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Abstract

Characteristic features of the wintertime Arctic Ocean are narrow and elon-
gated fractures in the sea ice cover, up to hundreds of kilometers long and up to
tens of kilometers wide, called leads. Leads expose the ocean to the cold atmo-
sphere, establishing air-sea heat fluxes which freeze the oceanic surface. During
new sea ice formation, dense and salt-enriched plumes of brine are rejected into
the oceanic mixed layer. Due to brine rejection, lateral density gradients appear
at sea ice edges, creating fronts. Fronts store potential energy and are subjected
to gravitational overturning. The effect of Earth’s rotation prevents the complete
slumping establishing along sea sea ice edge currents in a geostrophic balance
state, known as geostrophic adjustment, leaving the isopycnals tilted. Baroclinic
instabilities develop and grow into submesoscale eddies – typical vortical coherent
structures of the oceanic mixed-layer. Transferring momentum and tracer prop-
erties laterally, submesoscale eddies are the leading order process of mixed-layer
restratification. Current global climate models can not resolve this small scale tur-
bulence and Arctic Ocean observations are limited due to the presence of sea ice.
High resolution numerical models are therefore a powerful tool for investigating
these unknown processes. In this work, idealized high resolution model experi-
ments are setup in order to study the wintertime refreezing of an open ocean area
near a sea ice edge. The results confirm that submesoscale eddies enhance the
mixed-layer restratification subtracting energy from the mean flow and increasing
the turbulent kinetic energy. Through the study of lateral density transfer scaling
rate, a departure from the deformation radius emerges in geostrophic adjustment
experiments and more strongly under ageostrophy predominance. The presence of
an ageostrophic diffusion process can explain the frontal region widening.
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Sommario

L’Oceano Artico nella stagione invernale è caratterizzato da lunghe e strette
fratture nello spesso strato di ghiaccio marino, chiamate leads, che espongono la
superficie dell’acqua alle fredde temperature artiche, liberando, durante il congela-
mento, sacche di acqua ipersalata che fluiscono nel mixed-layer oceanico. Questo
processo, noto come brine rejection crea gradienti orizzontali di densità tra le
due zone di acqua di mare separate dal bordo del ghiaccio, dando luogo a un
fronte oceanico, che contiene energia potenziale. L’effetto della rotazione terrestre
impedisce al fronte di cadere sotto l’effetto della gravità, creando uno stato di equi-
librio in bilancio geostrofico. A seguito di questo processo, chiamato geostrophic
adjustment, le perturbazioni presenti a causa della instabilità baroclina si trasfor-
mano in strutture vorticose tipiche del mixed-layer oceanico – submesoscale ed-
dies. Gli eddies, grazie al loro trasferimento laterale di energia e di altre proprietà
dell’acqua marina, riescono a ristratificare con efficacia la superficie dell’oceano.
Questi processi di piccola scala non possono essere rilevati dagli attuali modelli
climatici globali. Inoltre, la presenza di spessi strati di ghiaccio rende difficoltose
le osservazioni dell’Oceano Artico. Per questi motivi, si preferisce ricorrere all’uso
di modelli numerici ad alta risoluzione che permettono di studiare e compren-
dere i fenomeni ancora poco conosciuti. Il presente elaborato studia i processi
che causano il ricongelamento della superficie marina a contatto con un bordo di
ghiaccio durante la stagione invernale, utilizzando simulazioni numeriche ad alta
risoluzione. I risultati confermano l’effetto dei submesoscale eddies nel processo
di ristratificazione e suggeriscono l’esistenza di diffusione per spiegare il maggiore
allargamento della regione frontale rispetto al raggio di deformazione tipico del
geostrophic adjustment, che è osservato anche in assenza di submesoscale eddies.
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Introduction

Polar regions are an important part of the Earth System that, at present and
in the near future, is facing challenges due to climate change. Global warming
is forcing rapid changes, especially in the Arctic, that affect global climate, high-
latitude marine ecosystems in the Northern Hemisphere, and the socio-economical
systems that rely on this region. The presence of sea ice creates a unique environ-
ment modifying the heat exchange between the atmosphere and the ocean, which
ultimately impacts the global energy balance. The study of the Arctic Ocean is
the study of ocean, sea ice and their interactions – a variety of different processes
occurring at the same time and enhancing one another.

Wintertime oceanic surface areas exposed to the cold atmosphere contribute
to the formation of dense water when sea ice forms. During polar winter, large
consolidated regions of sea ice can crack and create long and narrow elongated frac-
tures, called leads, up to hundreds of kilometers long and up to tens of kilometers
wide. These openings freeze, releasing great amount of latent heat. During new
sea ice formation, salt-enriched water is rejected from the largely fresh sea ice and
injected into the oceanic mixed-layer in the form of dense plumes of brine. Fronts
at sea ice edges are formed and store potential energy, but are soon subjected to
gravitational overturning. The effect of Earth’s rotation creates along sea ice edge
currents in a geostrophic balance state, known as geostrophic adjustment. This
prevents the complete frontal spin-down. The tilted isopycnals are then barocli-
nally unstable and lead to the development of mixed-layer eddies (MLEs), also
called submesoscale eddies. Submesoscale eddies are the leading order process of
mixed-layer restratification at mid latitudes [Boccaletti et al., 2007; Fox-Kemper
et al., 2008]. They can be important also at high latitudes where the weak diurnal
cycle during polar night and the continuous supply of brine even after a thin layer
of sea ice is created let submesoscale eddies grow and spread laterally.

Due to their coarse resolution, global climate models (GCMs) can’t resolve
small scale processes, such as submesoscale turbulence or leads. Thus this requires
that scientists study these features to develop parameterizations. In addition,
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the presence of sea ice in the Arctic Ocean causes a lack of consistent data from
observations. High resolution numerical models are therefore a powerful tool for
investigating these unknown processes and understanding the effects of subgrid
scale turbulence on the resolved flow.

In this work, idealized high resolution numerical model experiments are setup
in order to investigate and quantify the complexity of the frontal circulation at
an Arctic Ocean sea ice edge. The Massachusetts Institute of Technology general
circulation model (MITgcm) [Marshall et al., 1997] in the hydrostatic form cou-
pled with the thermodynamic sea ice package [Winton, 2000] is used. The initial
atmospheric and oceanic conditions resemble a highly simplified wintertime Arctic
Ocean: constant air temperature and quiescent ocean at the freezing point tem-
perature. Different experiments are compared to evaluate the effects of different
forcing in the system. The output of the simulations are then diagnosed by visu-
alizing the ocean response to forcing conditions and separating between mean and
turbulent flows. The length scale proposed by Matsumura and Hasumi [2008] for
the frontal spin-down process at a re-freezing lead is discussed. The single sea ice
edge system is considered as a necessary step toward the more challenging lead
configuration of two interacting ice edges.

Arctic Ocean stratification and circulation, sea ice dynamics, and phenomenol-
ogy of brine rejection are shown in Chapter 1. Observations in the Arctic Ocean
and global climate models are also introduced. Then theoretical basis for frontal
spin-down process and submesoscale turbulence are presented. At the end of the
chapter previous studies at Arctic Ocean leads and motivations and objectives of
this thesis are explained. The MITgcm model and its characteristics are presented
in Chapter 2. The experimental setups and the diagnostic tools used in this work
are also provided. Results are shown and discussed in Chapter 3. A conclusion is
then given at the end of the thesis.
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Chapter 1

Phenomenology and Theoretical
basis

In this chapter the theoretical basis for the development of the modeling exper-
iments carried out in this work are presented. First, the importance of the polar
regions in a climate change perspective and the Arctic Ocean characteristics, strat-
ification and circulation are shown in Sec. 1.1 and 1.2. Secondly, sea ice dynamics
and thermodynamics is introduced in Sec. 1.3, with a focus on the brine rejection
phenomenon, which typically happens in wintertime opening structures such as
leads and polynyas. Finally, the limitations of observations in the Arctic Ocean
and of coarse resolution climate models, treated in Sec. 1.4 and 1.5, emphasize the
importance of deeply understanding the submesoscale restratification mechanism
(Sec. 1.6) and lead to the motivations of this study (Sec. 1.8).

1.1 Polar regions and climate change

Polar regions are greatly affected by climate change. Of particular interest are
the northern hemisphere high latitudes, where the global warming is leading to a
completely new environment, due to sea ice cover disappearing (Fig. 1.1). One
of the key signal of climate change is the decline of the Arctic sea ice cover that
has been recorded in satellite imagery since 1970s. It is estimated that since 1979
the areal proportion of thick ice at least 5 years old has declined by approximately
90% [IPCC , 2019]. The transition to ice-free summer is projected for around 2050
[Collins et al., 2013a] (Fig. 1.2).

The presence of sea ice is of vital importance for the resilience of the Arctic
ecosystem. Polar sea ice provides one of the most extensive habitat on Earth, ac-
complishing a unique marine and terrestrial biology [Arrigo, 2014]. The decreasing
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Figure 1.1: February and September CMIP5 multi-model mean sea ice concentra-
tions (%) in the Northern and Southern Hemispheres for the periods (a) 1986–2005,
(b) 2081–2100 under RCP4.5 and (c) 2081–2100 under RCP8.5. The pink lines
indicate the observed 15% sea ice concentration limits averaged over 1986–2005.
Figure from Collins et al. [2013a] in the IPCC report.
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Figure 1.2: Changes in the Arctic sea ice extent as simulated by CMIP5 models
under RCP2.6, RCP4.5, RCP6.0 and RCP8.5 projections. Solid curves show the
multi-model means and the shading denotes the 5 to 95% range of the ensemble.
The vertical line marks the end of CMIP5 historical climate change simulations.
Sea ice extent is defined as the total ocean area where sea ice concentration exceeds
15%. Changes are relative to the reference period 1986–2005. Also plotted (solid
green curves) are satellite data. Figure from Collins et al. [2013a] in the IPCC
report.
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sea ice extent and the reduction in sea ice thickness is opening to new shipping
viable routes bringing together many implications such as the intensification of
commerce via the Arctic Ocean, the increase in risks and noise, the exploitation
of the energetic resources of the Arctic and the increase of black carbon emissions
from shipping activity [IPCC , 2019]. Beside the natural Arctic organisms, also
the human population of the Arctic depends on ice sheets and sea ice for survival.
Accordingly to the IPCC [2019], four million people reside in the Arctic region,
10% of which is indigenous.

Due to the ice albedo feedback, changes in the Arctic climate are enhanced one
another, a process known as Arctic amplification. Indeed, higher air temperatures
melt sea ice and reduce its albedo, thus further increasing temperatures and caus-
ing a positive feedback. The Arctic is warming faster than the global mean and
its ocean is increasing the heat content.

A combination of general circulation models (GCMs) and regional climate mod-
els integrated with in situ measurements and satellite observations are powerful
tools to investigate climate change. However, due to the presence of sea ice and
the complex air-sea-ice-ocean interactions, still many processes remain unknown.
In fact, current climate models can not have the high resolution needed to resolve
the small scale phenomena, such as the highly variable heat flux. Furthermore, the
presence of sea ice limits the observations of the Arctic Ocean. For these reasons,
conceptual models can guide scientists to have a better understanding of small
scale phenomana, and may suggest new subgridscale parametrizations to improve
GCMs [Maslowski et al., 2012; Timmermans and Marshall , 2020].

Since Arctic sea ice cover extent reaches its minimum in September after the
melting season, many studies focus on the small scale effects in the melting season.
However, an important heat exchange between the atmosphere and the ocean also
happens in wintertime, when the refreezing of the exposed open ocean areas injects
dense plumes of brine into the ocean. Brine rejection at a refreezing sea ice edge
is the focus of this work.

1.2 Arctic Ocean, stratification and circulation

The Arctic Ocean, also called Arctic Mediterranean, is a large deep semi-
enclosed basin of water centered in the north pole and surrounded by lands and
shallower channels. In winter, it is entirely covered by a thin layer of sea ice, which
is not permanent throughout the year. In the Arctic, sea ice cover, in fact, has a
large seasonal cycle. The bathymetry of the Arctic Ocean is very complex. The
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Figure 1.3: The Arctic Ocean. (a) The main geographic features of the Arctic. The
1000 m and 3500 m bathymetric contours are shown. Numbers refer to (1) Bering
Strait, (2) Fram Strait, (3) Barents Sea Opening, (4) Greenland-Scotland Ridge,
(5) Denmark Strait, (6) Lancaster Sound, and (7) Davis Strait. (b) potential
temperature and salinity sections following red line in (a) from the Pacific Ocean,
left, to the Atlantic Ocean, right. Figure taken from Timmermans and Marshall
[2020].
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Central Arctic basin can be divided into two main basins, the Eurasian and the
Canadian Basins of about 4000 m depth, separated by the Lomonosov Ridge of
1500 m depth. Fram Strait and Barents Sea are the openings of the Central Arctic
toward the Nordic Seas, and, thence, toward the Atlantic Ocean, with relatively
warm and salty water; Bering Strait is the connection with the Pacific Ocean,
relatively warm and fresh.

The freshwater balance in the Arctic Ocean is composed by inflows of water
from the Atlantic and the Pacific Oceans and rivers runoff and precipitation and
outflows of water through channels in the Canadian Archipelago and via Fram
Strait. Melting and freezing of sea ice are also part of the hydrological cycle. They
are seen as the high latitude equivalent of precipitation and evaporation respec-
tively [Aagaard and Carmack , 1989].

In winter and in permanent sea ice regions, sea surface temperature is at freez-
ing point, which, for seawater, is about −2 °C, and it can reach few degrees above
0 in summer free-ice regions. The mean salinity of the Arctic ocean is 34.8 psu
[IPCC , 2019]. The Arctic Ocean stratification is predominately set by salinity.
This is because, at high latitude, the density distribution is governed by changes
in salinity more than changes in temperature. In fact, in the linearized equation
of state

ρ = ρ0[1− α(T − T0) + β(S − S0)] (1.1)

where the dependence on pressure changes has been neglected, α is the thermal
expansion coefficient and β is the haline contraction coefficient, α is almost pro-
portional to temperature. Thus, at low temperature, temperature changes in the
equation of state of seawater are smaller than salinity changes: β/α = 30 and 10
(in units of K/psu) at freezing point and 2 °C respectively and 34.5 psu, and the
variability ranges for temperature and salinity are of the same order of magnitude.
For this reason, polar oceans are also called β-oceans, to differenciate from the
α-oceans at subtropical latitudes stratified in temperature.

Thereby, since at high latitude the ocean pycnocline is mainly a halocline rather
than a thermocline, the Arctic Ocean waters are separated in surface fresh water
and deep salty water, forming a mixed layer of 25-50 m in winter and 5-30 m in
summer [Peralta-Ferriz and Woodgate, 2015]. The inflow of warm and salty At-
lantic water sits beneath the surface Arctic water, between 150 and 500 m depth
at a temperature of 0 to 3 °C, preventing warming of the mixed layer and melting
of sea ice. In other words, the presence of sea ice at the surface is guaranteed by
the stratification in salinity of the Arctic Ocean. Changes in freshwater cycle of
the Arctic implies changes in stratification, circulation and mixing.
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The Arctic Ocean circulation is mainly driven by buoyancy and it can be ex-
plained as an estuarine-like with the inflow from Nordic Seas and outflow of fresh-
water. But there are also two main wind driven circulation patterns that follow
the atmospheric circulation. The Beaufort Gyre is an anticyclonic motion swinging
around a high pressure in the Canadian Basin, acting as a reservoir of freshwater;
the Transpolar Drift Stream, due to the presence of a low pressure above Iceland,
drives the outflow of freshwater via Fram Strait. Melting and growing of sea ice
play important role in the circulation of the Arctic Ocean by injecting freshwater
and brine, respectively.

1.3 Sea ice

In addition to the seasonal cycle, Arctic sea ice has also strong spatial vari-
ability in horizontal and vertical directions. Sea ice is made up by many floating
individual pieces, floes, from meters to tens of kilometers across with thickness of
centimeters up to tens of meters with a winter average of 2 m. Sea ice cover extent
is maximum in March and minimum in September. Sea ice can be distinguished
into perennial and seasonal ice accordingly to its capability of survive a melting
season.

