting information compare the rest of
the marked observation locations.
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for all the stations.

The emphasis of this paper is on measuring the basic predictability of the OSOM as modeled

in this version. Predictability has been inferred from model-model comparison and not model-

observation comparison because our focus is on potential predictability. It is not necessary for

this assessment for the OSOM to be completely realistic, but these basic comparisons show that it

has skill in reproducing realistic variability in temperature and salinity. Future work will address

improvements in the model setup to reduce biases and errors, such as improving the assumed

temperature of river inflows, parameterizations of mixing, evaluation of tides, different products

for surface and offshore boundary conditions, etc.

2.3 Predictability using information theory

DelSole and Tippett (2007) state that the two guiding principles for measuring predictability

of a variable by contrasting the forecast and a climatology distribution should be 1) separate, non-

identical measures for a given prediction, and 2) the measure of predictability should be invariant to

linear transformation (Schneider and Griffies, 1999; Majda et al., 2002). Measures of predictability

using information theory are naturally invariant to linear transformations and will be explained in

general in the following paragraphs.

Consider a signal, such as a variable or regional average of a variable modeled by the OSOM,

- , having a probability distribution ?8 (G) when considered over a particular time or space interval.

The probability distribution ?(G8) is of the 8Cℎ event (8Cℎ bin) after dividing the data into # bins. A
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fundamental quantity in information theory is the Shannon entropy (Shannon, 1948) defined by

� (-) =
#∑
8=1

?(G8) ;>62

(
1

?(G8)

)
. (2.1)

The entropy (with base 2 logarithm) is quantified in units of bits, because the Shannon entropy

effectively measures the average amount of digital storage required to capture the information

present in the variability of - .

To understand Equation 2.1 begin with the innermost term. ? first proposed using the

logarithmic function ;>62(1/?(G8)) to quantify information or uncertainity in an event having

probability ?(G8). The formulation ;>62(1/?(G8)) implies that low probability events have higher

uncertainty. Shannon (1948) completed this measure by additionally weighting the logarithm with

probability giving rise to the entropy definition Equation 2.1, which resembles the thermodynamic

entropy function in statistical mechanics resulting from a system that visits a set of equally probable

states (e.g. Sethna et al., 2006). Shannon’s entropy is formulated so that high probability events

reduce uncertainty with a strong weighting because they occur often (Cover and Thomas, 2012).

Shannon entropy quantifies uncertainty and the number of states needed to categorize a single

probability distribution.

To compare two distributions ?(G) and ?(H) relative entropy andmutual information measures

are useful comparativemetrics. Kleeman (2002) recommends the relative entropy (a.k.a., Kullback-

Leibler distance Cover and Thomas, 2012) for climate modelling, which is

' =
#∑
8=1

?(G8) log2
?(G8)
?(H8) .

Here, let - be the forecast and . be the climatology. Recall that predictability measures
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the information contained in a particular forecast that is not present in the climatology, i.e., the

information which stems from the forecast initial conditions. It is easy to see that if the forecast

probability ?(G8) equals the climatology forecast ?(H8), ' goes to zero indicating no distance or

difference in information between the forecast and climatology. As a forecast evolves, during

the time interval before ' reaches zero, ?(G) and ?(H) are distinguishable (under similar levels of

unpredictable noise) and after ' reaches zero they are not, thus this time interval is the predictability

window.

Within the predictability window, interchanging ?(G8) and ?(H8) changes the value of ', not

just by sign from the logarithm, but also by magnitude due to the prefactor ?(G). Thus, the relative

entropy ' depends on both ?(G) and ?(H) asymmetrically and will change if they are interchanged

(i.e., the metric depends on which variable is considered the climatology and which is considered

the forecast). Our potential predictability will compare different ensemble members where one is

taken as forecast member, and from the same ensemble a different member is taken as a climatology

reference (Kumar et al., 2014). As the different ensemble members should be interchangeable in

this approach, the magnitude of our metric (in contrast to ') should not change by interchanging

the forecast and climatology, hence a different metric is preferred: mutual information.

Mutual information, � (-;. ), is symmetric in - and. , and hence is a natural metric of distance

between these variables without direction. Let two random variables - and. have joint probability

?(G8, H 9 ) and marginal probability ?(G8) and ?(H 9 ). - and . are divided into # bins each (they

can also be divided into different bins but we have used the same number of bins for simplicity).
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The mutual information � (-;. ) between them is (Cover and Thomas, 2012)

� (-;. ) =
#∑
8=1

#∑
9=1

?(G8, H 9 ) log2
?(G8, H 9 )
?(G8)?(H 9 )

, (2.2)

Mutual information resembles relative entropy. In fact, it measures the relative entropy between the

joint distribution ?(G8, H 9 ) and the product of the marginal distributions (?(G8)?(H 9 )). If - and .

are independent variables, then ?(G8, H 9 ) = ?(G8)?(H 9 ) and thus � (-;. ) = 0. However, if they are

not independent, so that one contains information about the other, then there is mutual information

shared and � (-,. ) > 0. If they are totally dependent, i.e., knowing the value of - reveals the

value of . and vice versa, then ?(G8, H 9 ) = ?(G8) = ?(H 9 ) for each value of 8, 9 and the mutual

information equals the Shannon entropy: � (-,. ) = � (-) = � (. ). Thus, mutual information is

the metric of the information shared by - and . versus if they were independent variables. Mutual

information between - and . is symmetric and measures a distance between the two probability

distributions. It quantifies the amount of information one variable contains about the other (again

in bits). It can also measure the reduction in uncertainty of one distribution given knowledge of a

second distribution, or the degree to which they are not independent (Cover and Thomas, 2012):

� (-;. ) measures the degree of statistical constraint of - on. and vice versa (Fano, 1961). Mutual

information is easily extended to more than one variable leading to a multivariate predictibilty

analysis (DelSole and Shukla, 2010).

Unlike relative entropy ', mutual information � (-;. ) does not go to zero when ?(G) ap-

proaches ?(H), instead it approaches the Shannon entropy � (-) from Eq. 2.1. We use the property

that � (-;. ) approaches � (-) to delimit the predictability window, taken as when the probability

distribution of the forecast and the climatology become effectively indistinguishable, taken to be
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the first time when � (-;. ) reaches within 90% of � (-). This threshold is somewhat arbitrary,

as convergence is not typically monotonic or complete, so any threshold will tend to have “near

misses” and later signs of potential predictability as will be illustrated in a variety of figures in the

text and supplementary material. However, to compare to the flushing timescales in later sections,

a threshold is a simple test, and a range of predictability timescales is then formulated by com-

paring to individual climatology ensemble members as well as the climatology ensemble mean to

appropriately gauge the level of certainty.

DelSole and Shukla (2010) state that mutual information itself is a measure of forecast skill and

provide skill scores founded on mutual information and relative entropy. The metrics in Equations

2.1-2.2 are based on the probabilities of events, not the units or dimensions of the events, so their

use on various parameters and between forecasts and climatology can be compared regardless of

the type of variable: physical variables, biological variables, chemical variables, or sociological

variables of arbitrary units can be compared. For this reason, these information theory metrics

are ideal for evaluating forecast skill in a model like OSOM where a variety of applications are

intended. The metrics are also invariant under linear transformation of the signal and hence are

robust to trivial changes such as changes of the units of measurement (DelSole and Tippett (2007)),

unlike alternatives such as the root mean square technique for skill assessment (for example, Jin

et al., 2018) which require normalization. The root mean square metric is sensitive to outlier and

might over or under estimate predictability. This is because outliers get the same weight as non

outliers. Using information theory circumvents this issue because probability distributions are used

which naturally gives less weight to outliers as they are few in numbers. Mutual information also

measures total correlation by measuring dependence between the two variables (Watanabe, 1960).
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To find the predictability time scales of ROMS-OSOM we will compare ensembles members

which differ in initial conditions. Hence our focus is on finding the potential predictability (model-

model comparison) instead of actual predictability or model forecast skill (model - observation

comparison, for example, Kumar et al., 2014). The climatology comes from the model simulations

and is a result of past or historical forcings (hindcasts) with unperturbed initial conditions. It will be

compared to forecasts with an anomaly of perturbed initial conditions that will eventually decay or

be flushed out. The time it takes for the forecast to approach the climatology is the predictability time

scale. In other words, the convergence between forecast member and climatology member signals

the end of the predictability time period. After this period running the forecast is of no utility, and it

will statistically resemble any climatological estimate without predictable consequences remaining

from its initial anomaly. This decay occurs because even though an anomaly is introduced, the

forcings and boundary conditions are identical between the climatology and the forecast. In a

realistic forecast, the model would be initialized with observations and run with historical external

forcings as future external forcings are unknown a priori. The initialization due to observations

would create anomalies which are similar to perturbations we add to initial conditions in hindcasts

to find potential predictability. Also, in a realistic forecast, the forecast signal will begin to diverge

away from future observations and converge towards the model climatology signal–another sign

marking the predictability time scale.

2.4 Ensemble setup

To begin with initial conditions, temperature and salinity were interpolated from hindcasts

of the FVCOM model (Beardsley and Chen, 2014) and velocities were taken to be zero. From
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these conditions, the model was spun up for two months before analysis begins. Two months was

estimated to be sufficient as the average flushing time in NB is about one month (Pilson, 1985),

and post-analysis estimates of the predictability timescale confirm this conjecture. The initial

conditions used for ensemble simulations were derived from one single spun-up simulation for

each season taken from the boundary conditions for the year 2006. Figure 2.4 shows a sketch of

a three membered ensemble of a generic variable to outline this ensemble setup procedure. The

blue line shows the spin up. From consecutive days before the spin up ends, initial conditions are

drawn. They are shown as three black dots on the blue line. These three states are used to create

initial conditions labelled as 21,22, and 23 and model is run forward displayed by black thick lines.

The uncertainty in the initial conditions directly arises from sampling the daily conditions just prior

to start of ensemble simulations. We define these three members as constituting our ‘climatology

ensemble’. Their mean is denoted by letter m and the mean of climatology members is shown by

dashed black line. The forecast members shown in red, are denoted as 5 1, 5 2, and 5 3. They are

created by perturbing 21,22, and 23 by their anomaly from the mean. For example, 5 1 is created by

multiplying (21−<) by 3 and adding it to<, 5 1 = 3(21−<) +<. Similarly 5 2 and 5 3 are created.

5 1, 5 2, and 5 3 are members constituting the ’forecast ensemble’ and are shown in red color.

All the 2 and 5 members undergo the same forcing. The values inside the running window are

binned to find their frequency of occurence. These frequencies are converted to discrete probability

ditribution using Python Numpy’s histogram function. Shannon entropy is applied to values of <

inside the running window g as shown in green color. Mutual information is calculated between

values of forecast member and ensemble mean for the running window. For example, Shannon

entropy, � (<), of values of < inside g will be compared with mutual information, � (<; 5 1),

between values of < and 5 1 inside g. This will quantify how much information is shared between
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5 1 and < with respect to <. As running window moves forward,� (<) and � (<; 5 1) will be found

as a function of time.

To get the ensemble, simulations were performed in each of two seasons: January-February

(JF) and July-August (JA). The months JA were chosen because NB faces hypoxia during those

months (Codiga et al. (2009)), and JF was chosen as a contrasting alternative. For each season

(JF, JA) there is a set of climatology ensemble members that were simulated consisting of 7 and

10 members respectively. The JF and JA climatology ensemble has two sets of corresponding

forecast ensembles: one initialized by perturbing only temperature, and the other set initialized by

perturbing only salinity.

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡𝑖𝑚𝑒
𝑠𝑐𝑎𝑙𝑒

𝜏

Time

f1

f2

f3

c1

c2

c3

m
Spin up run used to 
generate initial 
conditions 

Figure 2.4: Sketch showing generation of ensemble members. Blue line represents a spin up simulation. The
members denoted by 21, 22, and 23, termed ’climatology ensemble’ and shown by black lines, have initial conditions
generated from consecutive days of the spin up run. Member denoted by < is the climatology ensemble average. The
forecast members 5 1, 5 2, and 5 3 are shown in red lines and their initial conditions are generating from corresponding
climatology members by perturbing them away from <. The running window is shown in green color. Shannon
entropy is applied to values of < inside the running window. Mutual information is found for values of a forecast
member and < inside the running window.

Each climatology ensemble member is forced in the same way, but each has realistic initial

conditions chosen from consecutive days selected from the spin-up run before the simulation start
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day (Smith et al., 2007). This method of building a climatology ensemble is perhaps unfamiliar

to some readers, and differs from the typical average across multiple years of simulations (where

the climatology is across varying forcing, rather than varying initial conditions). To create a larger

contrast, the same initial conditions were perturbed by tripling the anomaly of each climatology

ensemble member from the climatology ensemble mean. This second ensemble of enhanced initial

conditions are called the “forecast ensemble”, and the same number of members are in the forecast

and climatology ensembles (7 in JF and 10 in JA). The forecast ensemble members by design have

bigger spread in their initial conditions than the climatology ensemble. As each ensemble contains

both forced and internal variability, it was not sufficient to have only one forecast represent the

“climatology”, but rather a mean over an ensemble of realistic initial conditions serves as a better

reference climatology. Furthermore, it is potentially undesirable to compare a single climatology

run versus an ensemble mean of forecasts–care is needed to compare ensemble means versus

ensemble means (the approach here) and individual simulations versus individual simulations.

However, comparing the individual models within the ensembles is used to formulate a range

of possible predictability timescales, and comparing individual members with other individual

members yields similar results to the ensemble versus ensemble comparison method used primarily

here.

Model data is saved in 2 hour window time averages. The granularity is needed to capture the

strong tidal variability in this region. Thus each day has 12 data points for all the variables and for

all the ensemble members. Predictability analysis is performed for 3 types of data: 1) Timeseries of

volume-weighted averages of variables (temperature, salinity) over the 7 zones shown in Figure 2.5,

2) Predictability of kinetic energy using spatial data over 7 zones, and 3) Predictability of timeseries
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for a grid point closest to a moored observation. Thus, the effects of predictability on different

variables or different levels of averaging is illustrated.
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Figure 2.5: Narragansett Bay has been divided into 7 zones. Volume weighted temperature and salinity has been used
from each zone to find predictability timescales.

The number of ensemble members is justified by deciphering whether external forcing (wind,

tidal, river runoff, and evaporation/precipitation) or internal chaos (nonlinearities, eddies) is setting

the trend for evolution of state parameters in the ensemble mean. The methodology of Llovel et al.

(2018) and Leroux et al. (2018) is used as a guide. The ratio of “noise” to signal with respect to

time was found, where noise is taken as the standard deviation of the model spread and signal is the

mean over the ensemble. Let f be the standard deviation of q=
8
, which is also same as the model

spread. The ratio f8/〈q〉8 remains less than 0.5 within the predictability window and below 0.1

after crossing predictability time scale. Llovel et al. (2018) state that a noise to signal ratio of less

than 0.5 is sufficient so that external forcing is dominant in setting the ensemble mean variability

over internal chaos, indicating also that model trend is captured sufficiently with this number of

ensemble members. An upcoming companion paper by the authors (Sane et al., 2021) expands on
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the approach of Llovel et al. (2018) using information theory techniques to quantify forced versus

internal variability even for non-Gaussian and non-independent datasets.

Let a variable in the climatology ensemble be given by 2=
C,8

where C denotes time, 8 denotes

spatial grid-point, and = is the ensemble member. Similarly, a variable in the forecast ensemble

is 5 =
C,8
. The information entropy metrics have been calculated between forecast and climatology

using two approaches: 1) Between running time windows (probability distributions of variability

in C) of spatial volume weighted averaged data (i.e., averaged over 8) in a zone or at an observation

location, and 2) examining the covariability of spatial grid points (probability distributions based

on 8) within a zone at a fixed time. The advantage of the former is that it more naturally describes

the evolution of slow variations over large regions of the Bay, while the latter can be used for very

rapid convergence of variables with shorter predictability timescales.

The first approach, which uses a runningwindow, is primarily used for evaluating predictability

of temperature and salinity. First, data is averaged (volume weighted) over each zone. Hence,

Σ8

[
2=
C,8

d+8
]
/
(
Σ 9d+ 9

)
= 2=C and Σ8

[
5 =
C,8

d+8
]
/
(
Σ 9d+ 9

)
= 5

=

C with the over-bar representing volume

weighted average over a zone (d+8 is the volume associated with each gridpoint). Next, the ensemble

mean of all climatology members was found, given by 〈2〉C = (1/#)
∑#
==1 2

=
C where the angle

brackets represent ensemble average. < fromFigure 2.4 is equal to 〈2〉C=0. A runningwindowof size

g is selected and a histogram of values inside the running window is used to estimate the probability

distributions of the climatology and forecasts, from which � ( 5 ; 2)=C is calculated over the time

interval with climatology spanned by end members (〈2〉C , 〈2〉C+g) and forecast variability
(
5
=

C , 5
=

C+g

)
according to Equation 2.2. Shannon entropy � (2)=C is also calculated from these histograms for

(〈2〉C , 〈2〉C+g) according to Equation 2.1. The predictability time is taken to be when the mutual
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information averaged over the forecast ensemble � ( 5 ; 2)C = (1/#)
∑#
==1 � ( 5 ; 2)=C reaches 90% of

the climatology ensemble mean Shannon entropy 〈� (2)〉C . The resulting timescales are tabulated

in table 2.1. The uncertainty range (square brackets in table 2.1) for the timescale is estimated

by repeating the above procedure # times replacing 〈2〉C with each of the climatology ensemble

members 2=C . Results for a typical zone, Zone 6, are shown in Figures 2.6 and 2.7. Predictability

time scale obtained by comparing forecast ensemble members to the single unperturbed member

from the climatology ensemble were similar to when compared with the mean of climatology

ensemble (see Figures S26-S32 in supplemental information). Comparing climatology ensemble

members with the single unperturbed climatology member also gave similar results (see Figures

S33-S39 in supplemental information).
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Figure 2.6: Predictability results for Zone 6 volume-averaged temperature (c) and salinity (d) in January to February.
Top: Temperature (a) and salinity (b) timeseries from ensemble members is plotted for 7 climatology ensemble
members (in black) and 7 forecast ensemble members (in red). Bottom: Information theory metrics (temperature
(c) and salinity (d)) shows the convergence of mutual information (blue) with Shannon entropy (pink). The blue
range indicates the forecast ensemble and the blue line is the forecast ensemble mean. The Shannon entropy of the
climatological mean is shown at the top of the pink range and 90% of this value is shown as the bottom of the pink
range. The mutual information converges to 90% of the Shannon entropy in 7-40 days (Table 2.1). Figures S14 to S19
in the supporting information show similar plots for other zones.
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Figure 2.7: Predictability results for Zone 6 volume-averaged temperature (c) and salinity (d) in July to August. Top:
Temperature (a) and salinity (b) timeseries from ensemble members is plotted for 10 climatology ensemble members
(in black) and 10 forecast ensemble members (in red). Bottom: Information theorymetrics (temperature (c) and salinity
(d)) shows the convergence of mutual information (blue) with Shannon entropy (pink). The blue range indicates the
forecast ensemble and the blue line is the ensemble mean. The shannon entropy of the climatological mean is shown
at the top of the pink range and 90% of this value is shown as the bottom of the pink range. Figures S20 to S25 in the
supporting information show similar plots for other zones.

Figure 2.8 shows a similar method of estimating predictability at a single grid point near the

Mount Hope Bay (MtHB) buoy, which follows the same algorithm but without spatial averaging.

The running window method is useful when the time interval under consideration is long enough

to provide a reasonable histogram approximation of the temporal probability distribution. The

histogram intervals and bin sizes were chosen for each case such that the predictability time period

is not sensitive to variations around those values (overly small or large choices show significant

dependence on choices of binning and duration). The predictability timescale remains more

sensitive to g than the number of bins. While entropy and mutual information are both sensitive

to data binning and duration choices, the timescale for mutual information to converge to Shannon

entropy is less sensitive for the selected bin sizes and duration.
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Figure 2.8: Surface temperature (a) and salinity (b) predictability metrics during July-August at one grid point closest
to Mount Hope Bay (MtHB) buoy as shown in Figure 2.2. Information theory metrics for temperature and salinity are
shown in c and d respectively. Surface temperature at this location is predictable for 27.4 [13.7 - 27.4] days and surface
salinity is predictable for 18.5 [8.3 - 19.5] days. Figure S13 in the supporting information shows bottom temperature
and salinity predictability.

For the above method to work, the running window should have reasonably enough number

of points to make a probability distribution. Also the running window should be of smaller size

than the predictability time scale to effectively find the predictability time scale. This works for

temperature and salinity, but for kinetic energy a different approach is needed because predictability

time scale is less than a couple of days so enough data points are not available on volume weighted

time series signals. So a different approach is employed which uses values of all the grid points at a

particular instant of time on the spatial grid to create probability distributions by finding frequency

of occurences. The second spatial variability method evaluates entropy using all spatial grid points

within a zone. Let / be the set of all grid points in a zone. � ( 5 ; 2)=C is evaluated from Equation 2.2

between the spatial histograms estimating the probability distributions of 〈2〉C,8∈/ and 5 =C,8∈/ . � (2)
=
C

is evaluated using Equation 2.1 for 〈2〉C,8∈/ . This approach eliminates the need for time windows by
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comparing the spatial variation between the forecast and climatology ensemble mean. Figure 2.9

shows the short predictability window of kintic energy.
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Figure 2.9: Kinetic energy predictability is less than 2 days for Zone 6 for July-August. In this case, the spatial
variability metric was used as the predictability timescale was shorter than the running time windows. Using all the
spatial grid points instead of the volume weighted time series provides enough sample points to create a probability
distribution, and is also sensitive to convergence in higher-order statistics beyond the spatial mean. Alternatively, very
frequent output windows in time could have been used with the time window method, but this method was chosen to
illustrate the possibilities when initial condition effects are quickly lost and there is rapid convergence to climatology.
Kinetic energy results for other zones is similar and are given in supporting information Figures S7 to S12.

Both the running window and spatial variability approaches use data without fixed references

and are non-parametric. The data is not assumed to be Gaussian or any other distribution and hence

our approach is robust towards all kinds of probability distributions, so long as the sampling is

such that the histograms are an accurate representation of the probability distributions. Likewise,

the method measures variability by the same units of measure in the forecasts and climatology, so

the units or standards of measurement are consistent regardless of whether physical, biological,

environmental, or other metrics are chosen.
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2.5 Results

2.5.1 Predictability results

Figures 2.6 and 2.7 show typical temperature and salinity results, drawn for both seasons from

Zone 6. Other zones are similarly illustrated in the supplementary material. In each figure, the

first row shows a timeseries comparison between the climatology ensemble (black) and forecast

ensemble (red). The second row has information theory statistics, which permit a more precise

time of convergence than just comparison of the timeseries in the upper row. Magenta shows

� (-) and the range of � (G)=, the entropy of 2C,8, blue members represent � (-;. )= and single blue

line between blue shaded region is the average � (-;. ) over all the � (-;. )=. Table 2.1 has the

predictability timescales and uncertainty range. Results for each zone from 1 to 7 and combinations

of zones which progressively increase in volume from North to South are tabulated in Table 1.

The combined zones enable us to compare the predictability time scale with flushing/turnover time

scales evaluated over similar combined regions measured by distance from the northern end of the

estuary to the southern end (Figure 2.10).

Table 2.1 compares the predictability timescales by region and season. The summer timescales

tend to be longer, reflecting the typically drier conditions during summer of the year simulated. The

timescales for salinity tend to increase as more and more of the Bay regions are included, indicating

that anomalies persist somewhere within the Bay after initialization. For regions within the Bay,

local circulations and patterns of mixing differ among the different regions, but few clear patterns

emerge. Overall, the span of timescales is from 6.9 days to 40.5, indicating that predictions of a

week or longer may potentially have skill, and that 1-2 months of spinup is necessary for initial
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Table 2.1: Predictability in days for January-February with respect to zones for temperature and salinity based on
when mean mutual information between ensemble members and climatology reaches 90% of climatology’s Shannon
entropy for the first time. The range is estimated by the range over each of the member of the climatology ensemble. 1
to 5 implies all the zones consolidated from 1 to 5 and similarly for 1 to 7.

zones January-February July-August
Temp.Pred.(days) SalinityPred.(days) Temp.Pred.(days) SalinityPred.(days)

1 36.5[36.2-37.2] 7.3[6.9-7.7] 10.2[9.1-10.6] 9.4[9.1-9.9]
2 14.2[12.1-14.3] 10.5[9.4-11.0] 10.3[9.3-33.0] 27.7[26.6-29.0]
3 11.5[11.5-12.0] 18.3[18.3-19.0] 16.4[16.0-27.4] 23.8[22.1-26.3]
4 13.0[13.0-14.9] 16.9[16.7-17.0] 22.5[21.1-31.5] 31.5[31.4-32.5]
5 11.9[11.7-13.0] 16.9[16.8-17.1] 9.6[9.5-23.0] 18.5[16.6-31.2]
6 30.2[30.0-33.8] 21.9[20.1-23.0] 17.8[17.3-27.0] 23.0[22.9-24.5]
7 14.9[14.1-28.7] 25.5[19.0-26.7] 22.5[20.4-31.0] 10.0[9.0-10.3]
1 to 2 15.0[14.2-33.5] 9.5[9.3-9.5] 23.4[22.3-34.2] 24.8[22.1-28.1]
1 to 5 11.8[11.7-29.8] 17.1[17.1-17.6] 10.0[10.0-26.2] 29.4[29.4-30.6]
1 to 7 14.0[13.2-29.7] 17.0[17.0-18.0] 32.6[18.4-40.5] 31.4[31.4-32.6]

condition effects to be lost and for forcing to become dominant.