Sea ice evolves accordingly to thermodynamics and dynamics forcing which
set the melting/freezing and the motion of sea ice, respectively. Thermodynamics
forcing are given by energy fluxes at the surface, internally and at the bottom of
sea ice (schematic on the left in Fig. 1.4). They depend on the albedo, i.e. the
fraction of incident solar energy reflected by a surface. Sea ice covered by snow has
an albedo of 0.85, bare ice of 0.65, melt ponds of 0.2-0.4 and dark ocean of 0.07
[Perovich and Richter-Menge, 2009]. If the sum of the energy fluxes is negative
sea ice cools and grows, if it is positive sea ice warms and melts. Convergence and
divergence of sea ice cause changes in sea ice thickness creating open water areas
and ridges. The acceleration of sea ice is due to the wind, ocean and internal sea
ice stresses (schematic on the right in Fig. 1.4). Wind stress can move sea ice up
to tens of kilometers per day [Perovich and Richter-Menge, 2009]. Furthermore,
the presence of sea ice modifies the wind stress on the surface of the ocean creating
a buffer between air and water.

Sea ice can also be classified into land-fast ice and pack ice. Land-fast ice is sea
ice that forms in shallow waters, anchored to land or ice shelves, almost immobile.
Pack ice is sea ice that freezes offshore, in open waters, and is free to drift with
winds and oceanic currents.
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Figure 1.4: Schematic of heat budget (left) and momenutm balance (right) of sea
ice. Figures adapted from Perovich and Richter-Menge [2009].

1.3.1 Sea ice dynamics and thermodynamics

The sea ice dynamics is well described by the viscous-plastic model proposed
by Hibler in 1979 who considered sea ice as a continuous media, and in particular
as a non linear viscous compressible fluid [Hibler , 1979]. The momentum balance
includes air and water stresses, Coriolis force, internal ice stress, inertial forces and
ocean tilt:

m
Du

Dt
= −mf k× u + τ air + τ ocean −m∇φ+ F (1.2)

written in the plane of motion of sea ice (i.e. vertically averaged momentum equa-
tion). D/Dt = ∂/∂t + u · ∇ is the material derivative, u is the ice velocity, k a
unit vector normal to the surface, m the ice mass per unit area, φ the sea surface
height potential and F the internal force, which is given by a constitutive law for
sea ice. Air and ocean stresses, τ air and τ ocean, computed with the boundary layer
theories, can be scaled with the square of the friction velocities for air and ocean
boundary layers, τ ∝ ρ u∗2.

Sea ice thermodynamics is interested in studying the evolution of sea ice vol-
ume given the heat fluxes that seasonally freeze and melt sea ice. Obviously, sea
ice thermodynamics and dynamics are not uncorrelated one each other. But, ac-
cordingly to the time scale of the problem one wants to study, some approximation
can be made. Supposing to know the solution of (1.2), i.e. the sea ice velocity, the
evolution of sea ice volume per unit area, V , i.e. of sea ice thickness, is given by:

∂V

∂t
+ u · ∇V = FT (1.3)

where the first term is the rate of change of sea ice volume, the second term is the
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advection of sea ice volume due to sea ice motions u, and FT is the rate of change
of sea ice volume due to thermodynamics forcing

FT ∼
Qnet

ρiceLf
(1.4)

where Qnet is the net heating (Qnet > 0) or cooling (Qnet < 0) per unit area
(W/m2), Lf is the latent heat of freezing, which is the energy released when
freezing a unit mass of ice at freezing point (J/kg), without changing temperature.
In the upper bound free drift motion regime, the sea ice velocity in (1.3) can
be approximated with the friction velocity of sea ice u∗ice and thus scaled with√
τ/ρice with τ representing the combined effect of air and ocean stresses. Equation

(1.3) expresses the rate of change of sea ice volume due to both dynamics and
thermodynamics forcing. Although the sea ice evolution is due to the coupling
of dynamics and thermodynamics, a dimensionless parameter can be defined as
the ratio between thermodynamics forcing versus dynamics forcing and helps in
distinguishing the two limits:

Σ =
FT

u · ∇V
∼ Qnet

Lf
√
τρice

L

V0

(1.5)

where L is the typical length scale of sea ice motion and u∗ice ∼
√
τ/ρice has been

used to scale the sea ice velocity. Accordigly to the magnitude of Σ, two regimes
can be defined:

|Σ| � 1 FT � u · ∇V Dynamics regime (1.6)

|Σ| � 1 FT � u · ∇V Thermodynamics regime (1.7)

The thermodynamics regime can be split into two regimes: the melting regime
Qnet > 0 and the freezing regime Qnet < 0. Many studies focus on the dynamics
regime [Richter-Menge and Elder , 1998; Häkkinen, Sirpa, 1986; Manucharyan and
Thompson, 2017]. Other studies, instead, focus on the melting regime [Horvat
et al., 2016; Horvat and Tziperman, 2018]. Finally, also the freezing condition,
the importance of which will be explained in next sections, has been long stud-
ied [Matsumura and Hasumi , 2008; Bush and Woods , 1999, 2000; Smith IV and
Morison, 1998; Skyllingstad and Denbo, 2001; Smith IV et al., 2002], but still some
open questions remain.

The purpose of this work is to study the ocean response at a sea-ice edge during
wintertime Arctic conditions, and the Σ� −1 regime is considered, with Qnet < 0
and sea ice thermodynamics dominant over sea ice dynamics.
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Figure 1.5: Schematics of polynya formation. Figure from Talley [2011].

1.3.2 Polynyas and leads

Due to its insulating property, sea ice cover creates a buffer between the ocean
and the atmosphere through a gradient of temperature inside the sea ice layer,
affecting interactions of heat, mass and momentum transport between ocean and
atmosphere. However, sea ice can crack creating fractures and openings within the
ice cover and expose the ocean to the cold temperature of the atmosphere. Indeed,
these openings and fractures are typical features of the winter Arctic sea ice that
exhibits recurring shapes, such as polynyas and leads.

Polynyas are areas of open water surrounded by sea ice that form almost always
in the same places each year near the coast or the land-fast ice, due to the action of
winds [IPCC , 2019] (Fig. 1.5). They represent an essential habitat for mammals
and birds, being corridors for migration of marine animals [Stirling , 1997; Smith
et al., 1990].

Leads, that occupy the majority of opening fraction, are near linear elongated
fractures in the sea ice crust (Fig. 1.6). Leads can form from dynamical stresses
that impress divergence of sea ice. Their length can vary from few hundreds of
meters to hundreds of kilometers and with more than 50 meters width [Schulson,
2004; Willmes and Heinemann, 2016].

In winter openings, due to the large temperature difference between the ocean
and the atmosphere, which reaches 20-40°C [Smith et al., 1990], large heat fluxes
out of the ocean toward the atmosphere are established and the surface of the ocean
starts to freeze. Under cooling conditions, a negative feedback is maintained: the
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Figure 1.6: Sun glint off a sea ice lead in an otherwise heavily ridged ice pack,
Canada Basin (Arctic Ocean). Image Credit: NASA/Sinead Farrell.

creation of open water areas implies an increasing sea ice growth [Zhang et al.,
2000]. This sea ice growth stabilizing feedback opposes to the so called ice-albedo
feedback. However, the former is active in wintertime, while the latter in sum-
mertime [Pegau and Paulson, 2001]. Wintertime leads can lose 200-500 W/m2 of
heat to the atmosphere [Talley , 2011], which is a great amount if compared to the
incoming solar radiation at the top of the atmosphere of about 314 W/m2, and
account for almost one half of the total oceanic heat loss, even though they occupy
less than 10% of the surface area. As already mentioned, freezing is considered
as the high latitude equivalent of evaporation. Several meters of ice are typically
annually formed in the polar regions with a distillation rate compared to the evap-
oration rate in the highly evaporative Red Sea, about 2 meters per year [Aagaard
and Carmack , 1989].

Leads are subject of study for geophysicists interested in understanding their
formation from deformation of sea ice cover and their density distribution. Leads
have been observed using satellite imagery [Miles and Barry , 1998; Willmes and
Heinemann, 2016] and algorithms for processing such linear kinematic features as
leads and ridges have been developed [Hutter et al., 2019]. Due to their big amount
of heat exchange, leads exert important role in the Arctic climate, atmosphere
and ocean. It is estimated that they account for turbulent heat transfer to the
atmosphere causing changes in the air temperature. But they also cause an ocean
response which is the focus of this work. Indeed, openings in sea ice cover exert
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important role in ventilating the ocean, releasing dense plumes of brine during
the formation of new sea ice [Wettlaufer et al., 1997; Barber et al., 2015] causing
instabilities and overturning. Current climate models have spatial and temporal
resolution too coarse to simulate leads and their small scale generated turbulence
instability explicitly. Thus, high resolution models can be used to investigate the
small scale processes and guide toward the developing of parametrizations, which
can be integrated in general climate models (GCMs).

1.3.3 Brine rejection phenomenon

Figure 1.7: Schematic diagrams of brine channels and brine pockets in pack ice
and land-fast ice (left) and their cross sections (right). Figures from Arrigo [2014].

New sea ice formation under cooling conditions happens with the formation of
a porous matrix, a mushy layer, consisting of pure ice crystals and trapped brine
pockets of high concentrated salty water.

Many laboratory experiments have been conducted to study brine rejection
[Wettlaufer et al., 1997]. When a binary liquid mixture, such as a solution of salt
in water, is cooled, the ice grows in crystals, rejecting salty enriched liquid forming
brine pockets. Brine pockets can have salinity that exceeds 150 psu. With such a
high density they can overcome the resistance of the solid crystals forming brine
channels downward toward the bottom of the layer. In this way, dense plumes are

18



rejected into the water below causing the distillation of freshwater.

Sea ice can reach a thickness of 15 cm in the first 24 hours of growth and when
the thickness overcomes 20 cm the brine rejection rate is lowered. Turbulence
conditions such as strong winds or currents lead to thicker layer [Arrigo, 2014].
The maximum brine flux from a single lead occurs within 6 hours of its formation
[Wettlaufer et al., 1997]. Although this process has a very short time scale com-
pared to seasonal time scale, it influences the large scale circulation. In coastal
polynyas brine rejection causes the cascade of dense water from the shelf into the
deep sea entering the Arctic circulation. However, due to the strong stratification
of the Arctic this water remains confined above 400 m [Ivanov and Golovin, 2007].
The same limitation of dense water penetration in the interior ocean happens in
leads.

1.4 Observations in the Arctic Ocean

Figure 1.8: Schematic of the WHOI Ice-Tethered Profiler (ITP) system. Figure
taken from Toole et al. [2011].

Measuring sea ice in the Arctic Ocean is possible through laser and radar al-
timeters, field measurements and nuclear submarine which mapped the under side
of the ice for operational purposes since 1950s. However, the Arctic Ocean proper-
ties are more difficult to measure because of the presence of sea ice cover. Satellite
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Figure 1.9: Oceanic eddies formed in the Arctic Ocean. Sea ice structures follow
oceanic eddies. The image credit is to D. Schwen.

observations are limited to the boundary regions of the Arctic Ocean [IPCC , 2019]
and Argo profilers can not return position information when they come at the sur-
face. High resolution measurements are possible using moored sensors, which are
located deeper than the bottom ice interface in order not to be damaged by sea
ice, and using sea ice as a platform from where temperature and salinity profilers
can be tethered. These profilers, known as ice-tethered profilers (ITPs), go up and
down in the ocean from below the ice-ocean interface to 750-1000 m depth (Fig.
1.8). The idea of using sea ice as a platform is at the base of the Autonomous and
Lagrangian Platforms and Sensors (ALPS) program [Rudnick et al., eds. 2018]
which coordinates an observing system of the Arctic of small portable devices set
over sea ice platforms from which monitor atmospheric, snow and sea ice and ocean
properties.

Like the other oceans on Earth, the Arctic Ocean is full of vortical coherent
structures known as eddies. They span from small to large scales, with the larger
scale eddies that are more easily detectable, such as mesoscale eddies. An image
of Arctic Ocean eddies is shown in Fig. 1.9.

Arctic mesoscale eddies were first observed in the ’70s [Hunkins , 1974; Wad-
hams et al., 1979]. More recently they have been observed at all depths and
in every regions in the Arctic Ocean through field campaigns [D’Asaro, 1988;
Hunkins , 1974], ice-tethered profiles [Timmermans et al., 2006; Zhao et al., 2016,
2014], moorings [Pnyushkov et al., 2018; Carpenter and Timmermans , 2012; Zhao
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and Timmermans , 2015] and satellite images in ice-free surface, such as the high-
resolution spaceborne synthetic aperture radar (SAR) measurements [Kozlov et al.,
2019]. In the Canada Basin they occupy up to 1/4 of the area of the Beaufort
Sea [Manley and Hunkins , 1985] and they are located at depths between 500 m
and 2000 m [Carpenter and Timmermans , 2012]. Mesoscale eddies can originate
from many mechanisms, among which baroclinic instabilities of the mean flow
[D’Asaro, 1988], wind driven gyres and surface fronts [Manucharyan and Timmer-
mans , 2013].

Smaller eddies, such as submesoscale eddies, have been observed in the Arctic
Ocean through drifters measurements in the Beaufort Sea [Mensa et al., 2018;
Timmermans et al., 2012]. In the Arctic Ocean, submesoscale eddies can form
due to input and output of salt that creates ice-covered regions beside open-water
regions. They can form both in summertime floes melting and in wintertime leads,
where brine rejection establishes strong horizontal density gradient at the ice-
edges, or at marginal ice zones (MIZs). The interaction between floe size, ocean
circulation and melting has been studied by Horvat et al. [2016]: submesoscale
eddies, spreading from the floe ice-edge, mix heat horizontally and enhance sea
ice melting. Submesoscale eddies energized by brine rejection are the focus of this
thesis.

1.5 Global climate models

Governing equations for fluids are non linear equations, where the non lin-
earity lies in the advection terms. Thus, perturbations of the mean flow imply
interactions among different scales. This is clearly visible when decomposing each
variable in the equations into a mean and a perturbation part (φ = φ + φ′),
so that the advection terms would give rise to the so called eddy flux terms, of
the forms ∂/∂xj(φ′iu

′
j) (here the Boussinesq incompressible flow approximation is

made). For particularly turbulent flows, the eddy fluxes φ′iu
′
j are comparable to

the mean fluxes, and including their effect into the mean flow becomes necessary.
Indeed, rotating structures such as mesoscale and submesoscale eddies, of typical
length scale of 100 km and 1 km, respectively, originate from instabilities that are
enhanced and grow toward bigger scales, by subtracting the kinetic energy from
the mean flow.

Coarse resolution oceanic models, with a horizontal resolution of 10 km, don’t
have the resolution needed to resolve these kinds of subgridscale features and
need subgridscale parametrizations or turbulent closures. Fig. 1.10 shows that
submesoscale processes are not likely to be resolved for the end of the century,
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Figure 1.10: Estimate of the effective nominal horizontal resolution of ocean model
components for primary baseline and climate change scenarios as reported in the
IPCC reports by year of publication. Exponential fits to the median, finest-
resolution, and a Moore’s (1965) law estimate are shown; the doubling of reso-
lution occurs every 10.2, 6.9, and 6 years, respectively. From Fox-Kemper et al.
[2014].
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Figure 1.11: Schematic of intertial range theories for 3D turbulence and 2D tur-
bulence. From Fox-Kemper et al. [2014].
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and underlines the necessity of developing parametrizations. This applies also to
fine resolution models and eddy-resolving models, such as large eddy simulations
(LES), since they are not able to directly resolve all the scales toward the dissi-
pation. Only direct numerical simulations (DNS) explicitly solve the non linearity
in the equations, but they are computational expensive and, therefore, used only
in small regional areas of the planet.

There are many ways to parametrize subgridscale motions, depending on the
smaller scale resolved by the model. Usually, they are based on eddy diffusivity or
eddy viscosity parametrizations, which are based on the idea of treating the turbu-
lent fluxes as molecular diffusion or molecular viscosity. Indeed, eddies’ role is to
enhance molecular diffusion. This parametrization gives −∂/∂xj(φ′iu′j) ≈ K∇2φ
where K is the eddy diffusivity (K � k, with k molecular diffusivity). An analo-
gous form holds for the eddy momentum fluxes u′iu

′
j with the turbulent viscosity

νt instead of K. In these closures theories, K and νt are fixed constant.

However, usually, large eddy simulations (LES), which resolve explicitly the
larger eddies and parametrize the smaller eddies, use different parametrizations to
take into account just the non resolved part of the energy spectrum and the spa-
tial variability of turbulent viscosity and diffusivity, building non linear viscosities
and diffusivities based on the cascade theory for turbulence (Fig. 1.11). The first
kind of this parametrization was developed by Smagorinsky in 1963 [Smagorinsky ,
1963; Fox-Kemper and Menemenlis , 2008] and is valid for 3D turbulence, while an
analogous scheme for 2D turbulence was developed by Leith in 1996 [Fox-Kemper
and Menemenlis , 2008]. They are to be used accordingly to the turbulent cascade
feature of the process resolved. Usually, the Leith viscosity is more accurate for
MOLES (mesoscale ocean large eddy simulations), which have a grid resolution of
5-50 km; while the Smagorinsky viscosity can be used without introducing big er-
rors in the SMOLES (submesoscale ocean LES), which have a grid resolution from
100 m to 1 km. In fact, although submesoscale eddies obey the turbulent inverse
energy cascade typical of 2D turbulence, they usually can’t reach large horizontal
sizes, maintaining a more 3D isotropic structure.

Mesoscale and submesoscale eddies activities are important also in the Arctic
Ocean. There, the complexity of the interactions between ocean-air-sea-ice, which
is not fully understood, makes it difficult for ocean general circulation models to
represent temperature and salinity profiles [Steiner et al., 2004]. The necessity
of understanding the subgridscale processes in the Arctic leads to the develop-
ment of idealized numerical models that can be helpful for developing accurate
parametrizations of the small scale processes.
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The importance of including Arctic Ocean submesoscale eddies effect in global
climate models was first understood when Fox-Kemper et al. [2011] introduced
a parametrization for submesoscale eddies, known as MLE parametrization, and
further explained in Sec. 1.6.5. When used in global climate models (GCMs), it
simulates better the global ocean mixed-layer depth. This is particularly enhanced
in the Arctic Ocean where GCMs without the MLE parametrization overestimate
the mixed-layer depth [Fox-Kemper et al., 2011]. Mixed-layer depth modification
implies a redistribution of sea ice thickness, since the surface layer heat capacity is
reduced when the parametrization is used. Horvat et al. [2016], through idealized
ocean model experiments, show that floe size and thickness distribution (FSTD)
need to be included into GCMs, because the heat exchanged between open water
and sea ice is not instantaneously mixed throughout the mixed-layer but fronts
and eddies form. Fronts and eddies form also in wintertime leads and the use of
high-resolution idealized ocean model simulations can help to understand the ef-
fects of submesoscale instability in the energy pathways. This, indeed, is the goal
of this work.

Also process models, like climate models, use turbulence closures. In this work,
which studies submesoscale eddies, the Smagorinsky closure is adopted.

1.5.1 Smagorinsky viscosity

The Smagorinsky eddy viscosity usefully represents the subgrid scale energy
transfer when the gridscale lies in the energy intertial range of the energy spec-
trum for 3D turbulence developed by Kolmogorov, i.e. between the large scale
forcing range, where the injection of energy happens, and the small scale dissipa-
tion range, where molecular viscosity dissipates energy.

The general energy equation, which can be obtained by dotting the momentum
equation into the velocity, written in wavenumber space k, is given by

∂E(k)

∂t
= −∂FE

∂k
− νk2E(k) + SE(k, t) (1.8)

where E(k) is the energy per unit k, FE is the flux of energy between wavenum-
bers, SE represents sources or sinks and the ν term is the viscous term. For
small wavenumbers (big scales) the forcing term is dominant, for big wavenumbers
(small scales) the viscous dissipation is dominant. But for wavenumbers in the
middle range between these two limits, known as the inertial range, these terms
are negligible and only the inertial terms given by FE is dominant. Moreover, in
the steady state, (1.8) gives ∂FE

∂k
= 0 which establishes a constant flux rate ε at
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every wavenumber. Finally, Kolmogorov theory, based on dimensional analysis,
estimates the energy spectrum E(k) in the inertial range:

E(k) ∝ ε−2/3k−5/3 (1.9)

establishes the forward cascade of energy, from the forcing range toward the dissi-
pation range at the Kolmogorov wavenumber

kd = ε1/4ν−3/4 (1.10)

which is a O(1 cm) length scale. Obviously, the dissipation length scale is bigger
for bigger viscosity and for smaller energy flux.

In a DNS model, the gridscale is small enough to resolve the viscous dissi-
pation scale, so that the energy spectrum is completely resolved. Otherwise, if
the gridscale is bigger than the viscous scale, parametrizations need to be used.
Smagorinsky’s approach was developed for LES simulations, where big eddies are
resolved, so that the gridscale wavenumber k∗ is inside the inertial range. His idea
is to find the spatial and time variable viscosity such that the dissipation happens
at the gridscale, kd ∝ k∗ = 2π/∆x:

ν∗ =

(
γ∆x

π

)2
√(

∂u∗
∂x
− ∂v∗

∂y

)2

+

(
∂u∗
∂y

+
∂v∗
∂x

)2

(1.11)

written for the hydrostatic case, where w is negligible and the predominant vis-
cosity is horizontal. u∗ and v∗ are the velocities at the smaller resolved scale. The
eddy viscosity in the Smagorinsky scheme is adjusted at every time scale for every
grid cell given the smallest resolved flow and ε.

Smagorinsky, also, supposes that eddies diffuse momentum and tracers at the
same rate, and uses the same eddy viscosity for both viscosity and diffusivity.

The implementation of the Smagorinsky viscosity will be further discussed in
Sec. 2.1.5. Here it is important to notice that the fact that the Smagorinsky
viscosity is only used for the horizontal momentum closure is limiting the bias
introduced when treating the submesoscale turbulence as a 3D forward energy
cascading turbulence.

1.6 Submesoscale eddies

Oceanic eddies, such as mesoscale and submesoscale eddies, are key features of
the Arctic Ocean, transporting water masses and properties, such as salt, nutri-
ents, contaminants, heat and momentum, and thus affecting the large scale flow
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and the biogeochemical cycles including phytoplankton blooms.

Submesoscale eddies, which are the focus of this work, develop at the surface
oceanic mixed-layer, as will be seen in Sec. 1.6.1, and are mainly formed near
oceanic fronts. Indeed, they drive restratification of the mixed-layer, as will be
seen in Sec. 1.6.2. This process is particularly active in mid-latitude oceans, but it
is expected to be important also in polar regions [Fox-Kemper et al., 2011], where
submesoscale eddies can impact sea ice, primary production, lateral transport of
properties and the upper ocean heat budget.

The ocean mixed-layer (ML) is the surface upper ocean layer in contact with
the atmosphere. It is usually well mixed in the vertical, with a small stratifica-
tion, but not always well mixed in the horizontal direction, since there could be
horizontal density gradients. The vertical mixing of the mixed layer is established
by mixing and stirring processes in the ocean which compete with restratification
processes. Mixing is caused by convection (due to heat or salt fluxes from the
atmosphere to the ocean, such as warming or, at high latitudes, freshening) and
shear mechanisms. Restratification is due to gravitational overturning and subme-
soscale eddies. The spatially variable ocean-atmosphere fluxes create fronts in the
ocean surface layer characterized by vertical isopycnals and strong horizontal den-
sity gradients. Gravity slumps the vertical isopycnals and more lighter water sits
above denser water increasing the stratification of the mixed layer. However, the
Earth rotation limits the frontal slumping establishing a balance between geostro-
phy and gravity, the so called geostrophic adjustment [Tandon and Garrett , 1994,
1995], which leaves the isopycnals tilted, as will be seen in Sec. 1.6.3. This front,
finally, can be baroclinically unstable and give rise to submesoscale eddies which
move properties laterally and tend to restratify the fluid [Boccaletti et al., 2007;
Fox-Kemper et al., 2008]. The complex process by which the initially vertical front
tilts is known as frontal spin-down process, and it will be studied deeply in Sec.
1.6.2. Due to this complex balance between mixing and restratification processes,
the mixed-layer undergoes a seasonal cycle, deepening when mixing is dominant
and getting shallower when stratification is more important.

1.6.1 Mesoscale and submesoscale baroclinic instability

Mesoscale and submesoscale eddies originate from baroclinic instabilities that
can develop from the release of available potential energy in the ocean interior and
in the ocean mixed-layer respectively.

Perturbations of the mean flow in certain conditions of stably stratified rotat-
ing fluids can give rise to baroclinic instability, which converts the potential energy
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Figure 1.12: Oceanic baroclinic instability modes separation into mesoscale and
submesoscale (bottom) and their respective vertical distributions (top), from mea-
surements of North Pacific Ocean. Figure from Boccaletti et al. [2007].

stored in the tilted isopycnals into kinetic energy of the perturbation. Baroclinic
instability differs from barotropic instability, in which the absence of the Earth
rotation leaves the isopycnals flat and, due to shear in the horizontal flow, pertur-
bation can grow as gravity waves. Instead, baroclinic instability naturally emerges
in rotating fluids, where, due to the thermal wind relation

∂b

∂y
= −f ∂u

∂z
(1.12)

isopycnals are tilted and store potential energy. For initial times the perturbation
has small amplitudes and can be treated linearly with the instability theory. How-
ever, soon, turbulence is enhanced from growing and interacting modes, for the
non-linear nature of fluid motions, and vortical coherent structures like eddies can
form at later times.

Mesoscale and submesoscale eddies differ for their size and their growth rate.
Their differences are noticeable through the quasi-geostrophic (QG) stability anal-
ysis on a background state [Boccaletti et al., 2007]: two separate classes of baro-
clinic instabilities appear (Fig. 1.12), one generating the mesoscale eddy field and
one generating a smaller and faster mode, known as submesoscale. The mesoscale
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affects the entire depth of the ocean, with horizontal size of the order of 100 km
and a time scale of the order of 1 month; the submesoscale affects a shallow region
of the ocean, the surface mixed-layer, with smaller size of the order of 1 km and a
short time scale of about 1 day.

Due to their length scale, mesoscale and submesoscale have different Rossby
numbers. The Rossby number expresses the ratio between the inertial force or the
rate of change of momentum and the Coriolis force

Ro =
U

fL
(1.13)

where f is the Coriolis parameter, which is related to the Earth rotation period
through Trot = 2π/f . f−1 is called the inertial timescale, which is about 3 hours
at mid-latitudes and 2 hours at 80 ◦N. Ro is small if the relative motion of the flow
considered is slower than the Earth rotation, or, equivalently, if the characteristic
horizontal length scale of motion is large compared to the distance traveled by a
parcel at velocity U in a rotational period Trot. In other words, Ro is small if the
Earth rotation governs the motion of the fluid.

At the mesoscale, the large scale makes Ro � 1, and the quasi-geostrophic
theory is valid. At the submesoscale, instead, due to the small mixed-layer ver-
tical depth in which submesoscale eddies develop, the Rossby number is bigger
Ro ∼ 1 and the flow deviates from the quasi-geostrophic theory with an important
ageostrophic component. For this reason, the mesoscale is also called geostrophic
baroclinic instability and the submesoscale ageostrophic baroclinic instability.

Another important dimensionless parameter can be introduced to express the
ratio between vertical stratification and vertical shear, i.e. mixing: the bulk
Richardson number

Ri =
∂b
∂z∣∣∂u
∂z

∣∣2 =
N2∣∣∂u
∂z

∣∣2 =
N2H2

U2
(1.14)

where H is the length scale of vertical motion and

N2 =
∂b

∂z
(1.15)

is the frequency at which a parcel would oscillate when subjects to a vertical dis-
placement, and expresses the stratification of the water. For strongly stratified
fluid, such as the ocean interior, Ri � 1; for weakly stratified fluid, such as the
oceanic mixed-layer, Ri ∼ 1.
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In the baroclinic instability theory Rossby number and Richardson number are
related one each other through the deformation radius

Ld =
NH

f
(1.16)

which is, as will be seen in Sec. 1.6.3, the natural instability length scale. Posing
L ∼ Ld it follows NH/fL ∼ 1 and

Ro2Ri ∼ 1 (1.17)

Thus, for the strongly stratified ocean interior, (1.17) confirms Ro � 1, with a
time scale bigger than the rotational period T � f−1, and a bigger length scale
L� U/f . For the weakly stratified ocean mixed-layer, both Ro and Ri are order
1, and the typical time scale and length scale are faster and smaller, respectively:
T ∼ f−1 and L ∼ U/f . Table 1.1 summaries the main features of mesoscale and
submesoscale.

Mesoscale Submesoscale
deep (entire depth) shallow (mixed-layer)

L = 100 km L = 1 km
τ = 1 month τ = 1 day

O(1 month−1) short growth rate O(1 day−1) fast growth rate
Ro� 1 Ro = O(1)
Ri� 1 Ri = O(1)

geostrophic baroclinic instability ageostrophic baroclinic instability

Table 1.1: Mesoscale and submesoscale baroclinic instabilities features.

Mesoscale eddies impact the ocean interior through diapycnal mixing and lat-
eral transport, being an important link between the ocean basin boundaries and the
ocean interior. Submesoscale eddies, also called mixed-layer eddies (MLEs) [Fox-
Kemper et al., 2008], are energized by frontal slumping and play an important role
in determining the ocean surface layer properties. Mesoscale and submesoscale
eddies are connected one each other: MLEs emerge naturally from mesoscale ed-
dies by a downscale transfer of energy. Simulations allowing the development of
mesoscale and submesoscale eddies show that mesoscale and submesoscale eddies
have comparable horizontal velocities but, due to the ageostrophic nature of sub-
mesoscale eddies, MLEs have important vertical velocity [Fox-Kemper et al., 2008].
From that, vertical and horizontal eddy buoyancy fluxes have different magnitude
in mesoscale and submesoscale:
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• w′b′: only MLEs have big Ro and, thus, vertical velocity;

• u′b′, v′b′: from mixing length theory bigger horizontal transport corresponds
to bigger eddies.

To sum up, while horizontal fluxes are due to the mesoscale eddy field, vertical
fluxes are typical fluxes of submesoscale eddies. Moreover, w′b′ > 0, indicating a
tendency to restratify the mixed-layer.

1.6.2 Mixed-layer eddies in the frontal spin-down problem

Fronts can be defined as large density (or other tracers) gradient in one hor-
izontal direction and weak gradients in the perpendicular horizontal direction
[McWilliams , 2021]. They are common in the ocean, especially at the surface,
the bottom and near the shore, with horizontal widths from meters to kilometers.
Most of the oceanic fronts are transient events with their own life time. Oceanic
surface fronts play important roles in the energy pathways between ocean scales,
giving rise, during the frontogenesis process, to an ageostrophic overturning circu-
lation in the across-front direction and instabilities which spread laterally water
properties through small scale coherent vortical structures.