Figure 2.8 shows an example of temperature and salinity predictability for a single grid point,

for a location nearest to the Mount Hope Bay buoy (MtHB in Figure 2.2). Perhaps counter to intu-

ition, the central predictability timescale estimates (temperature: 27.4 [13.7 - 27.4] days; salinity:

18.5 [8.3 - 19.5] days) is quite long for this one gridpoint in comparison to the predictability of the

whole Zone 5 that contains it (Table 2.1 and Supplementary figures; zone-averaged temperature:

9.6 [ 9.5 - 23.0 ] days; zone-averaged salinity: 18.5 [ 16.6 - 31.2 ] days), but note that the estimated

ranges are consistently overlapping. There are many processes which would increase the amount

of internal variability at a single location, such as meandering currents, waves, and other effects

of flow-topography interaction. Thus, the predictability of an individual measurement location

need not agree with the predictability of the region containing it, because of this internal variability

would be missing from the zone averages. However, in this case and indeed for all of the monitoring

buoy locations shown in Figure 2.2, the buoys are deployed deliberately in locations thought to be
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representative of their section of the Bay rather than within a particular feature such as a regular

plume or jet. Thus, the agreement in predictability timescales is perhaps not coincidental, but

reflects judicious choices for observational advantage. Presenting results at this single location

highlights the possibility of evaluating predictability metrics at one location, not just in regional

averages, and the potential reasons why these two approaches may differ.

Likewise, predictability is not limited to temperature and salinity. The predictability of kinetic

energy is shown in Figure 2.9 for Zone 6 and is less than 2 days. The mutual information converges

towards Shannon entropy within a very short period, and the alternative method of calculating the

probability distribution using spatial variability is needed. As will be shown in the next section,

there is consistency between the timescales of freshwater and salinity flushing and predictability

timescales, which argues that the estuarine circulation tends to dominate these tracers. However,

anomalies in the kinetic energy within a region are much more quickly generated (by winds and

instabilities) and dissipated (by viscous and drag parameterizations) in the OSOM, and so the

predictability timescale is one to two orders of magnitude shorter for kinetic energy than for

temperature and salinity. Thus, the kinetic energy example illustrates that it is important to evaluate

predictability on eachmetric of forecast interest. The next section explores the physical implications

of the predictability timescales in comparison to flushing timescales.
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2.6 Turnover timescales

The turnover or flushing time scale is the time scale required for replenishment of a particular

water mass in the estuary, based on its rate of resupply or removal. For a water mass having

a volume + and volume flux rate &, the flushing time scale is simply g = +/& (e.g., Monsen

et al., 2002; Rayson et al., 2016). In the present study the freshwater turnover/flushing time scale

and the salinity turnover time scale are calculated from the model output and compared with the

predictability time scales. The approach here follows Lemagie and Lerczak (2015) in comparing

estuarine timescales by standard definitions, except here the estuarine timescales are also compared

with the predictability timescale.

The freshwater volume is estimated using the relation

+ 5 =

(
1 − B

B>

)
+1, (2.3)

where + 5 is the freshwater volume, B is the volume weighted average salinity of the Bay, B> is

the salinity of the open ocean or the salinity of the incoming volume flux in the region under

consideration, and +1 is the volume of the Bay. The freshwater flushing time scale is

g 5 =
+ 5

&A
, (2.4)

where &A is the river supply and runoff.

The salinity turnover timescale follows the isohaline procedure of MacCready (2011). The

fluxes of saline water masses are calculated for each salinity class. Let &(B) be tidally averaged
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Figure 2.10: Figure a: Freshwater flushing timescales, salinity turnover timescales, and salinity predictability
timescales for July-August as a function of distance from the northernmost extent of Narragansett Bay. Blue boxes show
the salinity flushing timescale (Equation 2.8). Circular scattered points show the freshwater flushing time estimated
from freshwater volume and divided by river input (Equation 2.4). Different colors show averages over different periods
within July - August. For comparison, the salinity predictability time scale is shown by red crosses, for Zone 1 and
then the combined regions (1 to 2, 1 to 5, 1 to 7). These salinity predictability time scales are the same as shown
in the last three rows of Table 2.1. Figure b shows the control volumes chosen to calculate freshwater and salinity
flushing timescales. The control volumes have been marked from i to viii and the corresponding freshwater and salinity
timescales have been shown in the left Figure.

salinity flux corresponding to salinity B and be given by:

&(B) =
〈〈∫

�B

D d�
〉〉
. (2.5)

where double angled brackets denote temporal filtering over a tidal period with a Butterworth filter.

�B is the cross sectional area having salinity greater than B. &(B) is the salinity flux for the salinity

belonging in the range (B, B<0G). &(B) is evaluated laterally at a vertical cross section along the

estuary, beginning at the north and proceeding south. The flux moving in, &8= and moving out,
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&>DC , of the estuary is calculated using an integral over the salinity classes:

&8=,>DC =

∫
m&

mB

����
8=,>DC

3B , (2.6)

where “in” and “out” are evaluated on the basis of the sign of the integrand. MacCready (2011)

defines the fluxes as total exchange flow (TEF). The TEF relates to corresponding salt fluxes of

�8=,>DC =

∫
B
m&

mB

����
8=,>DC

3B . (2.7)

The MacCready (2011) approach results in the salinity turnover timescale of

gB =

∫
B3+

�8=
. (2.8)

Using above definitions, g 5 and gB have been found by considering a control volume with

one end fixed at the mouth of Providence river at the northernmost end of NB and the other end

gradually increasing towards the South. Figure 2.10b shows the control volumes marked from i to

viii used to calculate the flushing time scales. The intention is to estimate these timescales in order

to check whether they agree with predictability timescales. The time scale results are displayed

in Figure 2.10 by using circle and triangle markers along with predictability timescales for the

corresponding regions. The y-axis is the distance from the north of the Bay to the south end of each

control volume. So for each point in the Figure 2.10a shown by circle or trianglemarker, the flushing

time calculated is for the entire corresponding region as shown in Figure 2.10b. This includes the

rivers as source of freshwater flux and the South end of each control volume acts as “open ocean”
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for that control volume. The x-axis provides the ranges of timescales. The predictability time

scales shown by red crosses are for consolidated regions. For example, 1-5 means all the regions

1,2,3,4,5 as shown in Figure 2.5. The predictability timescales are consistent in magnitude with the

various flushing timescales and increase as the quantity of the Bay in the control volume increases

(although somewhat less rapidly with distance). Four time periods are shown by colors–early and

late for July and August–illustrating that the flushing timescales vary significantly (with the amount

of precipitation, mainly).

2.7 Discussion

The predictability timescales measure the persistence of statistical anomalies deviating from

climatology that stem from the initial conditions. These anomalies might be detected to decay,

through information theory metrics, by a variety of processes: tidal or wind-driven mixing, being

carried out of the Bay by advection, or becoming so well stirred by turbulent motions that they

no longer persist as statistical anomalies. The consistency between the salinity and temperature

predictability timescales and the salinity flushing timescales illustrates that it is likely that these

anomalies are removed from the Bay primarily by the estuarine circulation whose timescale is

estimated with the variety of flushing timescales shown. Even pointwise measurements tend to

agree with their zone-average prediction timescale (Figure 2.8), which indicates that the anomalies

in OSOM temperature and salinity tend to be fairly mixed over broad areas, so that regions and

buoys capture much the same information. It is not clear if this is true in the real Narragansett

Bay to the same degree, but the consistency in the degree of variability between the modeled buoy

locations and the buoy observations (Figure 2.3) suggests that this may be.
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We believe that 3 out of 4 predictability times are longer than either turnover time because the

flushing times assume inputs and outputs interact with a volume of well-mixed estuary, whereas the

predictability time scale measures the persistence of statistical anomalies in the domain considered.

The latter may be subject to statistics emanating from lingering water masses from recirculations

or slowly-mixed regions within the estuary.

The predictability timescale of kinetic energy is one to two orders of magnitude shorter than

that of temperature or salinity (Figure 2.9). This suggests that kinetic energy in NB is not governed

solely by the estuarine overturning. Indeed, NB and the OSOM are highly tidally-driven – with

the majority of the kinetic energy involved in the ebb and flow. Apparently, the propagation of

the tidal energy into the Bay through waves, winds, currents, dissipation and drag, and generally

perturbations to the surface elevation and kinetic energy, are a rather different set of processes

operating on very different timescales from the estuarine overturning that transports the salinity

and temperature anomalies and their predictability.

2.8 Conclusions:

This study has introduced the Ocean State Ocean Model (OSOM) and measures of its in-

trinsic timescales. The predictability timescales range from 6.9 to 40.5 days for temperature and

salinity. The predictability timescales differ for different periods of the year and the region under

observation–with generally longer periods for the larger basins and under drier conditions. These

relationships are consistent with the expectations of estuarine circulation dominating the flushing of

anomalies in salinity and temperature, and these predictability timescales are quantitatively similar

to the range of estimates of flushing timescales.
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Information theory proves useful for quantifying predictability. It can also be applied to other

variables such as physical, biogeochemical, and environmental metrics that are being considered for

forecasting with the OSOM. Not all variables have the same timescales, as some rely on processes

that operate at different speeds.

While it is important to know the predictability timescales for understanding the constraints

on spinning up a model and the potential length of a forecast, it is important to keep in mind that the

skill of a forecast is not simply related to the predictability. Here the model skill is adequate for the

assessment of predictability (Section 2.2.1), but themodel shows skill deficiencies in some locations,

as highlighted here by comparison to observations at the Greenwich Bay buoy (Figure 2.3). Such

biases and errors in a model may not affect the predictability timescale, but they clearly reduce the

value of a forecast. Future work in tuning the model parameterizations and improved forcing will

increase model skill but are not expected to change the predictability. A higher-resolution version

of the model is expected to have better skill and lower biases, but the stronger chaotic transport and

resolved eddying features in such a model are likely to decrease the predictability timescale (by

increasing internal variability). This is one key reason why predictability metrics are not an aspect

of Narragansett Bay itself, but only of this particular model: the OSOM.

In the case of temperature and salinity predictability in theOSOM, forced estuarine circulations

tend to set the dominant timescales. Knowing this is useful in estimating forecast windows, spin

up times, and sensitivity to forcing variability. Other systems, and perhaps the kinetic energy in

this system, are dominated by internal variability rather than forced variability. A companion paper

(Sane et al., 2021) expands on this topic for coastal modeling, where a variety of different boundary

forcing mechanisms can contribute.
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Abstract

We demonstrate the use of information theory metrics, Shannon entropy and mutual informa-

tion, for measuring grid-pointwise internal and forced variability in ensemble atmosphere, ocean, or

climate models. This metric differs from the standard ensemble-variance approaches and delineates

intrinsic and extrinsic variability. Information entropy quantifies variability by the size of the visited

probability distribution, as opposed to variance that measures only its second moment. Shannon

entropy and mutual information manage correlated fields, apply to any data, and are insensitive to

outliers as well as a change of units or scale. In the first part of this aricle, we use an example

featuring a highly skewed probability distribution (Arctic sea surface temperature) to show that the

new metric is robust even with a sharp nonlinear cutoff (the freezing point). We apply these two

metrics to quantify internal vs forced variability in (1) idealized Gaussian and uniformly distributed

data, (2) an initial condition ensemble of a realistic coastal ocean model, (3) the GFDL-ESM2M

large ensemble. Each case illustrates the advantages of the proposed metric over variance-based

metrics. The metric can be applied to any ensemble of models where intrinsic and extrinsic factors

compete to control variability and can be applied regardless of if the ensemble spread is Gaussian.

In the second part of this article, mutual information and Shannon entropy is used to quantify

the impact of different boundary forcing in a coastal ocean model. Information theory is useful

as it enables ranking the potential impacts of improving boundary and forcing conditions across

multiple predicted variables.
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3.1 Introduction

In an ocean or climate model, it is pertinent to understand the cause of variability as it leads

to implications for predictability, prioritization of data collections for assimilation, and provides an

understanding of the dynamics at play in different regions. In a coastal model, variability can arise

from extrinsic factors such as wind forcing, solar and thermal forcing, tides, rivers, evaporation

and precipitation, or it can be due to internal chaos inherent to the governing fluid equations (Sane,

Fox-Kemper, Ullman, Kincaid, and Rothstein, Sane et al.). In a climate model, modes of variability

such as El Niño, the North Atlantic Oscillation, or the Southern Annular Mode, can conceal or

delay the emergence of attributable anthropogenic climate change signals (Milinski et al., 2019).

In high-resolution ocean models, internal chaos or intrinsic variability can also be due to eddies

(Leroux et al., 2018; Llovel et al., 2018). Accurately quantifying the relative contribution of external

and internal factors can help in elucidating the causes responsible for the observed variability in

models, help to identify key observable metrics, and help quantify concepts such as the time of

emergence of climate signals (Hawkins and Sutton, 2012).

Numerous methods exist in the literature to quantify intrinsic and extrinsic variability using

models or observations (e.g., Frankcombe et al., 2015; Schurer et al., 2013; Liang et al., 2020).

Model ensembles–i.e., a set of simulations sharing the same forcing–naturally vary because each

ensemble member follows the same governing equation (with same external forcings) with identical

or similar parameterizations but differ due to intrinsic chaos. Two types of model ensembles are

common: initial condition ensembles (where the same model is used repeatedly with perturbed

initial conditions and intrinsic variability occurs from model’s chaotic sensitivity to the initial

conditions), and multi-model ensembles (where a variety of models differing in numerics and
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parameterizations are used to simulate change under the same forcing–in this case “intrinsic”

variability also includes aspects of model formulations). Most of the discussion here will focus on

initial condition ensembles, but the metrics proposed can be adapted to both cases.

To help visualize variability, a generic output from an ocean or atmospheric model is shown

in Figure 3.1. Each color represents a different ensemble member and the black solid line is the

mean of those members. The black solid line is the signal mostly due to extrinsic factors (aside

from finite ensemble size limits) and the model spread (schematized by the double-headed magenta

arrow in Figure 3.1) can be considered due to intrinsic variability or internal chaos.
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Figure 3.1: A sketch of a typical ocean or climate model output for an arbitrary variable. Each ensemble is shown in
different color and the mean of the ensemble is shown as black line. The ensemble mean can be considered to be the
trend set by external forcings. The model spread shown by double headed magenta arrow indicates the model chaos.

One method of quantifying intrinsic and extrinsic variability is to look at variances (second

central statistical moment) of model spread and model mean (Leroux et al., 2018; Llovel et al.,

2018; Waldman et al., 2018; Yettella et al., 2018). Variance is sufficient to constrain all metrics of

variability about the mean when distributions are Gaussian and uncorrelated, but a single statistical

moment usually measures only part of a more complex variability. Many climatological variables

show non-Gaussian distributions (e.g., Franzke et al., 2020). In fact, generalized variance might
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be misleading (Kowal, 1971). Quantification of variability should be robust to or have known

dependence on changes in the units of the quantity or the scale (e.g., changing temperature from

Celsius to Fahrenheit or Kelvin). Comparative metrics, such as intrinsic vs. extrinsic variability

should not depend on these arbitrary choices of units at all.

Variability, in essence, is a function of the number of occurrences or frequency of occurrence

(or probability ?8 as a fraction over all visited system states) after appropriately binning the data

(and thereby making the estimated and visited number of states finite rather than continuous).

Information entropy metrics measure variability by taking into account the probability distribution

of the binned data, drawing on the statistical mechanics concept of entropy in quantifying the

number of microstates that a variable can occupy. The fundamental measure in information theory

is the Shannon (1948) or information entropy which characterizes the amount of variability in a

variable (Carcassi et al., 2019). The mutual information, another metric introduced by Shannon

(1948), measures how much information one variable contains about another variable.

Information theory is applied in signal processing, computer science, statistical mechanics,

quantum mechanics, etc. It is used to quantify amount of information, disorder, freedom, or lack

of freedom (Brissaud, 2005). The application of these abstract notions to geophysical flows can

have immense practical benefit when information entropy is interpreted as a measure of variability,

as entropy does not rely on any particular parametric probability distribution. Metrics from

information theory are not new to climate sciences. They have been introduced in predictability

studies, evaluating the skill of statistical models, as well as uncertainty studies (e.g., Leung and

North, 1990; Schneider and Griffies, 1999; Kleeman, 2002; DelSole and Tippett, 2007; Majda and

Gershgorin, 2010; Stevenson et al., 2013) and recently in studying variability (Gomez, 2020) and
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coastal predictability (Sane, Fox-Kemper, Ullman, Kincaid, and Rothstein, Sane et al.).

In this article we bring well-established concepts of information theory to the particular appli-

cation of measuring intrinsic and extrinsic variability for ensemble model runs within atmospheric

and oceanographic modeling. Our metric uses Shannon entropy and mutual information. We

indirectly employ conditional entropy, which depends on Shannon entropy and mutual information.

To keep the metric intuitive, we have used Shannon entropy and mutual information and not casted

it using conditional entropy.

There are two parts to this article. In Part 1, we apply our metric on three sets of data: 1.

Idealized Gaussian and uniformly distributed arrays with specified correlation 2. Ensemble output

of a regional coastal model (OSOM) (Sane, Fox-Kemper, Ullman, Kincaid, and Rothstein, Sane

et al.) where most variables are non-Gaussian. 3. The GFDL-ESM2M Large Ensemble (Rodgers

et al., 2015; Deser et al., 2020), hereby referred to as GFDL-LE. This dataset contains historical

and RCP 8.5 simulation data. All the monthly mean data from 1950 to 2100 have been used in the

anaylsis.

In Part 2, we use OSOM to demonstrate the use of Shannon entropy and mutual information in

evaluating the effects of altered boundary forcings. In coastal and estuarine systems, it is pertinent

to know which forcings are dominant. For example, is wind forcing dominant over river forcing,

does using temporal averaged river runoff cause any appreciable changes in the estuarine circulation

or does change in the wind product alter circulation? These questions can be tackled by switching

on and off or modifying each forcing and comparing the predicted variables using information

theory.
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Recent theoretical advances in understanding dynamical systems through the lens of infor-

mation theory relate causality analysis and information transfer (e.g., Liang, 2014). Although

important, the transfer of such theoretical concepts into pragmatic research applications are few.

Even basic concepts of information theory (Shannon entropy and mutual information) have been

adopted in a limited capacity by the oceanic and atmospheric community to address problems aris-

ing in predictability and variability. We attempt to bridge the gap using approximate but practical

framework which can be easily replicated and improved upon in the future, including causality

analysis and the evolution of entropy within modeling systems like those studied here.

3.1.1 Information theory

We will introduce information theory concisely assuming the reader has no background

knowledge–this section contains standard definitions. Consider a probability distribution ?8 ob-

tained after binning data into # bins. The user chooses the appropriate number of bins or bin widths

for the range of data. Shannon (1948) identified the average information content in # possible

outcomes, equally or not equally likely, as given by:

� =

#∑
8=1

?8 log2(1/?8), (3.1)

where � is the Shannon entropy with unit of bits when log is base 2 and ?8 is the probability of

the 8Cℎ outcome. log2(1/?8) measures the information of the 8Cℎ outcome as proposed by Hartley

(1928) and is also a measure of uncertainty (Cover, 1999). The quantum log2(1/?8) measures

the information gained by knowing that the 8Cℎ outcome has happened. Another interpretation for

log2(1/?8) is that it measures reduction in uncertainty by knowing the 8Cℎ event has occurred, or
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that the variable falls in the 8Cℎ bin. The term information does not mean knowledge but it means

the amount of uncertainty shown by a variable or the freedom that a variable has in falling into the

8Cℎ out of the # bins. Shannon (1948) found Equation 3.1 to provide the average information (or

uncertainty) for all events in a record. For the entire set of elements, a highly probable event has

less uncertainty associated with it and low probability event has high uncertainty associated with it.

The prefactor ?8 is thus used to weight the information over all possibilities. One way to interpret

the need for the prefactor ?8 is that in repeated experiments the events with higher probability

will occur more often, hence they should contribute more to a quantification of variability than

infrequent events.

Stone (2015) gives an intuitive way of understanding Shannon entropy using a binary tree.

A binary tree is a tree chart which starts with 1 node and splits to two nodes at each node.

At each node you can take a left or right turn to proceed and if there are say 3 levels in the

tree, then 8 (i.e. 23) outcomes or possible destinations exist. If a binary tree has N equally

probable outcomes then the set of instructions required to reach the correct destination is given by

ℎ = (#) (1/#) log2 (#) = log2 (#). The uncertainty about reaching the correct destination will be

removed by providing log2 (#) bits of information. In other words, if entropy is ℎ then 2ℎ states

are possible.

A second metric from Shannon (1948) which is also extensively used is now known as mutual

information. The mutual information between two signals G and H denoted by � (-;. ) is (Cover,

1999)

� =

#∑
9=1

#∑
8=1

?8 9 log2

(
?8 9

?8? 9

)
, (3.2)

where ?8 9 is joint probability of 8Cℎ outcome of G and 9 Cℎ outcome of H. ?8 and ? 9 is the marginal
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probability of 8Cℎ and 9 Cℎ outcome of G and H respectively. The addendwithin the summations can be

expanded to ?8 9
(
log2

(
?8 9

)
− log2 (?8) − log2

(
? 9

) )
. � can be interpreted as the extra information

in entropy of marginal distributions of G and H over the joint distribution. Mutual information is

symmetric between G and H and is the measure of how much information they share. For example,

if the distributions are statistically independent, then ?8 9 = ?8? 9 and thus � = 0. If the two records

G and H are identical, then ?8 9 = ?8 = ? 9 and � = �. � is the average reduction in uncertainty in

G by knowing H or vice versa. It denotes how much information is transmitted between the two

variables.

In the context of ocean modeling (or in general climate modeling) entropy is used to measure

variability in a model output or available data. This is in tandem with interpretation of Shannon

entropy in physical sciences as given in Carcassi et al. (2019). When calculating the Shannon

entropy we are concerned about the possible states (e.g. the various bins in a histogram) the variable

can (and does) go into while the variable value and its dimensions are of lesser importance. Entropy

metrics measure variability in bits (when logarithm is of base 2) and hence changing the scale, e.g.

switching fromCelsius to Fahrenheit for temperature, does not change the value of variability (under

equivalent binning). Mutual information and entropy are both dimensionally agnostic. They are

also not sensitive to outliers (due to the weighting prefactor) and can capture nonlinear interactions

(Watanabe, 1960; Correa and Lindstrom, 2013) and discontinuous or intermittent visited states.

We will present the effect of correlation and outliers in the sections related to idealized random

vectors.

The following methods and results sections are divided into the two parts of the overall paper

objectives. Part A of both sections are related to evaluating intrinsic and extrinsic variability in
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ensemblemodels. Part B describes the usage of Shannon entropy andmutual information on coastal

regional modeling data to understand and compare effects of using different boundary conditions.

3.2 Methods

3.2.1 Part A: Intrinsic and Extrinsic variability for ensemble data

We perform analysis on each grid point at the ocean surface or ocean bottom. Let a variable

from the ensemble be given by 5 (=, C, G, H) where 5 is the variable, = denotes the index of the

ensemble member and goes from 1 to # , C is the time index and goes from C1 to C" , G, H represents

the spatial grid point at the surface or bottom. At a particular grid point 5 (=, C, G, H) is 5 (=, C). The

total number of ensemble members is # and each member has " time steps. To get the signal due

to extrinsic forcings, the "differencing" approach (Frankcombe et al., 2015) has been followed to

estimate forced response. This approach involves averaging over the ensemble members to derive

ensemble mean (also termed as ensemble mean here). The ensemble mean is given by:

6(C) = 1
#

==#∑
==1

5 (=, C) (3.3)

6(C) is a single time varying signal for each grid point obtained by averaging the ensemble members.

There are potential problems with this assumption such as the model might be sensitive to the forced

signal based on the model’s equilibrium sensitivity as elaborated in Frankcombe et al. (2015). For

a first order approximation, we will asume this as the best estimate of the forced response. Our

metric’s sensitivity to forced responses evaluated from different techniques will be left for future

work. Once 6(C) is obtained, the intrinsic variability can be estimated by subtracting the ensemble
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mean 6(C) from each ensemble member. Ensemble signal, forced response and intrinsic variability

are related by:

5 (=, C) = 6(C) + [(=, C), (3.4)

where [(=, C) is the noise (which differs from ensemble member to ensemble member–i.e., it is

intrinsic variability). Note that the above is at a grid point. [ and 5 are functions of grid points.