Submesoscale baroclinic instabilities are a typical instability that develops at
an oceanic surface front in the along-front direction. They can grow in a qui-
escent front where lateral density gradients are formed through surface fluxes or
mesoscale straining. Once a front is formed, gravity starts to slump it, lead-
ing to restratification, and reducing the potential energy to the minimum value.
However, the Earth rotation constraints the restratification process through the
geostrophic adjustment process. Baroclinic instabilities can, then, develop and
sustain an ageostrophic flow that enhances submesoscale eddies. Submesoscale
eddy size grows in time, reaching rapidly finite amplitude and spreading away as
the isopycnals tilt further. Indeed, they extract the potential energy stored in the
front by further slumping the front. Submesoscale eddies, due to their vertical
velocity, move up and down along isopycnals, and, as the front falls, they can
move horizontally, spreading easily laterally away and increasing their horizontal
size. This can happen until a mixing forcing appears. Indeed, the presence of
a diurnal cycle prevents the eddies to become bigger and bigger and propagate
laterally. However, due to their rapid growth time scale compared to mesoscale,
submesoscale eddies are efficiently to restratify the ML between mixing events.
Submesoscale eddies are the main drivers of ML restratification [Boccaletti et al.,
2007].
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The frontal spindown problem has been long studied. First, Csanady [1982],
Ou [1984], Tandon and Garrett [1994, 1995] studied the geostrophic adjustment
process (Sec. 1.6.3); secondarily Boccaletti et al. [2007] introduced the effects of
baroclinic instability; finally, Fox-Kemper et al. [2008] developed a parametrization
for the restratification driven by finite-amplitude baroclinic instabilities of the ML
(MLEs) in terms of an overturning streamfunction that tilts the isopycnals, based
on the phenomenology of the MLEs (Sec. 1.6.4 and 1.6.5).

1.6.3 Geostrophic adjustment

Geostrophic adjustment is the process by which an initial anomaly in the pres-
sure field adjustes to a geostrophic balance state in a rotating fluid.

In a rotating fluid, the initial anomaly splits into a geostrophic part and an
ageostrophic part. The ageostrophic flow is rapidly propagated away as a gravity
wave, leaving behind only the geostrophic adjusted state. It is the presence of the
Earth rotation that allows this process to exist in the ocean. With no rotation, in
fact, all the initial perturbation propagates away at the gravity wave speed

√
gH,

leaving no pressure gradients inside the domain of study. For rotating fluids, part of
this pressure field balances with the Coriolis force, creating a geostrophic adjusted
state. In simple cases in which potential vorticity is conserved, that is inviscid
and adiabatic flow, the final steady state solution is easily found [Vallis , 2006]. A
natural length scale appears in the problem, the Rossby radius of deformation

Ld =

√
gH

f
(1.18)

which sets the distance by which the flow is in geostrophic balance. The geostrophic
adjustment appears when the length scale of the initial anomaly is larger than the
deformation radius; or, equivalentely, when the frequency of the anomaly is slower
than the rotational frequency f . Indeed, in order to have geostrophic balance the
Rossby number Ro = U/(fL) should be small.

An example of geostrophic adjustment is in the presence of oceanic fronts
[Csanady , 1982]. A front, with its horizontal density gradient, creates a pressure
gradient force, which forces the fluid to move in the along density gradient direc-
tion, developing two opposite velocities at the surface and at the base, acting to
slump the front and converting potential energy into kinetic energy. If rotation is
important, a transverse circulation develops, with velocities in the perpendicular
direction, i.e. along the front. Again, they are opposite at the surface and at the
bottom. The equilibrium state is reached when the across front velocity stops and
the left velocity is in the perpendicular direction. Thus, the difference between
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non rotating and rotating fluids is that only in rotating fluids the front is not com-
pletely flattened but the isopycnals are tilted in order to be in geostrophic balance.

Figure 1.13: On the top: density interface shape after geostrophic adjustment in
Csanady study [Csanady , 1982]. On the bottom: realistic visualization of density
field in the model developed by Ou [1984].

Fig. 1.13 on the top shows the geostrophically balanced interface in the two
layers study by Csanady [1982]. The S-shaped interface becomes more complex
when continuous stratification is used [Ou, 1984], with density gradients greatest
near the top and the bottom and smaller inside, with isopycnals flattened (bottom
figure in Fig. 1.13). Tandon and Garrett [1994, 1995] study the restratification
of the mixed-layer due to horizontal density gradients and find a scaling for the
stratification N2, introducing the equivalent of the vertical stratification in the
horizontal across front direction

M2 =
∂b

∂y
(1.19)

where the front is considered along the x-direction so that the buoyancy gradient is
in the y-direction, and using the relations between Rossby and Richardson numbers
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in (1.17) with Ro and Ri values as in the mixed-layer, ∼ 1. M2/N2 is scaled as
H/L and, finally, the new restratification due to geostrophic adjustment is

N2 =
M4

f 2
(1.20)

Since the geostrophic adjustment timescale is the inertial timescale f−1, it
can appear between two mixing events with typical timescale τ > f−1, such as
the diurnal cycle or less frequent storms. Mesoscale instabilities can not develop
between two mixing events because of their bigger time scale T � τ > f−1, while
submesoscale instabilities have smaller time scale such that τ > T ≈ f−1. It is
therefore important to consider also the restratification effects of MLEs beyond
geostrophic adjustment.

1.6.4 Mixed-layer eddy phenomenology

Figure 1.14: Simulated (solid lines) EKE power spectral density at 2-day intervals
compared with the linear theory prediction (dashed lines). For increasing times the
spectrum deviates from the linear theory establishing a turbulent inverse energy
cascade toward larger scales. Figure taken from Fox-Kemper et al. [2008].

Simulations of frontal slump [Fox-Kemper et al., 2008] show that the flow
reaches finite amplitude instabilities in few days, passing by inertial oscillations
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about the Rossby adjusted state at earlier times if not already in thermal wind
balance. In real oceans however the finite amplitude is reached even earlier [Boc-
caletti et al., 2007].

The frontal spindown problem goes beyond the linear theory, which is useful to
describe the initial behaviour of the instability development and sets the important
length scales involved and the growth rate. After few days, when the instability
reaches finite amplitude, eddies merge and transfer energy to larger scales follow-
ing the inverse energy cascade, as visible in the power density spectrum of eddy
kinetic energy (EKE), Fig. 1.14: for initial times the kinetic energy spectrum is
centered about high wavenumbers, corresponding to small length scale, l = 2π/k,
with a clear peak meaning that the different instability modes do not exchange
energy and the linear theory of non interacting modes applies well; over times, the
kinetic energy spectrum shifts toward bigger scales and, at the same time, deviates
from the linear theory, assuming the familiar slope of two-dimensional turbulence
spectrum characterized by inverse energy cascade from the smaller scales toward
the bigger scales. Indeed, when submesoscale eddies can become larger and larger,
they assume the typical elongated structure of two-dimensional turbulence, since
their vertical length scale is constrained by the ML depth but no such a constraint
exists in the horizontal direction. Thus, submesoscale eddies can grow indefinitely,
at least if no more mixing opposes.

MLEs vary in size according to the strength of the front. The vertical excursion

scale ζ =
√
b′2

N2 is a measure of how much eddies mix up and down in the vertical.
Simulations show that it saturates at ζ ≈ 0.2H when finite amplitude is reached
[Fox-Kemper et al., 2008].

The frontal slump happens without spreading much: M2 decreases only 10%
to 20% while N2 increases by orders of magnitude. It has already been said that
vertical eddy buoyancy fluxes arise in submesoscale eddies with w′b′ > 0 in order
to extract the potential energy stored in the front. Simulations show that the eddy
buoyancy flux direction is more horizontal than the isopycnal slope [Fox-Kemper
et al., 2008]: at finite amplitude, eddy buoyancy fluxes slope is ≈ 1/2 of the frontal
slope.

Simulations show also that the EKE grows exponentially during the linear
phase and then saturates at the initial value of the mean geostrophic kinetic energy
of the front, when looking only at the average over the center of the front, while
it continues to grow, when looking at the basin average beyond the initial frontal
width.
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1.6.5 Mixed-layer eddy parametrization

Figure 1.15: Schematic of the ML restratification. Straight arrows represent eddy
buoyancy fluxes, while circular arrows indicate the overturning streamfunction.
Figure from Fox-Kemper et al. [2008].

The MLE parametrization theory for the ML restratification [Fox-Kemper
et al., 2008] is very similar to the Gent and McWilliams (GM) parametrization
[Gent and Mcwilliams , 1990; Gent et al., 1995] for the mesoscale restratification.
Indeed, both processes originate from baroclinic instabilities that subtract poten-
tial energy stored in the tilted isopycnals, and the eddy-induced advective veloci-
ties can be represented in terms of an overturning streamfunction. Only buoyancy
fluxes need to be parametrized, since momentum fluxes are negligible compared
to the Coriolis force. However, differences are due to the vertical size, which is
fixed by the mixed-layer depth in MLEs, and the fact that N2 is smaller in sub-
mesoscale, where, in general, N2 and M2 are uniform in depth in the ML.

Thus, key parameters in the MLEs problem are the ML depth, the strength
of the front (i.e. ∇Hb), the Coriolis parameter f ; while not important parameters
are the stratification N2 and the width of basin, at least for short times so that
the eddies do not affect the boundaries.

The parametrization is built from the relation between the variation of the
potential energy and the increased vertical eddy buoyancy flux w′b′. Using the
phenomenology aspects of the MLEs it is possible to parametrize the eddy fluxes
with the horizontal buoyancy gradient. Finally, an overturning streamfunction

Ψ ∝ H2

|f |
∇b̄× ẑ (1.21)
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that tilts the isopycnals, with its related Bolus velocity

u∗ = ∇×Ψ (1.22)

parametrizes the eddy buoyancy fluxes, and thus the potential energy extraction,

u′b′ ≡ Ψ×∇b̄ (1.23)

or equivalently

v′b′ = −Ψb̄z

w′b′ = Ψb̄y
(1.24)

where the indices stand for partial derivative in the given direction. The full
parametrization is derived in Appendix A.

Due to the increase effect of restratification when the MLE parametrization is
used, without the implementation of the MLE parametrization GCMs simulations
give deep ML bias. This bias is largest in polar winter regions: sea ice is sensitive
to the MLE parametrization [Fox-Kemper et al., 2011].

1.7 Previous studies in the Arctic

Refreezing Arctic Ocean leads have been studied using both laboratory exper-
iments and high resolution numerical model simulations, in order to capture the
eddy variability. The eddy behaviour has been observed in the experimental tank
of rotating fluid by Bush and Woods [1999, 2000]. Both sea ice dynamics and ther-
modynamics have been coupled to ocean dynamics in numerical models in order
to study brine rejection.

A remarkable study has been conducted by Matsumura and Hasumi [2008].
They setup different numerical experiments in order to perform sensitivity analysis
to different parameters such as air temperature, rotational effects, mixed-layer
depth, strength of the halocline, width of the lead and time duration of the lead’s
opening. They treat the ice cover as an ideal insulator, and set to zero the brine
rejection under sea ice. They artificially close the opening after a fixed time, so
that there is no salt flux for long time scales. They show the frontal formation and
eddy generation from baroclinic instability. Anticyclonic eddies are located at the
base of the mixed-layer. Finally, they suggest a scaling for the triangular form of
dense water intrusion at the base of the mixed-layer, starting from the geostrophic
adjustment natural length scale, the deformation radius Ld (Fig. 1.16):

Ld =
NH

f
≈
√

∆bH

f
(1.25)
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Figure 1.16: Schematic view of refreezing lead in Matsumura and Hasumi [2008].

where the approximation is valid in the limit in which the buoyancy in the two
regions of the front is homogeneous. In fact, in the vertical buoyancy gradient
∂zb = ∆b/H, ∆b is the difference of buoyancy in the two regions of the front,
which, in case of homogeneity, is the same if computed horizontally. Indeed, the
deformation radius is fixed by the injection of negative buoyancy in the open ocean
area, which creates the geostrophically adjusted front.

The negative buoyancy injection at the opening’s surface is equal to the total
buoyancy change in the domain:

WB0ts = (W + Ld)H∆b = (W + Ld)L
2
df

2 (1.26)

where W is the width of the lead, B0 is the buoyancy flux (m2s−3), and ts the
opening time. Dependently on the characteristics of the configuration, Ld can be
bigger or smaller than W and three solutions are possible:

Ld =

√
B0ts
f

if Ld � W (1.27)

Ld =

(
WB0ts
f 2

)1/3

if Ld � W (1.28)

Ld =

√
B0ts

f
√

2
=

(
WB0ts

2f 2

)1/3

if Ld ∼ W (1.29)

The deformation radius expresses the lateral buoyancy transfer under geostrophic
adjustment and it should evolve in time as proportional to t

1/2
s or t

1/3
s .
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Here, it is important to notice that they are not suggesting a scaling for the
intrusion of dense water at the base of the mixed-layer for the eddy formation case.
Indeed, the deformation radius appears as natural scale in geostrophic adjustment
problems. Submesoscale eddies drive ageostrophic currents and deviates from the
prediction for classical geostrophic adjustment.

From the deformation radius the size of submesoscale eddies can be obtained.
Many studies suggest scaling for the radius of eddies over time. Here, since this
work is not interested in providing methods and measurements of eddy sizes, these
scaling are not shown.

The non-hydrostatic effects of convection under the lead has been studied by
[Smith IV and Morison, 1998]. They perform two-dimensional non-hydrostatic
simulations and find that non-hydrostatic effects are dominant for depths below
100 meters, which is almost never realized in the Arctic Ocean, due to the presence
of the strong halocline. They conclude that the dynamics of the realistic Arctic
Ocean under brine rejection is mainly hydrostatic.

1.8 Motivations and objectives

The work presented in this thesis is motivated by the lack of deep understand-
ing of the realistic oceanic response to a brine-driven Arctic Ocean refreezing lead,
and aims to build powerful diagnostics tools to be used in the forthcoming more
complex studies leading toward the development of a parametrization.

Addressed questions are: does the typical length of lateral density transfer
scale with the deformation radius proposed by Matsumura and Hasumi [2008]?
and, does the system reach equilibrium state with a saturated kinetic energy value?

Previous idealized numerical studies focus on the eddy size time evolution and
the effect of brine rejection in the mixed-layer depth, proposing a scaling for the
eddy size and for the deformation radius. In doing so, Matsumura and Hasumi
[2008] treat sea ice as an ideal insulator, posing to zero the heat fluxes between
the atmosphere and the ice-covered-ocean, which is not undergoing brine rejec-
tion. They are supposing initial equilibrium condition between sea ice, ocean and
atmosphere with zero fluxes. Moreover, they artificially close the lead in order to
study the spatial distribution of buoyancy and understanding the long-term effects
on the halocline strength.

This thesis proposes to understand the diagnostics of the restratification mech-
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anism driven by realistic heat fluxes at a single refreezing sea ice edge, intended
as one large-width lead edge. In particular, single restratifying processes, such as
classical gravitational overturning, geostrophic adjustment and mixed-layer eddies
(MLEs), are studied separately. Then, the importance of the external forcing is
investigated in order to find a relationship between air temperature and rate of
change of restratification. Furthermore, new diagnostics tools such as the overturn-
ing streamfunction, will be used. Finally, the whole study is carried out separating
the flow into mean and eddy energy components.

The choice of developing, first, a single ice-edge system allows to study the
strength of the lateral spread of MLEs over time and will be of help in future
studies of lead, intended as two interacting sea ice edges that undergo opposite
slumping and generate currents in opposite directions. The ocean response regime
will be determined by the ratio between the width of the lead and the mixed-layer
depth, which enters also the deformation radius. This work, therefore, is intended
to be at the basis of the development of a parametrization for refreezing leads.
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Chapter 2

Numerical model configuration
and Diagnostics

In this work, the Massachusetts Institute of Technology general circulation
model (MITgcm) [Marshall et al., 1997] in the hydrostatic form with the ther-
modynamic sea ice package is used for investigating the oceanic response to the
forcing at the winter sea ice edge.

The MITgcm model is suited to model a wide range of phenomena, from the
small scale of meters to the large global scale phenomena. It has been widely
used in idealized configurations for studying the effect of mesoscale and subme-
soscale interactions [Boccaletti et al., 2007; Fox-Kemper et al., 2008] and the eddy
formation in the Arctic Ocean [Horvat et al., 2016; Horvat and Tziperman, 2018;
Manucharyan and Timmermans , 2013; Mensa and Timmermans , 2017]. Baro-
clinic instabilities and ocean eddies can be, in fact, directly resolved by high-
resolution MITgcm model simulations.