In Figure 3.1 a, 5 (=, C) are shown by multi-colored ensemble members. 6(C) is shown by thick

black line. As seen in Figure 3.1 b, 6(C) has a probability distribution shown in grey color and

subsequently has first, second, and possibily higher statistical moments. The grey colored density

histogram shows variability due to extrinsic factors and the pink colored density histogram shows

total variability given by extrinsic and intrinsic factors.

Detrending and evaluating entropies

Analysis has been done with and without detrending the data to understand its impact. For

detrending, a quadratic fit using least squares was found for the ensemble mean at each grid point

and subtracted from all ensemble members and ensemble mean at the same grid point to get

detrended data (e.g. Frankcombe et al., 2015). Detrending will remove some non-stationarity from

the data but will also remove some part of the extrinsic variability. Our aim is not to determine

the forced response, but to estimate the degree of variability contributed by the forced response

(extrinsic response) and intrinsic variability originating from intrinsic chaos. The ensemble mean

6(C) was found at each grid point after detrending. For the non-detrended case, the raw ensemble

simulation data has been used to evaluate 6(C) and [(=, C).

Usually we are limited in the number of ensemble members due to computational costs so
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we perform a jugaad in order to use all the ensemble members at once to evaluate information

entropies. All the ensemble members given by 5 (=, C) are rearranged into a single row vector 5 as:

5 = [ 5 (1, C1), 5 (1, C2), ... 5 (1, C"), 5 (2, C1), 5 (2, C2), ..... 5 (# − 1, C"), 5 (#, C1), .... 5 (#, C")] ,

(3.5)

and 6 is row vector obtained by arranging # copies of 6(C) in the following fashion:

6 = [6(C1), 6(C2), ...6(C"),︸                     ︷︷                     ︸
1

6(C1), 6(C2), ...6(C"),︸                     ︷︷                     ︸
2

... 6(C1), 6(C2), ...6(C")︸                    ︷︷                    ︸
#

] (3.6)

This enables wide sampling and obtains an accurate probability distribution for 5 (assuming

approximate stationarity, or enforcing stationarity by detrending), and enables 6 to be of the same

size as 5 and having the same porbability distribution as that of 6(C). The information statistics

we get at each grid point are time invarient since the complete time series is considered. It is the

user’s choice to choose either the complete time series or a section of it for analysis. We have

chosen the whole time series, as this is a sufficient demonstration of the value of information theory

metrics. A time-evolving analysis raises additional issues about causality and shifting probabilities

distributions of climate states that are not the focus here (Liang, 2013; DelSole and Tippett, 2018).

By using the whole timeseries, we are treating all variability as drawn from the same distribution,

and seek only to associate internal (associatedwith each ensemblemember) and external (associated

with the ensemble mean) sources of variability following Leroux et al. (2018). The timeseries 5

and 6 are both expressed as row vectors of the same size, # × " . This step is crucial as vectors

having same number of elements are necessary to evaluate joint probability distribution. This

enables us to calculate mutual information between 5 and 6.
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Calculating the Shannon entropy of 5 and mutual information between 5 and 6 is not a trivial

task. In fact optimal binning for precise measurement of information entropies is a research topic

in itself. Multiple techniques exist such as equidistant partitioning, equiprobable partitioning, :

nearest neighbour, usage of B-spline curves for binning to name a few (e.g. see Hacine-Gharbi

et al., 2012; Kowalski et al., 2012; Knuth, 2019). For a comprehensive review of the methods

for getting probability distribution see Papana and Kugiumtzis (2008). We have used equidistant

partitioning throughout this article. For the case of GFDL-LE data, there were 1812 time steps

available as monthly averages ranging from the year 1950 to 2100. As per Rice’s rule, 25 bins

are needed for the GFDL-LE data. The bin width, XF, was calculated by dividing the range of

data (maximum minus the minimum value) at the grid point with the least spread. The same bin

width was used for all the grid points for Shannon entropy and mutual information. Equal bin

width was used for the two variables in the joint probability and marginal probability calculation

for mutual information. Maintaining the same bin width and range for all the grid points is crucial

because information entropy strongly depends on the precision with which data is binned. To check

sensitivity of our binning choice, the endpoints of each bin were shifted by XF/2 and results were

compared. For temperature, the raw data gave an error of 0.0473 in W and detrended data gave

error of 0.11. For salinity, the error in W for raw data was 0.017 and for detrended data was 0.02.

Similar analysis for ROMS-OSOM coastal ensemble data gave negligible error for shifting the bin

endpoints. Different binning strategies will be left to be explored for future research.

Proposed metric

Using 5 and 6, we propose the following metric W, which has the same intent as metrics in

(Leroux et al., 2018) to quantify the fraction of variability that is intrinsic, i.e., the typical amount
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that is unique to an ensemble member or statistical instance, but unlike (Leroux et al., 2018) this

metric is built from standard information theory quantities:

W = 1 − � ( 5 ; 6)
� ( 5 ) . (3.7)

� ( 5 ) is the Shannon entropy of 5 , and � ( 5 ; 6) is mutual information between 5 and 6. � ( 5 ; 6)

calculates the contribution of extrinsic signal 6 to the whole ensemble. � ( 5 ) is the total variability

in the ensemble output which is the result of extrinsic and intrinsic factors. The metric W gives the

ratio of intrinsic variability to total variability.

� ( 5 ) and � ( 5 ; 6) are related through conditional entropy by � ( 5 ) = � ( 5 ; 6) +� ( 5 |6) (Cover,

1999). � ( 5 |6) is the conditional entropy1, i.e., average uncertainty about the value of 5 after 6

is known. It is the uncertainty in 5 that is not attributed to 6 but is attributed to noise [. Hence

� ( 5 ) − � ( 5 ; 6) estimates variability due to intrinsic chaos.

Returning to the binary tree analogy, � ( 5 ; 6) would be the set of instructions sent by a source

to reach one among 2� ( 5 ) possible destinations in the presence of noise having � ( 5 |6) entropy.

To capture the entropy in the noisy binary tree, to each of the 2� ( 5 ;6) microstate possibilities noise(
2� ( 5 |6)

)
gets multiplied and the relation becomes 2� ( 5 ) = 2� ( 5 ;6)2� ( 5 |6) .

� ( 5 ; 6) takes into account any correlation or information shared between 5 and 6. This is

vital because even though the model spread [ is being treated similarly to noise added to the mean

signal, it might be that model spread depends on the mean signal. A simple example is if the

model spread is relative (e.g., 10% of the mean signal), rather than absolute (e.g., 2 units), then

1Conditional entropy � (- |. ) is defined by � (- |. ) = ∑
?(G |H)log2?(G |H) (Cover, 1999). It is not necessary to

calculate conditional entropy to arrive at W, but understanding is aided by the expected relation between entropy and
mutual information.
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there is information about the model spread contained in the ensemble mean signal. This situation

is sometimes called multiplicative noise in contrast to additive noise. The nonlinear and chaotic

nature of fluid mechanics often leads the mean flow to amplify the chaotic signal (e.g., eddies) and

thereby result in altered variability statistics. When 5 → 6, then � ( 5 ; 6) → � ( 5 ) = � (6) from

(3.2). This makes W = 0 when there is no intrinsic variability or chaos. When intrinsic chaos fully

dominates the ensemble output, i.e. 5 and 6 are fully decorrelated, then � ( 5 ; 6) = 0 yielding W = 1.

We see that W satisfies the extremes of zero noise as well as total chaos.

Another analogue for a climate system component is a noisy communication channel as given

in Leung and North (1990), where the governing equations of ocean (atmosphere) modeling are

taken to communicate from forcing to response. The extrinsic forcings are inputs to the channel,

the intrinsic chaos is the noise created because of channel’s inherent mechanisms while the outputs

are the ensemble members. A noiseless channel will give W as zero and completely noisy channel

where output is independent of input will yield W as 1.

A seemingly enticing and simpler alternative is W = 1 − � (6)
� ( 5 ) , i.e. just the difference between

ensemble entropy andmean entropy as a ratio with the ensemble entropy. However, this formulation

is incorrect because � (6) does not quantify the contribution of extrinsic factors to the variability

in the ensemble, it only quantifies the variability of the mean. Relatedly, � ( 5 ) − � (6) does not

correctly manage mutual information between the ensemble members and their mean in estimating

the intrinsic variability.

Recently, another alternative was proposed by Gomez (2020): using Shannon entropy directly

as a measure of intrinsic variability. They propose using Shannon entropy of model spread [(=, C)

at each time step normalized by the logarithm of the number of bins utilized. Their metric has
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a lower limit of 0 and an upper limit of 1, where 0 denotes zero noise and hence zero intrinsic

variability and 1 denotes complete intrinsic variability. Again, this metric is similar to W in building

upon information theory, but W takes into account the variability of the ensemble mean, correlations

between the ensemble mean and the intrinsic variability, and it is time invariant. A time dependent

version of W can be made using running time windows instead of the whole time series, but care

in quantifying or controlling for lack of stationarity is needed in this interpretation (DelSole and

Tippett, 2018). The Gomez (2020) metric uses the spread of the ensemble members similar to

measuring Shannon entropy whereas W utilizes, in an abstract sense, the set of instructions required

to choose a destination for the particular variable among the possibile model states.

Variance based metric

A variance based metric as given in (Leroux et al., 2018) has been utilized to compare to our

information based metric. The variance based metric measures intrinsic and extrinsic variability

using the second moment, variance. It involves calculation of the following terms f6 and f[ given

by:

f2
6 =

1
"

C="∑
C=1

(
6(C) − 6(C)

)2
, (3.8)

f2
[ (C) =

1
#

#∑
==1

[(=, C)2, (3.9)

where the overbar denotes temporal averaging. The total variability has been estimated as(
f2
6 + f2

[ (C)
)1/2

. The forced variabilityf6 is equivalent to � ( 5 ; 6), and total variability
(
f2
6 + f2

[ (C)
)1/2
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is equivalent to � ( 5 ). Hence, W is compared with WBC3 given by

WBC3 =

(
f2
[ (C)

)1/2

(
f2
6 + f2

[ (C)
)1/2 (3.10)

3.2.2 Part B

Impact of changes in boundary forcings in coastal models
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Figure 3.2: Flattening process for comparing two dimensional fields using Shannon entropy and mutual information.
As the flattened arrays G1, G2, ... and H1, H2... might not have linear dependence on each other, using linear dependence
measure such as Pearson correlation will yield incorrect results. Mutual information measures nonlinear correlations
and hence captures

Here instead of using the new metric W, we use its components: Shannon entropy and mutual

information individually to compare variability between different simulations. Quantifying differ-

ences because of modifications in the extrinsic forcings may be required for coastal applications

where systems vary predominantly due to external forcings (note that intrinsic variability is less than
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half by bothmetrics in Figure 3.5). For these forcing significance experiments, OSOMwas run after

modifying the external forcings (Table 3.1). OSOM is forced by tides, river runoff, atmospheric

winds and air-sea fluxes, etc. (Full details of the model can be found in Sane, Fox-Kemper, Ullman,

Kincaid, and Rothstein, Sane et al.). For this comparison, we quantify the effects of altering forcing

on 4 modeled variables: sea surface temperature and salinity, and bottom temperature and salinity.

Four altered forcing setswere utilized, beyond set (1) Full set of atmospheric forcings using theNorth

American Mesoscale (NAM) analyses, a data-assimilating, high resolution (12 km) meteorolog-

ical simulation (https://www.ncei.noaa.gov/data/north-american-mesoscale-model/

access/historical/analysis) denoted as FF. FF stands for full forcing. (2) Full set of at-

mospheric forcings but using the Northeast Coastal Ocean Forecast System (NECOFS) winds

(Beardsley and Chen, 2014) instead of NAM, denoted as NECOFS. (3) River flows are replaced

with their monthly-averaged flow, other forcing as in FF (4) River flows set to zero, other forcing

as in FF. (5) Wind forcing set to zero, other forcing as in FF. These forcings have been tabulated

in Table 3.1. The aim is to quantify the effect on total variability by removing or altering one of

many processes which might contribute.

Forcing Set Wind forcing River forcing
FF NAM As Observed
NECOFS NECOFS As Observed
MR NAM Time-averaged
ZR NAM Zero river input
ZW Zero winds As Observed

Table 3.1: Different types of forcing combinations employed to test their effect on variability. FF stands for full
forcing: winds, tides, rivers, etc. For more details see Sane, Fox-Kemper, Ullman, Kincaid, and Rothstein (Sane et al.).
MR: mean rives; ZR: zero rivers; ZW: zero wind.

To evaluate Shannon entropy, the spatial output at a particular instant of time was rearranged

into a row vector by a process called ’flattening’ as shown in Figure 3.2. Land mask points
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were removed. A variable G which is a two-dimensional variable was converted to one-dimension

(flattened) by concatenation. Shannon entropy was found out for the flattened variable at each time

step. Hence we get a time varying entropy of the surface or bottom variable and results for various

types of forcings have been shown in Figure 3.10.

Mutual information was applied between the row vectors. The flattening process is shown in

Figure 3.2. Our focus is towards a pragmatic approach on using information theory for simulation

comparisons. For this article, the evolution of Shannon entropy and mutual information with to

respect to time is not important. But relative comparison between mutual information values is

what we seek. For example, if mutual information of surface salinity between FF and MR is higher

than between FF and ZR, this implies the penalty for using time-averaged river runoff is not as

severe as using zero river runoff. Replacing FF with MR will give better results than ZR. Small

errors in river runoff flow rates won’t cause appreciable changes to surface salinity than using zero

rivers.

3.3 Results

3.3.1 Part A

Idealized Gaussian Arrays

We test our metric, W, Equation 3.7 on synthetic data consisting of idealized arrays of Gaussian

data: N(0, 1). For a normal Gaussian distribution Shannon entropy depends2 only on the standard

2� = log2 2c4f2 is the Shannon entropy of a Gaussian distribution when probability density is continuous with
f as standard deviation. The Shannon entropy of a discrete probability distribution differs, which is inconsequential
here but the reader is encouraged to read Jaynes (1962). Consistently here discretely sampled and binned probability
distributions are obtained directly from data without any further parameterization.
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deviation f i.e. � = log2
(
2c4f2) . The variability in a Gaussian distribution can be increased or

decreased by changing its standard deviation. Our goal is to compare W and WBC3 . We set out our

numerical experiment as follows: we create 10 arrays, each having 10,000 elements drawn from a

Gaussian distribution. Any two arrays from those 10 have a prescribed linear Pearson correlation

coefficient from 0 to 1.

Thus, the 10 arrays covary linearly with a specified correlation coefficient. These 10 arrays

represent each of 10 ensemble members from climate simulations. The mean of 10 members gives

us the synthetic forced variability signal as would be determined from the model output; averaging

over the 10 ensemble members reduces the contribution from uncorrelated variability and reaffirms

the covarying component into the forced variability. We apply W and WBC3 on this synthetic ensemble

by varying the prescribed correlation coefficient from 0 to 1. Figure 3.3 shows that as expected

both metrics increase as the correlation decreases, i.e., as internal variability dominates forced.

Both metrics behave similarly when correlation decreases, i.e. noise increases but W is more

sensitive as correlation tends to 1. This distinction is due to the logarithmic nature of Shannon

entropy for Gaussian distributions–in essence, information measured in bits is not proportional to

distance measured between distributions in terms of summed variance–in the examples following

the consequences of this distinction will become clearer. Critically both functions are monotonic

with correlation, however so relative comparisons (more intrinsic fraction in this region vs. that

region) are preserved.

A second related experiment was derived from the first is also shown in Figure 3.3: adding

outliers outside of the Gaussian distribution. 50 out of 10000 elements of each individual member

were artificially corrupted (values were set to a constant value of 5) to test the sensitivity of both the
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metrics. Figure 3.3 shows that W is insensitive to outliers while WBC3 is not. W is not sensitive because

outliers occur less frequently and hence do not affect the probability distribution much, especially

with the prefactor in (3.1) and (3.2). Hence information theory metrics are robust in comparison to

using standard deviation (or variance). If the outliers (extreme events) occur at higher frequencies,

information metrics will naturally start sensing them even if they are discontinuous from the typical

conditions (e.g., multimodal distributions). The above process was repeated for 100 ensemble

members each sampled from Gaussian distributions. Increasing the number of ensemble members

does not change the result qualitatively for both the experiments. The results for 10 members

Gaussian ensemble are shown in Figure 3.3 a and for 100 members are in Figure 3.3 b.

Another set of experiment was done by using Uniform distributed data * (−1, 1). The pre-

scribed correlated vectors were created using the procedure outlined in Demirtas (2014). 10 and

100 ensemble members were created and W and WBC3 was found between the members and their

mean. Results are shown in Figure 3.3 c, d respectively. The outlier had a value of 1.5. In all the

cases, W was less sensitive to outliers than WBC3 .
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Figure 3.3: Information theory metric of intrinsic vs. extrinsic variability W as a function of correlation coefficient in
idealized Gaussian correlated arrays (a and b) and idealized uniformaly distributed arrays (c and d). The horizontal axis
is the correlation coefficient between mean member and ensemble members. The vertical axis shows the information
theory metric W from Equation 3.7 and the traditional metric WBC3 from Equation 3.10. A second related experiment
adding (50 out of 10,000) “corrupted” outliers to each individual member is also shown. The information theory metric
W does not change for these outliers which shows its robustness while WBC3 is highly sensitive. Results are similar for
Gaussian distribution members and uniformly distributed members. W is more sensitive towards linear correlation of
1. This is due to the logratihmic nature of W.

Regional coastal model output

In this section we show the results of applying W and WBC3 on realistic simulation data from

the Ocean State Ocean Model, hereafter OSOM (Sane, Fox-Kemper, Ullman, Kincaid, and Roth-

stein, Sane et al.). OSOM uses the Regional Ocean Modeling System (ROMS) (Shchepetkin and
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McWilliams, 2005) to model Narragansett Bay and surrounding coastal oceanic regions and wa-

terways. OSOM’s primary purpose is for understanding and predictive modeling and forecasting

of the estuarine state and climate of this Rhode Island body. Sane, Fox-Kemper, Ullman, Kincaid,

and Rothstein (Sane et al.) gives more details about the model.

Using OSOM, an ensemble of simulations have been performed using perturbed initial condi-

tions for the months July - August of 2006. This ensemble consists of 10 member ensemble. The

data during the initial predictability window ( 20 days) has been ignored and the rest has been used

to look at variability within the “climate projection” of the model beyond when forecasts sensitive

to initial conditions are possible (see the related application of information theory to assess pre-

dictability in Sane, Fox-Kemper, Ullman, Kincaid, and Rothstein, Sane et al.). We examine whether

the modeled temperature and salinity at each grid point follow normal distributions by evaluating

the skewness and kurtosis of the ensemble mean at each grid point. Figure 3.4 shows skewness and

kurtosis for sea surface salinity and temperature as well as bottom salinity and temperature for the

Narragansett Bay region. The horizontal axis shows skewness and excess kurtosis, which are the

third and fourth statistical moments respectively, normalized by powers of the standard deviation

to dimensionless ratio and in the case of excess kurtosis a constant value of 3 is subtracted. For

Gaussian distributions, skewness and excess kurtosis both should be close to zero. The vertical

axis denotes the number of occurrences at a grid point. Observe that the majority of grid point

values are away from zero. These variables are considerably non-Gaussian in OSOM. Thus, Equa-

tion 3.10 is at a disadvantage, because the prevalence of higher statistical moments implies that the

variance does not contain a complete description of the variability. The information theory metric

Equation 3.7 is suitable for such data as it takes into account higher moments and does not rely on
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Gaussian distributions.

Figure 3.5 shows the ratio of intrinsic variability to total variability applied on every grid point

for OSOM. W is displayed on left whereas WBC3 is shown on right for comparison. The features

highlighted by both metrics are qualitatively different. The contribution of intrinsic chaos to total

variability is more uniform using the W metric than using WBC3 . The intrinsic chaos displayed using

WBC3 might be misleading because the probability distributions are non-Gaussian. Furthermore,

where the W metric highlights internal variability tends to agree in similar dynamical locations–all

river mouths show high surface salinity intrinsic variability. While surface temperature intrinsic

variability is higher in more open regions of the Bay where eddies form intermittently due to

varying topography. Also note that the ranges are quite different between W and WBC3 , but this is to

be expected from the different rate of increase with correlation seen in Figure 3.3.

Figure 3.4: Grid point wise kurtosis for OSOM output. Kurtosis is not closer to zero within (-0.5, 0.5) suggesting the
data distribution is non Gaussian.
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Figure 3.5: Metrics W vs WBC3 for OSOM output. Both metrics show different contribution of intrinsic variability
to total variability. W is more uniform throughout the domain than WBC3 . Colormaps for W and WBC3 are different to
highlight the different ranges each of them have. WBC3 for bottom temperature has maximum value of 5%, and pattern
is almost uniform except at the river sources where values are on the lower side (less than 1%).
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Figure 3.6: Top: Intrinsic to total variability percentage for sea surface temperature. Bottom: Excess kurtosis and
skewness of the ensemble mean of temperature at each grid point. Values closer to zero (within 0.5 of zero, purple
shades) are considered approximately Gaussian. The deviation of ensemble mean away from non normality implies
that the ensemble members are also non normal. The Arctic regions have the most skewness and excess kurtosis
implying non-Gaussian distributions.

Large Ensemble

A complementary experiment was performed by using W to evaluate internal vs. forced

variability in the global climate simulation output for climate change scenario RCP8.5 using the

(randomly selected among the models compared) GFDL-LE model. All the 40 members from the

ensemble were utilized. Variability of sea surface temperature (Figures 3.6) as well as sea surface

salinity (Figure 3.7) were estimated using both W and WBC3 (upper left and upper right). Similar

results were obtained for the detrended data for temperature (Figures 3.8) and salinity (Figures 3.9)

The skewness and excess kurtosis of the ensemble mean were also plotted to find the deviation of

variables away from Gaussian distributions (lower). Regions shaded in purple have low values of

excess kurtosis and skewness and might be considered Gaussian. The detrended data shows higher

83



Figure 3.7: Top: Intrinsic to total variability percentage for sea surface salinity. Bottom: Kurtosis and skewness of the
ensemble mean of salinity at each grid point. Values closer to zero (within 0.5 of zero, purple shades) are considered
approximately Gaussian.

percentage of intrinsic variability than non-detrended data which suggests that detrended might

have removed some poprtion of extrinsic variability.

Note in particular the Arctic sea surface temperatures, which have a highly skewed and

excessive kurtosis distribution due to the freezing point of seawater. The standard metric deems

this region to be among the most intrinsically variable in the world, while the information theory

metric has it as a low intrinsic variability region. It is clear that a Gaussian metric should not be

applied to this region, and the inference is opposite using the two metrics. In the equatorial Pacific

where Gaussian statistics are more reliable, the two metrics agree that internal variability is high.

A less drastic failure occurs from the modest excess kurtosis in extra-tropical temperatures

and in a few isolated regions in surface salinity. These regions are also non-Gaussian, but also are

not heavily skewed (i.e., they are more long-tailed and intermittent than Gaussian). These regions
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Figure 3.8: Top: Intrinsic to total variability percentage for detrended sea surface temperature. Bottom: Excess
kurtosis and skewness of the ensemble mean of temperature at each grid point. Values closer to zero (within 0.5
of zero, purple shades) are considered approximately Gaussian. The deviation of ensemble mean away from non
normality implies that the ensemble members are also non normal. The Arctic regions have the most skewness and
excess kurtosis implying non-Gaussian distributions.

differ in relative estimation of intrinsic versus total variability. It is also the case that the W metric

is closer to one in most regions than WBC3 , which is to be expected when the correlation coefficients

are low from Figure 3.3.

3.3.2 Part B

Impact due to changes in boundary conditions in coastal model:

We show results in Figures 3.10 and 3.11. Entropy has been plotted with respect to time. In

Figure 3.10, Shannon entropy is plotted for spatial quantities. For example, for surface salinity,

all the surface values have been considered to find Shannon entropy using the flattening approach.

Figure 3.11 displays mutual information. It is user’s choice to choose the type of domain, here we
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Figure 3.9: Top: Intrinsic to total variability percentage for detrended sea surface salinity. Bottom: Kurtosis and
skewness of the ensemble mean of salinity at each grid point. Values closer to zero (within 0.5 of zero, purple shades)
are considered approximately Gaussian.

have chosen the same domain of OSOM as shown in Figure 3.5. If Shannon entropy is more or less

equal for two forcings, it implies they similarly affect variability. Mutual information should be

compared for two pairs of forcings. Greater mutual information implies the two pairs share more

bits of information, suggesting one of the forcing in that pair can be replaced with the other without

significantly affecting variability.

3.4 Discussion

Our numerical experiments performed using W on idealized Gaussian arrays show that W is

monotonic and decreases as the linear Pearson correlation coefficient increases. Thus aside from

the qualitative differences the new metric finds when the data are non-Gaussian, the ranges of

intrinsic versus total variability are quite different between W and WBC3 . This is to be expected from
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the different rates of increase with correlation seen in Figure 3.3. Approximately, the traditional

metric falls approximately linearly as the correlation coefficient increases, so that a correlation

coefficient of 0.5 gives a WBC3 just above 0.5. The new metric W agrees with WBC3 that correlation

of 0 implies W = 1, and correlation of 1 implies W = 0, but correlation of 0.5 is closer to W = 0.9.