In this chapter, the numerical model characteristics are presented in Sec. 2.1
together with the thermodynamic sea ice package and the Smagorinsky eddy vis-
cosity setup. Numerical model configurations used in this work are presented in
Sec. 2.2. Finally, diagnostics tools and functions that will be used in Chapter 3
are defined in Sec. 2.3.

2.1 MITgcm model

The Massachusetts Institute of Technology general circulation model (MIT-
gcm) [Marshall et al., 1997] is the ocean model used in this work.
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It has a single dynamical kernel that can drive forward either oceanic or atmo-
spheric simulations, using the z-p isomorphism. This is made possible by interpret-
ing the generic vertical coordinate r as pressure p when modeling the atmosphere
and as height z when modeling the ocean.

In general, the MITgcm model solves the Navier-Stokes equations in the Boussi-
nesq approximation, using the finite volume techniques and the Arakawa C grid
discretization. It can be hydrostatic or non-hydrostatic dependently on the desired
dynamics one wants to study. In this work, the hydrostatic version is used.

The model is equipped by a set of packages that can be set to run a variety of
simulations. Among them, parametrizations of subgrid scale variability, such as
GM parametrization [Gent and Mcwilliams , 1990; Gent et al., 1995], are imple-
mented.

The state of the fluid at any time is characterized by the distribution of the
velocity field v, the potential temperature θ, the salinity (or specific humidity for
the atmosphere) S, the pressure potential (or geopotential for the atmosphere)
field φ and the density ρ = ρ(θ, S, p). The Boussinesq equations that govern the
evolution of these fields are:

Dvh
Dt

+ (2Ω× v)h +∇hφ = Fh
Dṙ

Dt
+ k̂ · (2Ω× v) +

∂φ

∂r
− b = Fv

∇h · vh +
∂ṙ

∂r
= 0

b = b(θ, S, r)

Dθ

Dt
= Qθ

DS

Dt
= QS

(2.1)

where Fh and Fv and Qθ and QS are forcing and dissipation terms in the horizon-
tal and vertical momentum equations and tracers equations, respectively, set by
the forcing packages in the model.

For the ocean r = z, ṙ = Dz
Dt

= w is the vertical velocity, φ = p/ρc is the pressure

potential, with ρc fixed reference density of water, and b(θ, S, z) = −g ρ(θ,S,z)−ρc
ρc

is
the buoyancy. The general set of equations for the ocean in the tangent-plane
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Boussinesq approximation written in z-coordinates are:

Dvh
Dt

+ f k̂× vh +∇hφ
′ = Fh

εnh
Dw

Dt
+
∂φ′

∂z
+ g

ρ′

ρ0

= εnhFv

∇h · vh +
∂w

∂z
= 0

ρ′ = ρ− ρ0

Dθ

Dt
= Qθ

DS

Dt
= QS

(2.2)

with boundary conditions

w = 0 at z = −H(x, y) ocean bottom

w =
Dη

Dt
at z = η ocean surface

(2.3)

with η displacement of the free surface and εnh non-hydrostatic parameter, set
to 0 in the hydrostatic form and 1 in the non-hydrostatic form. Note that the
Boussinesq equations (2.2) are written for the perturbation fields, indicated with a
prime, and also called anomalies from the reference resting fluid or simply anoma-
lies. These equations are obtained by subtracting from the general equations the
equations for the reference state. In fact, the density is split into ρ = ρ0 + ρ′ with
ρ0 = ρc the reference constant density of water equal to 999.8 kg m−3, so that

b = −g ρ
′

ρ0

= −gρ− ρ0

ρ0

(2.4)

is the buoyancy written in terms of the density anomaly ρ′. The basic state has ρ0

constant and zeros velocities. Thus, the velocity field is written as v = v0 +v′ = v′

and the prime has been dropped.

Once the output files are generated, the state variables and other diagnostics
variables are written in NetCDF (Network Common Data Form) files. NetCDF is a
self-describing scientific data format, with metadata that describe each data array,
so that variables, dimensions and attributes are given. They can be accessed to
through many different utilities, browsers or software, such as the ncdump utility
to read NetCDF binaries data into ASCIItext files, the ncview visual browser to
quickly visualize and plot NetCDF data, and MATLAB.
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2.1.1 Hydrostatic form

The MITgcm model can be hydrostatic, quasi-hydrostatic, quasi-nonhydrostatic
and non-hydrostatic. First, the pressure potential is separated into a surface pres-
sure potential φs(x, y), a hydrostatic part φhyd(x, y, r) and a non-hydrostatic term
φnh(x, y, r):

φ(x, y, r) = φs(x, y) + φhyd(x, y, r) + φnh(x, y, r) (2.5)

In this work the hydrostatic form of the MITgcm model is used, with εnh = 0 and
φnh = 0.

The pressure terms in the Boussinesq equations (2.2) contain the potential
pressure anomaly φ′ = φ−φ0 where φ0 = p0/ρ0 and p0(z) the hydrostatic pressure
of the fluid at rest:

∂p0(z)

∂z
= −gρ0 (2.6)

Once integrated, it gives

p0(z) =

∫ 0

z

gρ0 dz
′ = −gρ0z (2.7)

where the atmospheric pressure has been neglected p0(0) = patm ≈ 0. The model,
however, allows to add a loading pressure term to take into account the effect of
the pressure at the surface of the ocean.

The total hydrostatic pressure p is computed by integrating

dp

dz
= −gρ (2.8)

which gives

p(x, y, z, t) =

∫ η

z

gρ(x, y, z, t) dz′ (2.9)

where, again, the atmospheric pressure has been neglected p(z = η) = patm ≈ 0.
By dividing per ρ0, the pressure potential can be computed. After manipulating
the integral as

φ(x, y, z, t) =
p

ρ0

=

∫ η

z

g
ρ− ρ0

ρ0

dz′ +

∫ η

z

g dz′

= −
∫ η

z

b dz′ + g ( η − z)

(2.10)
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and subtracting by the reference p0/ρ0 given by (2.7), the pressure potential
anomaly is given by

φ′(x, y, z, t) = φ(x, y, z, t)− φ0(z)

= g η(x, y, t) −
∫ η

z

b(x, y, z, t) dz′
(2.11)

Thus, at a given depth the pressure potential in the hydrostatic limit is due to the
buoyancy of the water above and the displacement of the free surface. The surface
and hydrostatic pressure potential anomalies are therefore

φ′s = g η

φ′hyd = −
∫ η

z

b dz
(2.12)

They appear in the Boussinesq equations (2.2) through their gradient. The third
momentum equation in the hydrostatic approximation gives

∂φ′hyd
∂z

= b (2.13)

Hereinafter, the prime will be dropped where not needed.

The solution method is different for the hydrostatic or non-hydrostatic forms of
the equations, since a combination of the momentum equations and the continuity
equation is needed to compute φnh. In the hydrostatic form, instead, the surface
pressure and the hydrostatic pressure at any level are computed from the weight of
the fluid above, then, the horizontal momentum equations are stepped forward and,
finally, w is obtained diagnostically from the continuity equation w = −

∫ z
0
∇h ·

vhdz
′.

2.1.2 Model discretization and algorithm

2.1.2.1 Time stepping

The MITgcm model in the hydrostatic form integrates four prognostic equa-
tions for the horizontal flow, temperature and salinity (u, v, θ, S) and solves, through
the constraints imposed by the diagnostic equations, three diagnostic equations for
vertical flow, density or buoyancy, and pressure potential (w, ρ, φhyd). In addition,
the surface pressure or height may be described by either a prognostic or diagnos-
tic equation.
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The algorithm is based on the pressure method for the hydrostatic equations
with a rigid-lid or with an implicit linear free surface, with variables co-located in
time and with Adams-Bashforth time-stepping method.

The pressure method ensures the non-divergenceness of the flow. In fact, the
horizontal momentum equations can not be integrated explicitly from the variables
at the previous time step, due to the presence of the unknown pressure term. So,
the algorithm, first, finds the intermediate and temporary solution (u∗, v∗) at time
n + 1 given the solution at time n and n + 1/2, neglecting the pressure term. In
this way, however, the flow can be divergent, and the pressure field at time n+ 1
is found to keep the flow non-divergent, as established by the continuity equation.
The solution (un+1, vn+1) is, then, found from (u∗, v∗) and φn+1.

The rigid-lid condition is the simple surface boundary condition that implies no
normal flow at the boundary w = 0 at z = η. It simply gives a vertical integrated
continuity equation that doesn’t contain Dη/Dt. With the assumption of a linear
free-surface the vertically integrated continuity equation gives ∂x

∫
udz+∂y

∫
vdz =

−∂tη + F with F freshwater term. In this case, the algorithm first finds the
intermediate and temporary η∗ from the continuity equation given ηn and then
ηn+1 given η∗. In the model a switch-like parameter εfs can be set to select between
rigid-lid εfs = 0 and free-surfaceεfs = 1. In this work, εfs = 1.

2.1.2.2 Spatial discretization

The spatial discretization uses the finite volume method. In the finite volume
method, a partial differential equation (PDE), like the advection-diffusion equation
for a tracer concentration c,

∂c

∂t
+ v · ∇c = k∇2c (2.14)

in the incompressible Boussinesq approximation, can be written as

∂c

∂t
+∇ · (vc− k∇c) =

∂c

∂t
+∇ · F = 0 (2.15)

with F = vc− k∇c flux. It can be integrated in discretized cell volumes∫
Vi

∂c

∂t
dV +

∫
Vi

∇ · F dV = 0 (2.16)

and, using the divergence theorem to the flux term, gives

Vi
∂ci
∂t

+

∫
Si

F · n̂ dS = 0 (2.17)
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where c = (1/Vi)
∫
Vi
ci dV is the average value of the concentration c in the cell i.

Thus, in the finite volume method, the divergence terms in PDEs are converted
into fluxes at the surfaces of each finite volume, giving the exact expression for the
average value over volumes. Since the flux entering a given volume is identical to
that leaving the adjacent volume, this is a conservative method in which one cell’s
loss is another cell’s gain, making it widely used in computational fluid dynamics
models compared to finite difference methods.

Figure 2.1: On the left: the Arakawa C grid. On the right: cell-centered approach
(a) and interface-centered approach (b). Figures taken from MITgcm manual.

The MITgcm model uses the Arakawa C grid discretization (Fig 2.1). Scalar
variables are located at mass points and vectors are staggered and located at cell
faces. In particular, the component of the flow (u, v, w) are staggered in space such
that each component falls on the interface between continuity cells in its direction.
The continuity cell is also called the tracer cell.
The vertical and horizontal grids are treated separately. There are two versions of
the vertical grid: the cell-centered approach and interface-centered approach. In
the cell centered approach the interface depths are specified and the tracer points
are at cell centers, i.e. centered in between the interfaces. In the interface centered
approach tracer levels are specified and the w-interfaces are centered in between.
In this work the horizontal Cartesian coordinates and the cell centered vertical
grid are used.

47



2.1.2.3 Continuity equation

The Arakawa C grid discretization is introduced naturally to ensure mass con-
servation. In the incompressible Boussinesq equations the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.18)

can be discretized as
1

∆x
δiu+

1

∆y
δjv +

1

∆z
δkw = 0 (2.19)

where δiu = ui+1/2 − ui−1/2 with i, j, k indices for x,y,z directions and ∆x the grid
spacing in the x-direction. The derivation operator naturally staggers the variables
in the three directions. By choosing the C grid discretization the velocities are
staggered to ensure the mass conservation inside each cell.

2.1.2.4 Energy conservation

The C grid discretization guarantees the energy conservation as the sum of
kinetic energy and potential energy.

The kinetic energy per unit mass is defined as

KE =
1

2
(u2

i
+ v2

j
+ εnhw2

k
) (2.20)

so that it involves only the horizontal velocity components in the hydrostatic ver-

sion. Due to the staggered grid, ()
i

stands for the average value of adjacent cell
edges in the x-direction (ui = (ui+1/2 + ui−1/2)/2), and gives the average value of
the cell which can be considered as located at the cell center. In this way, the
kinetic energy is the mean kinetic energy of the cell.

The potential energy can be computed from the buoyancy, a scalar located at
cell centers. The potential energy per unit area is

PE =
1

A

∫
A

∫ η

−H
ρgz dxdydz

=
1

A

∫
A

[∫ η

−H
ρ0gzdz −

∫ η

−H
ρ0bzdz

]
dxdy

=
1

A

∫
A

ρ0

[
1

2
g(η2 −H2)−

∫ η

−H
bzdz

]
dxdy

(2.21)

and subtracting the initial value and dividing per ρ0 gives

PE =
1

A

∫
A

[
−
∫ η

−H
bzdz +

1

2
gη2

]
dxdy (2.22)
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Thus, the potential energy is a quantity of each cell, located at the cell centers.

Energy is conserved in the whole domain volume, due to the staggered C grid.

2.1.2.5 Hydrostatic balance

The discretized vertical momentum equation can be written as

εnh
∂w

∂t
+ g

ρ′
k

ρ0

+
1

∆z
δkφ

′ = ... (2.23)

by putting the non linear terms and forcing and dissipation terms to the RHS.
This equation is built consistently with the momentum equation meaning, that is
to solve the equation for the velocity. The discretized form of the third momentum
equation finds the solution w located at cell faces in z-direction in the Arakawa C
grid. Thus, all the terms in the momentum equation has to be consistently located
at vertical cell faces. The buoyancy term needs to be computed as its mean value

in z-direction: the average of the density anomaly is indicated as ρ′
k
. The pressure

term, even though located at mass points, instead, doesn’t need to be averaged,
since here its vertical derivative staggers its location to the cell vertical faces.

A consideration about buoyancy needs to be make here. Apparently, once
discretized, the diagnostic definition of the buoyancy from density anomaly (2.4) is
inconsistent with the dynamical definition one can get from the hydrostatic balance
(2.13). The diagnostic definition b = −gρ′/ρ0 represents the cell-average buoyancy;
ρ, indeed, is located at cell centers, as S and θ scalars, in order to guarantee tracer
and mass conservations. Beside the pressure potential located at cell centers φC ,
so far called simply φ, the MITgcm introduces another pressure potential located
at cell faces in the vertical φF . They are related one each other and compute in
the CALC PHI HYD subroutine as PhiHydC and PhiHydF variables. φF can be
computed from φC , using as boundary condition at the surface the displacement
of the free surface. φC enters the third momentum equation, while φF gives the
right buoyancy meaning, identical to the buoyancy definition:

1

∆z
δkφ

′
F = bC = b (2.24)

The buoyancy in the hydrostatic balance, is, instead, located at cell faces:

1

∆z
δkφ

′
C = bF (2.25)

As a result bF and bC and linearly related. bC is the buoyancy cell-average value.
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2.1.3 Thermodynamic sea ice package

Sea ice is simulated using the thermodynamic sea ice package of the MITgcm
model, THSICE. It is based on the 3-layer sea ice model introduced by Winton
[2000] and the energy conserving thermodynamic model of sea ice by Bitz and Lip-
scomb [1999]. The model only treats the thermodynamics of sea ice, neglecting the
dynamics, which is, instead, set by the SEAICE package of the MITgcm model,
based on the viscous plastic model [Hibler , 1979].

Figure 2.2: Schematic of the three-layer model for sea ice. From Winton [2000].

In the THSICE package, sea ice is represented with 3 layers: 2 layers of sea
ice, of equal thickness, hi, and 1 layer of snow above the sea ice, with thickness hs.
The lower sea ice layer has fixed heat capacity, while the upper sea ice layer has
variable heat capacity to represent brine pockets effect. In fact, the presence of salt
in seawater creates brine pockets within the sea ice structure, lowering the heat
capacity with the brine content. The snow layer has, instead, zero heat capacity.
The model has four prognostic variables: hs, hi, T1, and T2, upper and lower sea
ice layers temperature, respectively. Heat fluxes at the top and bottom surfaces
determine sea ice temperature and sea ice and snow thicknesses. Grid cells are the
same of the ocean model and the ocean surface layer grid cell can be fully covered
by sea ice or open water.