Only very near correlation coefficients of 1 does W fall below 0.5. If roughly linear dependence on

correlation coefficient is desired, W can be raised to a power–W3 resembles WBC3 and W6 resembles the

correlation coefficient. These higher powers do not lose the ability to apply to non-Gaussian data

nor become non-monotonic, but they will lose their interpretation as a ratio of bits of information

entropy, and instead reflect ratios of bits cubed of information entropy, etc. An alternative is to take

WBC3 raised to a different power: W1/3
BC3

is roughly similar to W.

As can be seen in Figures 3.5, 3.6, and 3.7, information theory metrics show different patterns

as compared to variance. Information theory metrics, especially mutual information, account for

all non-linear shared information between the ensemble members and the mean including linear

correlation, and this is one reason for the differences. We have argued that non-Gaussian statistics

are another (which is not wholly independent of non-linear shared relationships). There are likely

other aspects of differences between these metrics, but the management of these two expected

aspects of geophysical fluids–nonlinear relationships and non-Gaussian distributions–justify the

introduction of the new metric.

For the regional coastal model OSOM, forcings differ as to how they affect different variables.

As might be expected, river runoff is more important for salinity than for temperature. However, re-

placing rivers with the monthly-mean river flow gives nearly the same result (in terms of variability)

as fully time-varying rivers. For the duration considered (July-August), averaging the river runoff

87



gives similar effect for salinity as compared to giving the observed river runoff in the simulations,

see Figure 3.10. Temperature is less sensitive to any of the forcing alterations, because although

temperature and salinity are passive tracers they have different sources and sinks. Switching the

wind product from NAM to NECOFS does not have any significant effect on the sources or sinks of

temperature or salinity, but switching the wind off definitely affects the parameters by eliminating

wind-driven mixing altogether. Figure 3.11 shows that zero wind (ZW) simulations are markedly

different than the rest in terms of mutual information (i.e., they do not covary), although very sim-

ilar in terms of amount of spatial variability (Shannon entropy, Figure 3.10), because even without

winds tides, fluxes, and rivers still vary. The zero river case tends to eliminate both variability and

mutual information (ZR). Please note that our simulations are for July-August, and results might

be different for different season.

If we were to prioritize improvements based on Shannon entropy and mutual information,

note that the two highest mutual information cases are where NAM is substituted with NECOFS

and where mean rivers are substituted for varying rivers. The first observation is important from

a forecast perspective, because it means that we can not easily tell the difference between different

wind products, although something rather than zero winds should be used if the estuary is forecast

out to the full 20 day predictability range (weather forecasts only good out about 7 days in this

region). Similarly, knowing that substituting the mean of the rivers for the fully varying rivers

has little impact implies that rivers can be fixed in time for forecasts beyond where they might be

predicted based on expected weather and precipitation. Finally, despite the fact that Narragansett

Bay is a dominantly tidally-mixed estuary, among the sources of overall variability (i.e., sources

of information entropy) considered, preserving an inflow of fresh water is key, even though that
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inflow can be steady. Winds do not appreciably increase information entropy of the Bay, but they

are an important source of forced co-variation, and so are important for predictions but do not raise

the overall level of variability.

3.5 Conclusion

We have proposed an information theory metric to determine contribution of intrinsic chaos

and external variability to total variability in ensemblemodel simulations. Ourmetric uses Shannon

entropy and mutual information and has several advantages over using only standard deviation (or

variance). We have applied our metric on idealized Gaussian arrays as well as realistic coastal

ocean and global climate model. We conclude that:

1. The new information theory metric is more reliable when outliers are present, because

outliers get assigned less probability and because Gaussian distributions have a difficult time

approximating long-tailed (i.e., outlier prone) distributions.

2. The new information theory metric is more reliable when variability is non-Gaussian because

it is based on non-parametric measures of the probability distributions.

3. The new information theory metric varies monotonically with ensemble member to ensemble

mean correlation, but is quantified in fraction of bits required to capture internal variability

versus bits required to capture of total variability.

4. The use of the information theory metric in a coastal ocean model ensemble and a climate

model ensemble qualitatively changes the focus to regions that were previously erroneously

labeled as having high or low internal variability.
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5. In this case, the coastal ensemble had a much smaller intrinsic (chaotic) proportion of its

total variability in comparison to the climate ensemble had more intrinsic (weather, climate

oscillations, etc.) as a proportion of its total. Importantly, the resolution of the models helps

determine the proportion of intrinsic variability, so such comparisons are model-specific:

a higher resolution coastal model might well have a larger intrinsic fraction than a coarser

climate model.
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Figure 3.10: Shannon entropy applied to temperature and salinity. Replacing fully time varying rivers with monthly-
mean river flow gives almost the same result for salinity. Same is true by replacing wind product with a different one.
Rivers set to zero affects salinity but not temperature. Winds are important in terms of variability but different wind
products do not noticeably alter variability.
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Figure 3.11: Mutual information applied to simulations from different forcings. Higher mutual information implies
higher similarity in terms of variability. For example NAM-NECOFS values are higher than NAM-ZW implying that
NAM and NECOFS are significantly different than having no wind.
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Chapter 4

Parameterization

Preface to Chapter 4

Chapter 4 is a draft of a manuscript in preparation. It describes the results of using different

paramterizations in OSOM. I have peformed the simulations for the three cases: GLS, KPP, and

SI and documented the results in this chapter. The manuscript will develop subsequently and will

be co-authored by Baylor Fox-Kemper, Jihai Dong, and Leah Johnson with a possibility of more

co-authors. The SI scheme developed by Bachman et al. (2017) has been implemented in CROCO

by Jihai Dong.

4.1 Introduction

In the previous chapters, the predictive capacity of OSOMwas described and the model output

was compared with the observations from buoys. Vertical mixing was represented using the GLS
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turbulence paramterization scheme. The model shows high skill, skill being defined by how close

the output is with the observations. Although the model output displays high skill, as observations

are sparse, the grid points only near the buoys can be compared. The question of model accuracy

away from the buoy sites is difficult to answer, but themodel’s sensitivity to different vertical mixing

schemes can be checked. The level of agreement of the model among the different paramterization

schemes should provide an insight into the physical processes as the various paramterizations are

physics based and try to accurately represent turbulent eddy diffusion. Hence, it is pertinent to

check OSOM’s performance for different vertical mixing schemes.

Different mixing parameterizations should result in similar mixing for the same physical

forcing conditions, but vertical mixing parameterizations are known to disagree (e.g. Li et al.,

2019). I have modelled OSOM using CROCO and compared CROCO-OSOM’s output using

three different vertical mixing schemes: GLS (Umlauf and Burchard, 2003) , KPP (Large et al.,

1994) and modifed KPP (Bachman et al., 2017), hereby reffered to as GLS, KPP, and SI schemes

respectively. CROCO (https://www.croco-ocean.org/) (Shchepetkin andMcWilliams, 1998;

Haidvogel et al., 2000;Marchesiello et al., 2001; Ezer et al., 2002;Marchesiello et al., 2009; Lemarié

et al., 2012,?; Soufflet et al., 2016; Ménesguen et al., 2018) is derived from ROMS, specifically

from ROMS-AGRIF, and apart from all the technological advancements of ROMS it has the

option to use non-hydrostatic set of equations. Non-hydrostatic equation uses the momentum

equation in z-direction to evolve F velocity, and pressure is not a function of depth alone. The

non-hydrostatic feature has not been used in the current version CROCO-OSOM, but will be

left for future work which might involve nested grids with higher resolutions. The K-Profile

Parameterization (KPP) is a first order closure and models the effects of surface stress, boundary
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layer depth, and bouyancy flux. It uses a shape function and surface boundary layer depth to

estimate tubulent eddy diffusivity/viscosity. More details can be found in Van Roekel et al. (2018,

Appendix B). The GLS scheme stands for Generic Length Scale and uses a two equation turbulence

closure model. It was proposed by Umlauf and Burchard (2003) and was introduced in ROMS in

Warner et al. (2005b).

In typical oceanic conditions, vertical displacements are stabilized due to stable stratification

and rotation puts a constraint on horizontal perturbations (inertial stability). One may think these

two constraints are the only two ways in which a fluid parcel can be stable or unstable. However, in

the cross-frontal plane, there is an instability which slips through the cracks of the above vertical

and horizontal stability barriers. This instability occurs along the isopycnal direction, even when

the parcel is stable in vertical and horizontal directions, and can be termed as the isopycnal inertial

instability, or isentropic inertial instability to be more general. An astoundingly precise explanation

of symmetric instability can be found in Holton (Holton, p. 279).

Symmetric instability occurs when the Ertel potential vorticity, given by

@ = ( 5 k + ∇ × v) · ∇b, (4.1)

has the opposite sign to local Coriolis paramter, 5 (Hoskins, 1974). k is the local z-direction, v is the

velocity vector, and ∇1 is the buoyancy gradient. Weak stratification and strong horizontal fronts

causes PV to shift towards anticyclonic values and results in symmetric instability. The symmetric

instability might be a dominant mechanism in the cross-frontal direction mixing (Wenegrat et al.,

2020) and it occurs on the scales of O(10 m ∼ 1 km ). These conditions for fronts exist in the
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domain of OSOM.

KPP and GLS boundary layer mixing schemes are one dimensional along the vertical and do

not include lateral effects or lateral variability. A range of processes arise when lateral density

gradients are considered. OSOM resolves wavelengths for some instabilities such as baroclinic

instabilities, while symmetric instability cannot be resolved with the current resolution. The SI

scheme uses the symmetric instability paramterizations introduced in (Bachman et al., 2017). It

has been implemented in CROCO by Dong et al. (2021). CROCO has GLS and KPP inherited

from ROMS. The SI scheme modifies the existing KPP paramterization and switches between SI

and KPP mode as per the physical constraints explained in Dong et al. (2021). The scheme detects

negative PV and drives the flow towards neutral SI values by extracting energy from the geostrophic

shear. More details can be found in Bachman et al. (2017). All the three schemes set the vertical

diffusivities, and when conditions for SI are not met, the SI scheme reverts back to KPP until the

conditions favor SI.

4.2 Methods

CROCO-OSOM was ran for the month of March (March 9 to 25). Winter durations show

deeper mixed layer depths. December, January, and February simulations showed the presence of a

mixed layer extending throughout the water column in the region. In well mixed columns in coastal

systems, it would be difficult to detect the effects of SI scheme because vertical paramterizations

modulate the mixed layer depth (and the boundary layer depth). To see differences in shallow water

systems, themixed layer or boundary layer depth should be observable, that is 0 < ℎ<;3 < ℎ>, where

ℎ> is the total depth at a location. Hence the month of March was chosen to observe the effects of
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symmetric instability as the higher surface temperatures would strenghten the stratification in the

water column. All the three cases were started with the same initial conditions.

A sub-domain of OSOM was chosen to observe the effects of different paramterizations. This

sub-domain was chosen based on the differences in the vertical viscosities observed in the model

output. The choice of subdomains have been explained in Figure 4.1. The bigger subdomain

consisting of Rhode Island Shelf, shown in red color, has been used to compare surface tem-

perature and boundary layer depth. The smaller subdomain which is a region near Aquinnah in

Massachusetts, displayed in orange color, is used for PV. Difference in viscosity is an evidence of

SI paramterization being active, hence symmetric instability is present.

For each time-stamp, the two dimensional or three dimensional spatial fields were“flattened”

and converted to a single column vector and compared by using Shannon entropy and mutual

information. The flattening approach has been described in Section 3.2.2. Shannon entropy has

been found individually for every case, while mutual information was found between every two out

of the three cases (GLS-KPP, KPP-SI, GLS-SI).
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Figure 4.1: OSOM region modelled in CROCO. The Rhode Island Shelf region (red colored rectangle) extending
from ≈ 40.5 to ≈ 41.3 lattitude is the subdomain used to compare surface temperature and boundary layer depth. The
region near Aquinnah (orange colored rectangle) extending from ≈ 41.1 to ≈ 41.3 lattitude is used to compare PV.
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4.3 Results
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Figure 4.2: Shannon entropy and mutual information of surface temperature.

Figures 4.2 and 4.3 show the entropies of surface temperature and boundary layer depth

for the region shown by orange colored rectangle in Figure 4.1. All the entropies start from the

same value at C = 0 (March 9, 2006) since all the three cases have the same initial condition. For

temperature, the total spatial variability given by Shannon entropy is close to each other for all

the three cases. The mutual information between GLS-SI and GLS-KPP decreases indicating that

GLS causes considerably different evolution of temperature. Mutual information between KPP-SI

oscillates without a trend for C < 5 days which might indicate a background impact of SI, before
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the SI paramterization effects accumulate enough to cause a deviation due to the intrinsic chaos.