First, the model valuates the freezing potential for the upper ocean layer at
each cell:

frzmlt = (Tf − SST )
cswρsw∆z

∆t
(2.26)

where ∆z is the ocean upper layer thickness, ∆t is the model timestep, csw is the
seawater heat capacity, ρsw the seawater density, Tf = µS is the freezing temper-
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ature of seawater (it depends on the salinity and µ is an empirical constant) and
SST is the sea surface temperature. Accordingly to SST , frzmlt can be positive
or negative. If SST < Tf , frzmlt > 0, leading to freezing and salinity within
brine is released, otherwise if SST > Tf , frzmlt < 0 and sea ice melts where
present.

Then, the thermodynamics of sea ice computes the sea ice surface tempera-
ture, the two layer sea ice temperatures and the sea ice and snow thicknesses. It
uses the energy balance at the surface (where the albedo is computed with the Los
Alamos National Laboratory sea ice model, LANL CICE) and the heat conduction
through the snow and ice. Among the output of the thermodynamic package of
sea ice, there are the heat flux out of the ocean, the fresh-water flux out of the
ocean, the salt flux out of the ocean, that are used to model the ocean response.

In this work the thermodynamic sea ice package of the MITgcm model with
only 2 layers of sea ice and without the snow cover for the absence of precipitation
is used. Moreover, in this formulation of the model, the pressure exerted by sea
ice is not added at the surface of the ocean, since the pressure of the ocean is
assumed to be the pressure of ocean water and sea ice melted: η is the level of the
free surface when all the ice is melt.

2.1.4 CheapAML package

The MITgcm model is provided with an atmospheric package, the Cheap Atmo-
spheric Mixed Layer (CheapAML) model, that performs atmospheric temperature
and humidity in the atmospheric boundary layer. It is a fully coupled ocean-
atmosphere model developed for ocean-only modeling in order to better represent
air-sea exchanges. Here, atmospheric temperature is specified and air-sea fluxes
are computed through parametrizations.

2.1.5 Eddy viscosity and diffusivity

In this work, the eddy viscosity is parametrized by the Smagorinsky scheme.
The Smagorinsky approach for the turbulent closure of the equations (Sec. 1.5.1)
is already implemented in the MITgcm model. It can be set by the user through
the parameter viscC2Smag, which estimates the energy flux at every grid point
and adjusts the viscosity accordingly. However, only the horizontal viscosity is
implemented in the MITgcm model, so there is no vertical viscosity. Moreover,
although Smagorinsky set the eddy diffusivity to be equal to the eddy viscosity, in
this work the diffusion is not explicitly parametrized, and only numerical diffusion
is allowed, following the upwinding/advection scheme. Vertical mixing, instead,
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is realized through convective adjustment of buoyancy, which is the numerical
procedure that immediately adjusts the buoyancy to the N2 = 0 profile in order
to prevent unstable stratification.

2.2 Numerical model configuration

The model domain is a square ocean channel of 50 km x 50 km with 75 m
depth. The depth of the ocean doesn’t affect the solution since, as will be seen,
the relevant ocean dynamics concerns only the upper layers of the ocean. The
horizontal resolution is 50 m with 1000 grid cells in each horizontal directions;
the vertical resolution is 2.5 m with 30 vertical levels. The use of high resolution
allows to resolve the submesoscale eddies from their initial development as small
instabilities in the along edge direction. The model solves the Boussinesq equations
in the tangent f-plane approximation, which establishes isotropy in the horizontal
directions. The axis can be, therefore, oriented as preferred. Here, the sea ice edge
is positioned at the center of the channel and it is zonally oriented, with the origin
of the y-axis y = 0 at the sea ice-edge, so that, in the limit of two interacting sea ice
edge, the axis of the lead is oriented in the x-direction. The left and right regions
of the ocean domain with respect to the ice-edge are an ice-free region and an ice
covered region, respectively. The boundaries are taken as rigid wall at y = −25
km and y = 25 km and open periodic boundaries at x = 0 km and x = 50 km.
The symmetry in the along-edge direction simplifies the configuration that, as will
be seen, under certain circumstances, can be considered as two-dimensional.

2.2.1 Initial ocean state

The initial atmospheric and oceanic conditions are the typical conditions of the
winter Arctic region. The ocean has a constant temperature at freezing point and
is highly stratified by salt, with a strong halocline located at -25 m depth (Fig.
2.3). The salinity jump at the halocline is 0.0033 ms−2. The halocline separates
the water column into a mixed-layer (ML) surface ocean and an interior ocean.
The depth of the mixed-layer is chosen of 25 m, which resembles the real winter
Arctic Ocean ML depth. Furthermore, the ocean ML depth is not interesting in its
absolute value, but it becomes relevant when compared to the width of the lead,
which is not subject of the single sea-ice edge system, but will be studied in a fol-
lowing work. The ocean is initially at rest. There are no solar forcing, resembling
the winter polar night, and precipitation. Wind stress, also, is not considered. The
initial atmospheric temperature is −20 °C. Sea ice is initialized in the ice covered
domain as grid cell with 100% ice concentration and ice thickness of 2 m.
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The simulation runs for 30 days from the initial state, to let baroclinic insta-
bilities evolve and submesoscale eddies grow. The numerical model time step is
taken to be 60 seconds or 30 seconds, in order to have convergent solutions. The
Coriolis parameter is set to f = 1.4× 10−4 s−1, which corresponds to a latitude of
73.7308 ◦N. This simulation is referred to as Standard simulation.

Two possible initial conditions with the same salinity jump at the mixed layer
base but different interior stratifications are compared in Fig. 2.3: in the High
stratification case the salinity profile below the ML is increased by 0.2 at each
vertical level with respect to the Low stratification case. The ocean response is
evident in Fig. 2.4. In the left figure, in the High stratification case the density
anomaly with respect to the initial state affects only the mixed layer without prop-
agating into the deep ocean, while, in the Low stratification case, after 12 days,
some part of the high ML density is lost in the deep ocean, reducing the strength
of the ML front. The right figure in Fig. 2.4, for which a full explaination is given
in Sec. 3.7, shows the kinetic energy ratio between three and two-dimensional
configurations for the High and Low stratification simulations. The important
thing to be noted, here, is that the Low stratification case reaches an energy sat-
uration level after 10 days, while the High stratification run increases its energy
in time. Hereafter, since the goal is to study the dynamics of the mixed layer af-
fected by brine rejection, the High resolution stratification initial condition is used.

Moreover, the dynamics of the ML depends on the forces that play role in the
system, such as the strength of the brine rejection phenomenon, the Coriolis force,
the presence of baroclinic instabilities. The effect of different forcing is studied
separately, by building ad hoc idealized numerical experiments.

2.2.2 External atmospheric forcing

The Standard simulation is initialized with atmospheric temperature of −20 °C.
In order to study the role of atmospheric forcing in determining the strength of the
front, the intensity of the eddy field and the rate of change of the restratification
process, two other simulations with higher and lower external forcing, respectively,
are performed. They are referred to as T0 (Tair = 0 °C) and T40 (Tair = −40 °C)
simulations, and they have the same initial ocean state as the Standard simulation.

2.2.3 Two and three-dimensional configurations

It has already been mentioned that the special symmetry along the ice-edge
can simplifies the study from a three-dimensional to a two-dimensional dynamics.
Simpler two-dimensional configurations, with only one grid cell in the along-edge
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Figure 2.3: Initial ocean state for High stratification case (solid lines) and Low
stratification case (dashed lines). The dotted line represents the mixed-layer depth
at -25 m.

Figure 2.4: Comparison between High stratification case (solid lines) and Low
stratification case (dashed lines). On the left: density anomaly with respect to
initial state for solutions at different days. On the right: t ime evolution of kinetic
energy ratio between three and two-dimensional configurations.
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direction, are built in order to study the differences between the symmetric three-
dimensional and the pure two-dimensional configurations.

The two-dimensional configuration is to be intended as the limit case of the
three-dimensional configuration where the variability of the variables in the zonal
direction is null, or, in other words, the two-dimensional variables have the same
values for all the zonal three-dimensional cells, equal to the zonal average values.
In two-dimensional configurations, in fact, the perturbation of the mean flow in
the along-edge direction is u′ = u−u = u−

∫ Lx

0
u dx = U −

∫ Lx

0
Udx = U −U = 0,

where () =
∫ Lx

0
() dx is the average in the zonal direction and U(y, x, t) is the zonal

average velocity. As a consequence of geometry, in the two-dimensional configura-
tions the instabilities in the along-edge direction can not develop.

The comparison of two and three-dimensional configurations would help to
quantify the effect of the submesoscale instability in the restratification mechanism.
Thus, two-dimensional simulations are performed for each external atmospheric
forcing condition, and are referred to as 2D simulations.

2.2.4 Coriolis parameter

Another simulation experiment is run in the absence of the Coriolis force, and
it is therefore called Nof simulation. In the f = 0 case, the geostrophic adjust-
ment problem doesn’t show an equilibrium where the horizontal density gradients
are maintained. In fact, no net velocity develops in the along-edge direction. For
the absence of the Earth rotation, the small random distributed instabilities in
the zonal direction can not strengthen, making the three-dimensional configura-
tion very similar to the two-dimensional one. For this reason, here, only two-
dimensional Nof simulation is performed.

2.2.5 Covered and open ocean configurations

Two tests simulations are run as limiting cases of the Standard simulation, one
in which all the domain is covered by sea ice (100% sea ice concentration at every
grid cell) and one that is totally ice-free (0% sea ice concentration everywhere).
Since in these limiting configurations fronts can not evolve, for simplicity they are
run only in the two-dimensional configuration.

All the run experiments are summarized in Table 2.1. They have the same
initial ocean state, corresponding to the High stratification case in Fig. 2.3.
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Experiment Dimension Tair Sea ice cover Coriolis parameter
Standard 2D-3D −20 °C 50% f = 1.4× 10−4 s−1

T0 2D-3D 0 °C 50% f = 1.4× 10−4 s−1

T40 2D-3D −40 °C 50% f = 1.4× 10−4 s−1

Nof 2D −20 °C 50% f = 0
Covered 2D −20 °C 100% f = 1.4× 10−4 s−1

Open 2D −20 °C 0% f = 1.4× 10−4 s−1

Table 2.1: Experimental runs characteristics.

2.3 Diagnostics

The frozen atmospheric temperature tend to freeze the ice-free ocean surface
which rejects brine into the ocean. As a consequence, the density of the mixed layer
ocean in the ice-free domain increases, while the other ocean region has roughly
unaltered properties due to insulation of sea ice cover. The real insulation effect
of sea ice will be investigated by looking at heat fluxes. The density increase in
the open ocean region is due only to salt fluxes, since cooling doesn’t affect the
ocean temperature that is already at freezing point. Due to strong horizontal
density gradients, a front develops along the ice-edge. As will be studied, density
gradients, here, are continually enforced due to the persistent brine rejection in
the open ocean region, even after a very thin layer of sea ice has formed.

The goal of this work is to study and quantify the restratification process of
the Arctic Ocean mixed-layer driven by brine rejection. The different experiments
would help in separating the single mechanisms that play role in the system. In the
non rotating frame the restratification brings the new formed dense water below
the light water; in a rotating frame the restratification is blocked by the geostrophic
adjustment which leaves the front slightly tilted in geostrophic balance; finally, if
instabilities develop and grow to submesoscale eddies, the restratification is en-
hanced.

In this section, methods and tools for diagnosing the output of the model ex-
periments are shown. Important diagnostic physical quantities, such as buoyancy,
overturning streamfunction, potential vorticity, potential and kinetic energy, are
defined here, while results are shown in the Chapter 3.

2.3.1 Anomalies from initial state

Since the ocean is initially at rest, it is interesting to look at the variability of
a given physical quantity during the period of time of the experiment. For these
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reason, many diagnosed variables, such as density, buoyancy, potential vorticity,
potential energy, are interesting for their anomalies from their values at the initial
condition. The anomalies from initial condition will be often referred simply to as
anomalies, indicated with ()′.

As an example, the density anomaly from initial condition is the density
anomaly (with respect to the fixed reference density of water ρ0 = 999.8 kg m−3)
variability from the initial density anomaly, or, equivalently, the density variability
from the initial density:

ρ′(t) = (ρ(t)− ρ0)− (ρ(t = 0)− ρ0) = ρ(t)− ρ(t = 0) (2.27)

2.3.2 The along ice-edge average

As mentioned above, the particular zonal symmetric geometry provides a method
of study that simplifies the analysis and can be widely used for every run experi-
ments: the zonal average.

Each variable can be written using the Reynolds decomposition rule into a
mean value and a fluctuation. For example for flow field

u = U + u′ (2.28)

where U ≡ u =
∫ Lx

0
u dx is the average in the along ice-edge direction, or, equiva-

lently, also called the zonal average, and u′ = u−U is the zonal mean perturbation.
In the two-dimensional simulations, u = U and u′ = 0, since there is only one grid
cell in the along ice-edge direction.
In the absence of the Earth rotation, U = 0, since the only velocity that grows is
across the ice-edge, i.e. along the density gradients, and only u′ develops as ran-
dom fluctuation and can not grow through coupling with the mean flow, u′ ≈ 0.
Thus, the two-dimensional limit of f = 0, with U = 0 and u′ = 0, leads to almost
the same results. The same holds for the Covered and Open set-ups, where no
horizontal gradients form and the absence of a flow in the y-direction doesn’t al-
low the formation of the perpendicular x-flow, despite the existence of the Coriolis
force.

Only the combination of Earth’s rotation and three-dimensionality can lead to
enhanced along ice-edge instabilities that grow in time and affect the mean flow
and the energy of the system. The comparison between two and three-dimensional
configurations would quantify the effect of submesoscale eddies in the restratifica-
tion process.
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A diagnostic tool useful for visualizing the time evolution of a zonally average
quantity is the Hovmöller diagram, which shows the rate of change of a quantity
in the across edge direction, i.e. placing time versus y-axis. Indeed, the x-axis
in the Hovmöller diagram is taken to be the distance from the ice-edge. The
quantity diagnosed in the Hovmöller diagrams is considered at a certain depth
or is an average of many vertical levels, such as the whole water column average
or the mixed-layer average. Density and buoyancy are typical properties that are
investigated through Hovmöller diagrams. They are useful to visualize the rate of
change of the spread of density from the denser region toward the lighter region.

2.3.3 Buoyancy budget

The buoyancy equation in the Boussinesq system (∇ · u = 0) is

Db

Dt
=
∂b

∂t
+∇ · (ub) = D (2.29)

where D is the diabatic forcing, which here represents the surface flux of buoyancy
due to brine rejection. When the along-ice-edge average is taken, the time evolution
of the mean buoyancy is governed by

∂b

∂t
= − ∂

∂y
(vb)− ∂

∂z
(wb)− ∂

∂y
(v′b′)− ∂

∂z
(w′b′) +D (2.30)

Note that the average does not depend on the x-derivatives and the flow in the
x direction. The mean buoyancy is advected not only by the mean flow but it
is also affected by the advection by the perturbed eddy flow. v′b′ and w′b′ are
called eddy fluxes of buoyancy and their convergence/divergence changes locally
the mean buoyancy.

In the two-dimensional configurations, there are zero perturbations in the along
ice edge direction, and the buoyancy budget in (2.30) only depends on the average
quantities. This is not the case for three-dimensional configurations.

2.3.4 Potential vorticity budget

An important quantity that is often used as a constraint on rotational fluids
due to its conservation property is the potential vorticity. In the Boussinesq system
of equations the potential vorticity (PV) has the form of the Ertel PV, which links
the absolute vorticity to the gradient of buoyancy:

Q = (ω + f) · ∇b (2.31)
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where ω = ∇× u is the relative vorticity of the fluid, f is the planetary vorticity,
and their sum is the absolute vorticity.

The Ertel PV equation, which is fully derived from the Boussinesq equations
in Appendix B, is:

DQ

Dt
= (∇×F) · ∇b+ (ω + f) · ∇D (2.32)

where the terms in the R.H.S. are non conservative terms due to frictional and
diabatic forcing. In this study of submesoscale eddies due to brine rejection, PV
dynamics is due to surface buoyancy injection, which is expressed by Db/Dt = D,
and internal friction F . In particular, the rejection of brine injects negative buoy-
ancy and, with it, negative PV, (2.32). Apart from injection of new PV and
internal stresses, PV is also redistributed in the domain due to the advection term.

Explicitly the Boussinesq Ertel PV is:

Q = (vx − uy)bz + (wy − vz)bx + (uz − wx)by + fbz (2.33)

where x, y, z indices represents partial derivatives (uy = ∂u/∂y). Again, due to
the presence of a symmetric axis, it is interesting to look at the along-ice-edge
average PV:

Q = Qmean +Qeddy (2.34)

after decomposing each variable as a = a + a′ with () denoting the zonal average
such that ()′ = 0, where

Qmean ≡ (f − uy)bz + uzby = fN2 − UyN2 + UzM
2

Qeddy ≡ Q−Qmean = v′xb
′
z − u′yb′z − v′zb′x + u′zb

′
y

(2.35)

where capital letters are used for the zonal average, w′ has been approximated to
zero and

N2 =
∂b

∂z

M2 =
∂b

∂y

(2.36)

are the vertical stratification and the analogous for the horizontal direction along
the buoyancy gradient.

59



2.3.5 Energy budget

How does the energy of the system evolve? It has been said that fronts store
potential energy in the horizontal density gradients. This potential energy is con-
verted into kinetic energy by the gravitational force that slumps the fronts in
order to subtract its potential energy, reducing the horizontal density gradient. If
no other forces are present, the balance is reached when pressure potential gra-
dients are opposite to gravity, that is when the front is completely tilted and
horizontal density gradients are converted into vertical density gradients. In this
case, the fluid is restratified and light water sits above dense water and the poten-
tial energy has been totally converted into kinetic energy, which finally stops all
the motions. However, many forces can interact with each other and change the
equilibrium state. For example, when the Earth rotation is present, a balance be-
tween horizontal pressure gradients and Coriolis force is established, known as the
geostrophic balance. Geostrophic adjustment prevents the complete slump of the
front, leaving it tilted with an important amount of potential energy still stored
in it. Eventually, this potential energy can be used to create baroclinic instabil-
ity that can grow to finite amplitude into eddies. Eddies subtract more potential
energy tilting the front and transfer this energy into kinetic energy. Furthermore,
here, a final equilibrium state is never reached in the period of time considered.
Thus, the study of the energetics of this system is useful in quantifing the efficiency
of transfer of energy under different forcing.

First, the potential energy is computed as in Sec. 2.1.2.4. The vertically
integrated potential energy anomaly from initial condition per unit mass is

PE =
1

A

∫
A

[
−
∫ η

−H
bzdz +

1

2
gη2

]
dxdy (2.37)

Sec. 2.1.2.4 also computes the kinetic energy for every grid cell. The kinetic energy
per unit mass is computed from the velocities in the three direction as

KE =
1

2
(u2 + v2 + w2) (2.38)

which can be simply written with indices contraction following the Einstein rule as
KE = 1

2
u2
i . Again, since the goal is to study the along-ice-edge average quantities,

also the zonal kinetic energy, as the zonal PV, results from the sum of two different
terms, the kinetic energy of the the mean flow and the kinetic energy of the eddy
flow:

KE =
1

2
u2
i =

1

2
ui

2 +
1

2
(u′)2

i

≡MKE + EKE
(2.39)

60



In order to compare the kinetic energy with the potential energy, they should have
consistent units, and the kinetic energy in (2.39) is, thus, vertically integrated.

In fully non-linear problems, such as where instabilities can grow into big ed-
dies, the EKE is not negligible with respect to the MKE, but it drives, instead,
the total kinetic energy by subtracting energy from the mean flow. This is clearly
visible when writing the energy budget. Since the average kinetic energy can be
divided into two terms as in (2.39), two energy budgets for the two components
can be build (see Appendix C for derivation):

DM

Dt
(MKE) = − ∂

∂xi
Uiφ+Wb− ∂

∂xj
(u′iu

′
jUi) + u′iu

′
j

∂Ui
∂xj

(2.40)

DM

Dt
(EKE) = − ∂

∂xj

(
1

2
(u′i)

2u′j

)
− ∂

∂xi
u′iφ

′︸ ︷︷ ︸
PW

+ b′w′︸︷︷︸
BP

−u′iu′j
∂Ui
∂xj︸ ︷︷ ︸

SP

(2.41)

where DM

Dt
= ∂

∂t
+ Uj

∂
∂xj

is the material derivative with respect to the mean flow.

The Coriolis term has been ignored, since it is not constituting a source term but
it moves energy, due to its linear form.
The shear production term appears in both MKE and EKE equations with an
opposite sign, indicating a transfer of energy between the mean and the eddy flow.
Shear production SP, buoyancy production BP, pressure work PW, can be positive
or negative depending on stratification, mean shear flow and pressure. If N2 < 0,
the buoyancy production term is positive and creates EKE by pushing lighter wa-
ter above denser water, because, if the parcel deviates toward the surface, w′ > 0,
it would create b′ > 0, giving w′b′ > 0.

The averages in (2.40) and (2.41) is here intended as the zonal average. Thus,
in this work, after canceling out the zero terms, the shear production term is made
by:

SP ≡ u′iu
′
j

∂Ui
∂xj

= u′v′ Uy + u′w′ Uz + v′w′ Vz + v′w′Wy

≈ u′v′ Uy︸ ︷︷ ︸
HSP

+u′w′ Uz + v′w′ Vz︸ ︷︷ ︸
V SP

(2.42)

where the Wy term is negligible since W ≈ 0; HSP stands for horizontal shear
production and VSP for vertical shear production.
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2.3.6 Overturning streamfunction

For the geometry of the frontal spindown system, velocities develop and act
to slump the front. This mechanism of frontal tilting can be explained through
the introduction of an overturning streamfunction that tilts the isopycnals in the
mixed-layer from the vertical toward the horizontal.

The existence of the overturning streamfunction lies in the divergenceless of
the along-edge averaged velocity in the y-z plane. In fact, averaging the continuity
equation gives

∂v

∂y
+
∂w

∂z
= 0 (2.43)

where ∂xu = 0. Thus, a streamfunction can be defined such that

v =
∂ΨE

∂z

w = −∂ΨE

∂y

(2.44)

Note that this streamfunction is only considering the mean velocity, and perfectly
represents the frontal overturning when eddies don’t affect the restratification pro-
cess of the ML. However, submesoscale eddies enhance the overturning circulation
and the streamfunction defined in (2.44) is not sufficient.

An eddy overturning streamfunction needs to be introduced to account for the
eddy effect:

v′b′ = −Ψ∗bz

w′b′ = Ψ∗by
(2.45)

In this way, the buoyancy eddy fluxes are written in terms of the eddy overturn-
ing streamfunction Ψ∗, different from the Eulerian overturning streamfunction ΨE

defined in (2.44) and obtained from the Eulerian velocities v and w. A parametriza-
tion of the eddy fluxes can be built by writing the eddy overturning streamfunction
Ψ∗ in terms of the gradient of the mean buoyancy field [Fox-Kemper et al., 2008]
(see Appendix A). However, here, since there were built eddy-resolving simulations,
the eddy fluxes can be directly computed and the eddy overturning streamfunc-
tion can be directly compared to the Eulerian overturning streamfunction. The
Eulerian overturning streamfunction, from (2.44), is computed as

ΨE =

∫ z

−H
vdz (2.46)
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where the bottom z = −H is chosen as reference, so that ΨE(z = −H) = 0. w is
not used here since it is smaller than v. The eddy overturning streamfunction is,
instead,

Ψ∗ = −v
′b′

bz

Ψ∗ =
w′b′

by

(2.47)

Note that Ψ∗ is positive when the overturning circulation slumps the isopycnals,
i.e. w′b′ and by both positive. The use of both the two expressions in (2.47) will
be further discussed in Chapter 3.

Finally, the eddy overturning streamfunction produces eddy induced velocity,
known as Bolus velocity,

u∗ = ∇×Ψ (2.48)

which, explicitly, are

v∗ =
∂Ψ∗

∂z

w∗ = −∂Ψ∗

∂y

(2.49)

They can be further used to compare with the Eulerian velocity (2.44).

The two overturning streamfunctions, ΨE and Ψ∗, contribute together to the
overall circulation. The residual circulation is defined as

Ψres = ΨE + Ψ∗ (2.50)

and it produces a residual overturning velocity

vres = v + v∗ (2.51)
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Chapter 3

Results and Discussion

In this chapter numerical model results of the configuration experiments of
a single sea ice edge system driven by brine rejection under atmospheric cooling
(Table 2.1, Sec. 2.2) are investigated and discussed, using the tools described in
Sec. 2.3.

3.1 Surface forcing

Atmosphere and ocean are coupled together through surface fluxes of heat,
temperature and salinity. The presence of surface fluxes drives the ocean response
under variable sea ice cover. Surface fluxes act both in the open ocean region and
in the ice-covered region of the experimental domain, with different magnitudes
due to the insulating properties of sea ice.

Heat fluxes from the ocean to the atmosphere are highest in magnitude in the
open ocean region though, although small, they are present in the ice-covered re-
gion, where the sea ice still loses a small amount of heat to the atmosphere. The
central upper panel in Fig. 3.1 shows the along-edge surface heat flux (positive =
cooling) in the across-edge direction, with positive sign for fluxes from the ocean
out toward the atmosphere. The initial net surface cooling in the ice-free region is
208 Wm−2, while it is 55 Wm−2 in the ice-covered region. This cooling in the open
ocean area leads to sea ice formation and brine rejection. The presence of surface
cooling in the ice-covered area implies some sea ice growth and brine rejection in
the covered region. Over time, the surface cooling attenuates in both regions as
new sea ice forms but it never reaches zero during the simulation.

Heat fluxes imply temperature and salinity fluxes. Temperature fluxes are
approximately zero in both regions since the ocean temperature is already near
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Figure 3.1: Heat and salinity fluxes evolution in the across-edge direction for Open
(left), Centered (right) and Standard 3D (center) simulations. For the Standard
3D simulation, average along the sea ice edge direction is taken.
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freezing. The surface salinity forcing drives the ocean dynamics as a consequence
of cooling. Salinity fluxes are initialized to be zero and immediately established
in balance with the latent heat loss to the atmosphere. In the open ocean re-
gion, salinity fluxes decrease over time as new sea ice forms, though they increase
in time in the ice-covered region (central lower panel in Fig. 3.1). This can be
explained by the initial temperature of sea ice which is not in balance with air
temperature. Heat fluxes start to remove energy from the upper layer of sea ice,
without influencing the ocean below. Only later, when sea ice is in balance with
the atmosphere, the oceanic upper layer starts to be cooled and freezes, rejecting
brine through positive salinity fluxes into the ocean. Sea ice thickness grows and
never reaches equilibrium in the time scale of these simulations. in the open ocean
region, as cooling is persistent over all times, also the salinity fluxes never reaches
zero. This means that brine rejection is expected to continue, altering the balance
and preventing to reach an equilibrium state.

Surface fluxes for both Open and Covered simulations are plotted in Fig. 3.1.
The small variability in the y-direction that is present in the two-dimensional
simulations is not visible in the Standard 3D case, since in the latter the along
ice-edge average of the fluxes is taken, removing the random perturbation. Fluxes
for the Standard 3D simulation in the two regions are the same as for the Open and
Covered simulations. Thus, Open and Covered experiments reflects the dynamics
of the two regions far away from the sea ice edge.

3.2 Sea ice thermodynamics

The evolution of sea ice over time is studied in Fig. 3.2. Sea ice concentration
is defined as the areal fraction of a grid cell covered by sea ice of sea ice. Sea ice
concentration is initialized to 0 in the open ocean region and 1 in the ice-covered
region of the domain. The Hovmöller diagram of sea ice concentration shows the
along-edge sea ice concentration average over time for the first 5 days (left figure
in Fig. 3.2). The system takes few hours to start to form new sea ice in the open
ocean region. Sea ice percentage concentration and sea ice thickness in the across
edge direction are plotted for different days (center and right figures in Fig. 3.2).
In the ice-free region, far from the ice-edge, sea ice concentration reaches almost
70% in 1 day and 90% in 10 days. The reduction in sea ice concentration along
the ice edge can be explained by the interaction with the new sea ice formation in
the covered region. Sea ice thickness is initially zero in the open ocean and 2 m in
the ice-covered ocean. Then, it increases in open waters up to 7 cm in 1 day, 35
cm in 10 days and exceeds half a meter in 20 days. In the ice-covered region in 20
days sea ice grows slowly another 5 cm.
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Figure 3.2: Sea ice cover evolution for Standard 3D simulation. Hovmöller diagram
of sea ice concentration (left). Sea ice concentration percentage averaged over the
along-edge direction (center). Zonal average sea ice thickness (right).

3.3 Characterization of the dynamics

When fronts form in the ocean, they can become unstable. In a mixed-layer
front, this often leads to the genesis of submesoscale eddies. They are visible as
vortical coherent structures that appear both at the surface and in the interior of
the ocean mixed-layer (ML). These structures can transport tracer properties of
the water masses, such as temperature, salinity, density, energy. In the brine driven
winter Arctic Ocean, submesoscale eddies are energized and transport by salinity
(and density) features. At the surface a front can be detected from the sea surface
height, that is a consequence of horizontal density gradients and geostrophic cur-
rents. Over time, when instabilities grow, the sea surface height exhibits wave-like
features that break up the linearity of the initial front.

3.3.1 Eddy visualization

The horizontal view of sea surface height is plotted in Fig. 3.3 for Standard 3D
experiment. When the dense brine rejected in the open ocean region convects in
the water column, it leads to the formation of a front along the ice-edge direction.
The two water masses in the two areas of the domain with different densities force
a pressure gradient that is balanced by an associated change in sea surface height,
as a response to geostrophic currents.
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Figure 3.3: Horizontal view of the free surface displacement for the Standard 3D
simulation at day 5 (left) and day 10 (right).

In the presence of sea ice, η is the level of the free-surface when all the sea ice
is melt. The ocean surface pressure is equal to the pressure of both the sea sur-
face height and the water mass from the melted ice. The equation that computes
the potential pressure (2.11) sets the loading term only equal to the atmospheric
pressure, that can be neglected, without considering the pressure exerted by sea
ice in the ice-covered ocean, which is already counted as ocean pressure.

Initially, the free-surface is at rest, with zero displacement everywhere. It
rapidly evolves to adjust to the horizontal density gradients, which create over-
turning currents and subsequent geostrophic currents, lowering the water in the
ice-free region and lifting up the water in the ice-covered region. As the instabili-
ties grow, η begins to meander (left in Fig. 3.3). Over time, density increases due
to the continual brine rejection, increasing the buoyancy gradient, the associated
sea surface height gradients, and the eddy energy (right figure). Coherent vortical
structures become ”finite amplitude” by 5 days. Note the different color bars in
Fig. 3.3.

The salinity anomaly from the initial condition can also be used to track the
formation and size of eddies in the domain. Fig. 3.4 shows the horizontal view of
salinity at day 10 at -11.25 m depth (i.e. at cell level located at -10, -12.5 m) and at
the mixed-layer base (vertical cell located at -22.5, -25 m). The color range values
are taken to be the same for the two vertical layer considered, in order to compare
the eddy strength with depths. At day 10, surface eddies (Fig. 3.3) and eddies at
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Figure 3.4: Horizontal view of salinity anomaly from initial condition for the Stan-
dard 3D simulation at two depths at day 10.

mid-depth in the ML (left in Fig. 3.4) have similar size. Eddies are bigger at the
ML base (right in Fig. 3.4) where they are more effective in transporting saltier
water to the ice-covered region. Their size reaches few kilometers in 10 days and
keeps growing.

3.3.2 Surface velocity field

The ocean in the domain is initially at rest, but flows develop when the front
is formed. It is interesting to look at the surface velocities that grow when density
anomalies from the initial state are established. Fig. 3.5 shows the horizontal view
of the surface velocities at day 5 and day 20 superimposed on the density field.
Note that left and right figures have different axis and density ranges. Surface ve-
locities act over a structured density field and move water parcels around bringing
properties and giving shape to complex vortical structures.