Beyond C > 5 days, MI drops down implying disagreement between KPP and SI.
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Figure 4.3: Shannon entropy and mutual information of boundary layer depth.

For the boundary layer depth, the Shannon entropy result shows similarities with temperature

as shown by Figure 4.3. Shannon entropy of GLS, KPP, and SI attains similar values for the entire

duration. The mutual information between KPP-SI is always higher than GLS-KPP and GLS-SI

indicating the boundary layer depth from SI and KPP schemes is closer to each other than GLS

scheme. The changes in the Shannon entropy seem to affect the mutual information for C < 12.5.

For C > 12.5, mutual information is de-correlated from Shannon entropy suggesting changes in
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mixing due to the intrinsic effects.
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Figure 4.4: Shannon entropy and mutual information of PV.

The results for PV (Figure 4.4) are similar indicating GLS shares the least information with

KPP or SI scheme. Shannon entropy for GLS is higher than KPP and SI implying wider distribution

of PV under the GLS scheme. KPP and SI seem to contrain the Shannon entropy of the PV.
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4.4 Discussion

GLS and KPP schemes use different approaches for parameterizing vertical mixing. The

differences in surface temperature, PV, and boundary layer are due to the different vertical viscosities

(diffusivities) set by the respective schemes. The SI scheme is a modification of the KPP scheme

and gets activated only under certain physical constraints. These constrains involve the sign of PV

and the location of the grid point below the surface (Bachman et al., 2017). Symmetric instability

occurs when the sign of PV is negative, and SI scheme works to make PV positive and extracts

kinetic energy from the mixed layer. Hence, the variation between SI and KPP occurs due to the

treatment of PV.GLS is remarkably different fromKPP and SI. � ( %%; (�) shows high values, close

to � ( %%) or � ((�) implying symmetric instability is not the dominant mixing mechanism in the

bay. m� ( %%; (�)/mC < 0 for some points in the figures, which might substantiate the presence of

symmetric instability. Hence, symmetric instability although not dominant, is definetely active in

the region. m� ( %%; (�)/mC > 0 might indicate switching off of SI scheme and activation of KPP.

GLS and KPP are vertical mixing schemes and only focus on effects in the vertical direction. SI

scheme takes into account horizontal PV and is aware of strong horizontal fronts. The activation

of SI scheme hints at the presence of strong fronts and strong horizontal buoyancy gradients. The

changes in forcing at C > 12.5 affect the boundary layer depth agressively than surface temperature

and PV. This requires a careful analysis of the forcing conditions for that duration.

Non parametric approaches like information entropy are useful for physical quantities which

are bounded between a minimum value and a maximum value. In our case, the boundary layer

depth is bounded by I = 0, the surface, and I = ℎ>, the sea floor. They have a strict cutoff and

boundary layer depth (and mixed layer depth) can only vary between these two values. This is
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similar to the Artic ocean temperature which is bounded on one side.

4.5 Conclusion

Symmetric instability is present in the Rhode Island sound, but might not be dominant

mechanism of mixing. Distance as measured by information theoretic metric show that GLS is

more distant from KPP and SI than SI is from KPP. In terms of mutual information, KPP and SI

share more common information with each other than with GLS. As SI shows similar results to

KPP, neglecting the effects of symmetric instability would not be detrimental to model the physcial

processes happening in the domain, but this requires a thorough analysis and verification. It is

necessary to exercise judgement and compare with observations when selecting either KPP or GLS,

but not so in between KPP and SI as is evident from mutual information values of all the variables

analyzed. The changes in the evolution of entropis are due to different vertical mixing schemes,

but can also be due to advection and lateral mixing from the East-West-North-South boundaries

of the subdomains (red and orange rectangles) displayed in Figure 4.1. As the regions outside the

subdomains also evolve with the respective schemes, the dominant cause of difference among the

three cases are the different parameterizations.
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Chapter 5

Conclusions

5.1 General conclusions

Regional modeling is an emerging field and is gaining focus due to the importance of coastal

systems in our daily lives. In contrast to global climate models, different regional models are

unique in their own way and have utility in estimating the local impacts of climate change. As such,

forecasting and predictability of coastal models is an emerging field. This present work provides a

framework to find the predictability time scales of such coastal models. This is the first work of its

kindwhere information theorymetrics have been used on a regionalmodel to estimate predictability,

variability, impacts of forcing sensitivity and choice of turbulence parameterizations. Information

theory holds a promise for providing us with a set of non parametric and dimension agnostic

metrics. Although it has been generally known in the coastal community that the predictability of

regional models is short (few days), the current work quantifies that predictability.

Focus has been on the practical application of information theory metrics. Previous literature

104



related to using information theory metrics in climate modeling does not clearly present the

methodology especially for a limited number of ensemble members. This created a knowledge

gap of how to use the information theory for analyzing outputs from regional models and climate

models where forcings play a pertinent role and chaos is low to moderate. The present work has

attempted to bridge this gap by providing a viable framework which can be easily replicated and

improved upon.

Regional models are being refined towards finer spatial resolutions and same applies to global

climate models. The methods presented in this manuscipt are future-proof, implying the techniques

will work in more chaotic models under different types of forcings. As the methods introduced

are not based on the type of the model, the techniques have very high fidelity. The techniques

show high fideility as they are not dependent on the type of model (global or regional, high or low

resolution, etc.)

5.2 Specific conclusions

1. Potential predictability timescale of OSOM has a range of 6.9 to 40.5 days for temperature

and salinity. It varies with season and region.

2. Flushing time scales are consistent and quantitatively similarwith the predictability timescales.

3. OSOM shows adequate skill. Improving model accuracy might not affect predictability time

scale, but will increase forecast skill.

4. Mutual information captures differences between forecast and climatology and is useful to

quantify predictability. Metrics can apply to physical, biogeochemical, etc. variables with
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limited ensemble members.

5. For estimating intrinsic and extrinsic variability, a new metric has been proposed which

uses mutual information and Shannon entropy. It is non-parametric, robust in the presence

of outliers, and reveals regions of high or low intrinsic variability as compared to variance

metric.

6. Intrinsic to total variability ratio W is model specific. ROMS-OSOM shows less overall

intrinsic variability than a global climate model. Unlike bias maps, W captures both changes

to mean and variance and can utilize multiple variables with different units to highlight major

impacts.

7. Mutual information and Shannon entropy identify the cost of using one parameterization or

one forcing over the other in the unit of bits. Changes in variability across different physical

variables due to changes in forcings or parameterizations can be compared.

8. Symmetric instability is active but might not be the predominant mechanism of mixing in

the domain modeled by OSOM.

9. Uncertainty in boundary layer mixing in OSOM is greater than the impact of symmetric

instability.

5.3 Future Work

1. For ROMS-OSOM, results for point-wise predictability timescales show similaritywith zone-

averaged field’s predictability timescale, hinting towards a well mixed and stirred oceanic

conditions. It needs to be checked whether this is a feature of the ROMS-OSOM or Narra-
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gansett Bay.

2. Flushing time scales assume the bay is a constantly stirred well mixed reactor. More detailed

flushing time scales for fresh and saline water can be estimated by introducing passive tracers

and floats inside OSOM. If ROMS-OSOM behaves as a well-mixed system, the flushing of

passive tracer will happen on the same timescale as those evaluated in Chapter 2.

3. The fluxes shown in Figure B.1 in Appendix B warrants an investigation of the scaling law

being followed in the estuary.

4. How closely is the intrinsic variability linked with predictability? Increasing the model

resolution, might decrease the predictability time scale but needs more scrutiny.

5. Ensemble modelling of the biogeochemical (BGC) variables can be performed similar to the

physical variables. Information theory metrics will reveal the sensitivity of BGC variables

to perturbations in initial conditions. Mutual information can be applied between two

variables having different units. For example, mutual information between phytoplankton

and salinity will disclose correlations and can be compared with a different set of variables

(say phytoplanton and temperature). A rich set of total correlations can be obtained for the

entire OSOM domain. Time series data from the observations could also be employed.

6. A method to compare the effect of altered forcings on physical variables was demonstrated

in Chapter 3. The same technique can be applied to BGC variables.

7. In Chapter 4, W and WBC3 disagreed except at the extremes, 0 and 1 correlation coefficient.

Using an inverse method they can be matched by raising to higher (or lower) powers to

investigate their significance.
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8. CROCO-OSOM’s skill with KPP and SI scheme should be investigated. Changes in vertical

eddy viscosity in SI scheme were observed near the South edge of the OSOM’s domain

surmizing PV injection through the boundaries. Can expanding the domain by shifting

southern boundary show more SI activity?

9. Porting OSOM to CROCO opens the possibility to perform non-hydrostatic simulations

alongwith nested grids. Effect of non-hydrostatic modelling on model skill, predictability,

variability, and mixing can be explored.

10. Use of information theory in geosciences is a growing field (Kumar and Gupta, 2020;

Perdigão et al., 2020) and there is a potential for using recent advances such as information

flow, information physics, etc. in analyzing coastal systems and regional and global ocean

models.
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Appendix A

Supplementary material for Chapter 2

Supporting Information for “Consistent Predictability of the Ocean State Ocean Model

(OSOM) using Information Theory and Flushing Timescales"

Contents of this file

1. Figures S1 to S37.

2. Table S1

Introduction

Text S1. The supplementary information contains Figures A.1 to A.25. All the figures have been

quoted in the main text. Also, Table A.1 shows root mean square error between model run and

observations for surface temperature and salinity as well as bottom temperature and salinity.
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Table A.1: Root mean square error between observation and a single unperturbed model run

Temperature >C Salinity
Surface Bottom Surface Bottom

CP 1.55 1.43 2.69 0.91
BR 2.42 1.26 3.4 1.24
NP 1.13 0.75 2.38 0.74
MtV 1.01 1.07 1.88 0.86
MtHB 1.87 0.77 2.02 0.94
QP 1.03 2.34 2.34 0.43
PP 0.91 0.82 2.91 0.59
GB 0.89 1.21 3.28 1.7
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Figure A.1: Comparison of model with observations collected at Conimicut Point (CP).
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Figure A.2: Comparison of model with observations collected at Bullock’s Reach (BR).
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Figure A.3: Comparison of model with observations collected at North Passage (NP).
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Figure A.4: Comparison of model with observations collected at Mount View (MtV).
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Figure A.5: Comparison of model with observations collected at Quonset Point (QP).
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Figure A.6: Comparison of model with observations collected at Poppasquash Point (PP).
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Figure A.7: Mutual information between members of climatology ensemble compared with Shannon entropy of the
mean of ensemble of zone 1 for the months of July-August.
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Figure A.8: Mutual information between members of climatology ensemble compared with Shannon entropy of the
mean of ensemble of zone 2 for the months of July-August.
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Figure A.9: Mutual information between members of climatology ensemble compared with Shannon entropy of the
mean of ensemble of zone 3 for the months of July-August.
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Figure A.10: Mutual information between members of climatology ensemble compared with Shannon entropy of the
mean of ensemble of zone 4 for the months of July-August.
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Figure A.11: Mutual information between members of climatology ensemble compared with Shannon entropy of the
mean of ensemble of zone 5 for the months of July-August.
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Figure A.12: Figure shows predictability of kinetic energy. Mutual information between members of climatology
ensemble compared with Shannon entropy of the mean of ensemble of zone 7 for the months of July-August.
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Figure A.13: Bottom temperature predictability at grid point closest to MtHB buoy
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Figure A.14: Results of zone 1 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.15: Results of zone 2 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.16: Results of zone 3 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.17: Results of zone 4 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.18: Results of zone 5 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.19: Results of zone 7 for January-February. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.20: Results of zone 1 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.21: Results of zone 2 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.22: Results of zone 3 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.23: Results of zone 4 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.24: Results of zone 5 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Figure A.25: Results of zone 7 for July - August. Top figures shows temperature and salinity ensembles. Bottom
figures show information entropy metrics applied between forecast and climatology ensembles.
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Appendix B

Fluxes in Narragansett Bay

Figure B.1 shows the fluxes going in and out of the bay as described in 2.6. X-axis has flow

rate and y-axis is the distance from the North of the estuary. These fluxes have been calculated

using Equation 2.6. The fluxes seem to be following an unknown scaling principle and has been

observed in literature (see MacCready, 2011).

123



200 150 100 50 0 50 100 150
Salinity flux X 10000, (m^3/s)

0

10

20

30

40

Di
st

an
ce

 fr
om

 N
or

th
 e

nd
 o

f e
st

ua
ry

, (
km

)

q_out
q_in

Figure B.1: Fluxes in Narragansett Bay calculated using ROMS-OSOM
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