Here, a consideration need to be made. Surface quantities are not perfectly
quantities that are located at the surface considered as the interface between the
ocean and the atmosphere. The displacement of the free-surface, in fact, changes
the volume of water in the upper grid cells, that are taken as fixed. Thus, the
surface properties of the upper grid cells do not always refer to the same volume
of mass below the free-surface. But, since the free-surface elevation is negligible
with respect to the cell thickness, this approximation can be made.
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Figure 3.5: Horizontal view of surface velocities (arrows) superimposed on density
anomalies (colors) at day 5 and at day 20 for the Standard 3D simulation.

At day 5 the surface density is higher in the ice-free region with a smooth
gradient from the sea ice interface toward the far open ocean. As expected, the
velocities are smaller far away from the ice-edge and are bigger in the open ocean
region near the ice-edge. Although small, velocities in the ice-covered region are
directed toward the negative y-direction, pushing the lighter water underneath sea
ice above the denser water in the other region. This is exactly the behaviour of
a gravitational slumping front, where light water flows above the dense water, in
an attempt to restratify the ocean. Here, however, the Coriolis force is drifting
the y-negative surface flow toward the negative x-direction. This is visible in the
open ocean region close to the ice-edge. There, instabilities affect the surface flow
which oscillates in the negative x-direction.

At day 20 eddies are present. The surface velocities are greater along eddies,
and if fact, as will be seen later, the eddies bring more kinetic energy than the mean
flow. It can be noted that the lighter water of the ice-covered surface region has
not effectively moved into the open surface ocean. This is due to two mechanisms.
First, the velocities are directed toward the negative x-direction in order to balance
the pressure force, as established by the geostrophic adjustment, preventing the
front to slump under gravity. Secondly, brine rejection is not stopped but continue
to inject high density into the open ocean domain, canceling the lighter water
coming from the right.
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3.4 Effect of brine rejection

The ocean response to the surface cooling can be investigated by analyzing the
paths of the high density intrusions into the ocean mixed-layer. Equivalently to
density, the variable here studied is the buoyancy, since it directly enters the energy
and potential vorticity equations. Apart from the magnitude and the dimensions,
density can be immediately obtained from buoyancy, simply reverting the sign. As
already mentioned, it is interesting to look at density and buoyancy anomalies from
initial condition. Positive signs of buoyancy anomaly indicates density decrease,
while negative signs density increase.

3.4.1 Buoyancy evolution
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Figure 3.6: Buoyancy anomaly from its initial value for the Standard 3D simulation
plotted as averaged in the along-edge direction at day 10 (left) and 20 (right).

First, the buoyancy anomaly evolution is visualized in Fig. 3.6 that shows the
along ice-edge vertical distribution in the across-edge direction of the high density,
which is injected mainly into the open ocean region and to a smaller extent into the
ice-covered region, at days 10 and 20 for the Standard 3D simulation. The color
range is the same for the left and right figures. In the ice-covered domain, brine
rejection is much important for day 20 than day 10, as noted from the salinity
surface fluxes in Fig. 3.1. In the open ocean region, although the salinity surface
fluxes are lowering in time, high density is continually formed and added to the
already formed high density, as visible in the far left region in the right figure. In
the open ocean region close to the ice-edge the buoyancy is higher, for both the
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presence of surface flows from the lighter region and the existence of submesoscale
eddies. The initially well defined frontal interface rapidly evolves into higher com-
plexity with many different horizontal gradients at different depths. Moreover, the
geostrophic adjustment problem is complicated by the continuing supply of brine,
that leads to an evolving triangular dense water structure propagating under the
ice.

The mixed-layer base does not perfectly prevent the intrusion of high density
water below it, especially when the density of the mixed-layer becomes higher and
higher, as visible for 20 days run. This intrusion at day 20 is a consequence of
the adjustment of the mixed-layer base to the water characteristics. Here, this
happens with the widening of the pycnocline region. In the interior ocean bands
of denser and lighter waters spread rapidly far away from the y = 0 position and
propagate down from the grid cell right below the halocline (day 10). However,
almost all of the high density water remains in the mixed-layer. One can wonder
how the ML base evolves in time. Although the halocline jump is deepening, the
peak of the maximum density anomaly is always located at the grid cell right above
the initial halocline, at -25 m. The net effect of entrainment of high density water
below the ML is enlarging the pycnocline region. For this reason, in this work, the
ML depth is kept constant and located at -25 m.

0°C
-20°C

-40°C
-20°C f=0

Figure 3.7: Vertical profiles of buoyancy anomaly from initial state at day 10.
On the left, ice-free region (red) and ice-covered region (green) for Standard 3D
buoyancy profiles. On the right, comparison between experiments: Tair = 0 °C
(yellow), −20 °C (red), −40 °C (purple). Solid lines for 3D simulations, dashed
lines for 2D simulations, and dash-dotted line for Nof simulation.
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Differences in the ice-covered and ice-free regions are enhanced in Fig. 3.7
(solid lines in the left figure), where the vertical buoyancy anomaly profile at day
10 is divided into the left (ice-free) and the right (ice-covered) regions. Due to
brine rejection, the ice-free region is subjected to a density increase, much larger
than the one in the ice-covered region. Below the ML base, there is a small blob of
lighter density anomaly only in the ice-free region. The ML buoyancy is vertically
distributed to place denser water at the base of the mixed layer and lighter water
near the surface.

The comparison between different run experiments is, first, examined through
the buoyancy vertical profiles evolution for the different simulations, Fig. 3.7. On
the left, solid lines refer to the Standard 3D experiment, while dashed lines to the
Standard 2D experiment. In the two-dimensional case, the front is steeper and
there is less propagation of dense water into the right region along the base of the
mixed-layer. The difference between two and three-dimensional configurations is
also visible in the figure on the right. There, different external atmospheric tem-
perature simulations are also compared. Lower the air temperature, greater the
cooling and the brine rejection. Moreover, greater the atmospheric forcing, faster
the slump of the front. This may happen because when the potential energy stored
in the front is bigger, more of this energy can be converted to slump the front,
and, at the same time, more energetic submesoscale eddies form rapidly. The ef-
fect of the submeoscale eddies, in fact, can be seen by looking at the difference
between the two and three-dimensional configurations. In the three-dimensional
configuration, where submesoscale eddies are present, denser water is located at
the base and lighter water above it, leading to a front that is more tilted, or, in
other words, tending to restratify more effectively the ML. The Nof experiment,
instead, shows a front more tilted at day 10. The absence of the Earth rotation
rapidly slumps the front under the gravity force.

Another way to compare different experiments is through the Hovmöller dia-
grams. The upper panel in Fig. 3.8 shows the Hovmöller diagrams of the zonal
mean ML average buoyancy anomaly for the Nof, Standard 2D and Standard 3D
simulations with the same Tair = −20 °C. The ML average is here analyzed in
order to study the whole behaviour of ML. It has to be said that the total ver-
tical column average has, apart from the magnitude, almost the same Hovmöller
diagram of the buoyancy anomaly, since, as already seen, the buoyancy changes
in the interior ocean is roughly negligible. However, an interesting question may
be what happen at different depths in the ML. Different vertical levels of the ML
are not characterized by the same horizontal density gradients rate of change, as
shown by Fig. 3.6. They would have slightly different Hovmöller diagrams, but
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Figure 3.8: Hovmöller diagrams of ML average buoyancy anomaly from initial
state averaged in the along-edge direction for simulations at same Tair = −20 °C
(top panels). Hovmöller diagrams of ML buoyancy anomaly of 3D simulations
against 2D simulations for different air temperatures (bottom panels).
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the comparison between different forcing using different experiments would leads
to the same conclusion. In general, the trend is to spread salinity from the denser
part of the ocean, the left region, toward the lighter ocean, the right domain.
The absence of the Earth rotation simply allows the gravitational slump of the
front and restratifies rapidly the ML. The two-dimensional configuration presents
a smooth intrusion of dense water to the right of the ice-edge, as more brine is
rejected. Horizontal gradients become smooth, a sign of frontal slump that is in
geostrophic balance. Until day 5, the three-dimensional configuration has almost
the same distribution of buoyancy in the ML as the two-dimensional configura-
tion. However, after 5 days, it becomes much different, with not a well defined
interface between the two fluids and eddy-like blobs that transport properties from
one region to the other. It is only far from the ice-edge that the buoyancy doesn’t
change from the two-dimensional case. The overall effect of submesoscale eddies
is to slump the front more rapidly.

The difference between three and two-dimensional configurations is well rep-
resented by the lower panel in Fig. 3.8, which shows the 3D anomaly from the
respective 2D experiment for different air temperatures. The 3D anomaly from
2D buoyancy highlights the effect of submesoscale eddies at a ML front. For the
Standard simulation (Tair = −20 °C), they start to develop from day 5, that is
the time they need to reach finite amplitude instabilities, at the frontal interface,
that is where baroclinic instability forms, and grow over time reaching bigger and
bigger sizes. As they grow, they are more effective in moving properties of water
masses around. In particular, they displace denser water from the ice-free region
into the ice-covered region and do the opposite with lighter water. In this way,
they enhance the restratification mechanism.

In general, higher the external atmospheric forcing, greater the horizontal den-
sity gradients, stronger the front, faster the slumping. This not only happens
for the simple two-dimensional case, but it also helps the restratification process
driven by submesoscale eddies. In fact, for Tair = −40 °C, eddies start to form
earlier and grow to bigger size than in the Tair = −20 °C case.

The ML frontal slump is quantitatively studied in Fig. 3.9 (left). Solid lines
represent Standard 3D experiment and dashed lines Standard 2D experiment. Over
time, the front becomes more tilted, but the furthest regions from the sea ice edge
maintain the same buoyancy as the two-dimensional case. Moreover, over time,
also the ice-covered region is becoming denser, as can be noted by the lowering
of the buoyancy in the right region. This is, again, a confirmation of the brine
rejection phenomenon below the 2 meters-thick ice.
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Figure 3.9: ML zonally averaged buoyancy anomaly evolution for Standard 3D
(solid lines) and 2D (dashed lines) simulations (left). Same with buoyancy average
below the ML.

On the right in Fig. 3.9, there is the zonal average buoyancy anomaly for three
vertical layers right below the ML, from -32.5 to -25 m. The wave-like feature
response is visible for both two-dimensional and three-dimensional configurations.
Again, however, the magnitude of the buoyancy anomaly below the ML base is
much smaller than above it.

3.4.2 Stratification

Mean buoyancy gradient∇b is here analyzed in its two components, the vertical
stratification N2 = ∂b/∂z and the correspondent horizontal gradient M2 = ∂b/∂y.
Their vertical mean average for Standard 3D simulation is plotted in Fig. 3.10
over time. The stratification N2 decreases in the open ocean region since denser
water is injected at the oceanic surface and falls at the base of the ML. Brine is
rejected also in the ice-covered region but with a slower rate. The across front
horizontal buoyancy gradient is many orders of magnitude lower than the vertical
stratification and is higher only in the frontal region. The vertical distribution of
the anomaly of N2 from its initial value is represented in Fig. 3.11 for the Standard
3D simulation at day 1 and day 10. N2′ is negative, since N2 is decreasing, and
|N2′| increases in time at the base of the ML. The overall time evolution of N2′

for Standard 3D, Standard 2D and Nof experiments is compared in Fig. 3.12.
The stratification is driven by the brine rejection rate which is the same for all
the simulations considered, but it evolves in time accordingly to the strength of
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Figure 3.10: Hovmöller diagrams for vertically averaged N2 and M2 for the Stan-
dard 3D simulation.
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Figure 3.11: Anomaly of stratification for Standard 3D simulation at day 1 (left)
and day 10 (right).
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Figure 3.12: Comparison of mean stratification anomaly for Standard 3D, Stan-
dard 2D and Nof experiments.

the restratification process in the three experiments. Fig. 3.12 confirms that the
two-dimensional configuration is less effective in restratifing the ML, MLEs that
develops in three-dimensional configurations starts to restratify the ML after 10
days, and the Nof simulation restratifies more rapidly the mixed-layer.

3.5 Geostrophic currents

A current in the across-ice-edge direction is soon established to bring lighter
water above denser water. This overturning current tends to restratify the ocean
mixed-layer. However, as a response to the across-ice-edge velocity, a geostrophic
current develops in the along-ice-edge direction and balance the horizontal gra-
dient of the pressure potential. Of course, this happens only in the rotational
case. When f = 0, no zonal currents develop and the across-ice-edge velocity
is enhanced. The rotational and non rotational currents at day 1 are shown in
Fig. 3.13. The Standard 2D case is very similar to the Standard 3D experiment,
especially for earlier times when eddies are not formed yet. Over time, the zonal
velocity overcomes the magnitude of the y-velocity.

The horizontal variability of U and V currents at day 1 is shown in Fig. 3.14,
which is the result of the geostrophic adjustment. The y-velocity, V, is pushing
lighter water above denser water. These currents, opposite at the surface and the
bottom of the ML, trigger a current in the perpendicular direction, U. Also the
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Figure 3.13: Zonal mean vertical profiles of velocities in the x, y and z direction (U,
V, W) at day 1 for the Standard 3D simulation (left) and Nof simulation (right).
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Figure 3.14: Zonal mean horizontal velocities at day 1 for the Standard 3D simu-
lation. The black line is buoyancy anomaly contour b′ = −2× 10−4 ms−2.
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U currents have opposite direction at the top and the bottom of the ML. They
travel along the sea ice edge, reinforcing instabilities toward bigger size and, thus,
eddies. Over time, as V moves far from the ice-edge, also the U velocity spatial
distribution broadens. They increase magnitude in time and deepen below the
mixed-layer.

3.6 Potential vorticity dynamics

Figure 3.15: Vertically integrated horizontally average PV anomaly from initial
condition. Q and its terms Qmean and Qeddy for Tair = −20 °C (left). Comparison
of Qmean for different experiments (right).

Due to vorticity and buoyancy gradient correlation, the Ertel potential vorticity
(PV) is a key quantity in frontal dynamics:

Q = (ω + f) · ∇b (3.1)

In the presence of a buoyancy source term, as during brine rejection, PV is not con-
served (see Sec. 2.3.4 and equation (2.32)): negative buoyancy injection implies
negative PV injection. This is clearly visible in Fig. 3.15 where the domain-
averaged vertically integrated Ertel PV anomaly from initial condition is com-
puted. For the non rotating experiment PV anomaly is zero, since, although there
is injection of brine, the absence of both planetary and relative vorticity, for the
absence of transverse velocity, sets to zero the PV (3.1). For f 6= 0 PV decreases
in time, for both three and two-dimensional configurations, in the same way N2′
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Figure 3.16: Zonally average buoyancy (left) and PV (right) anomalies from initial
condition at day 1 for the Standard 3D simulation.

Figure 3.17: Vertically integrated zonally average Qmean anomaly terms for Stan-
dard 3D (solid lines) and 2D (fN2, dotted blue lines) at day 1, 10 and 20.
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does. The difference between three and two-dimensional experiments, which ap-
pears after 10 days, is due to frictional stresses, since the injection of buoyancy is
the same. Friction appears to be interesting in three-dimensional configurations,
where eddies drive more restratification, increasing ∇b in (2.32).

When dividing the zonally averaged PV terms into Qmean and Qeddy, the full
non linear PV is well described just by the zonally averaged variables, with Qeddy

almost negligible:

Q ≈ Qmean = (f − uy)bz + uzby

= fN2 − UyN2 + UzM
2 (3.2)

where N2 = bz and M2 = by are vertical and horizontal buoyancy gradients. The
main driver of PV is the stratification N2, which is not affecting Qeddy. This result
simplifies the description of the problem: in order to predict the PV dynamics,
only the mean quantities are necessary.

The injection of PV is governed by salinity fluxes, that are determined by the
air temperature, Fig. 3.15 (right).

Fig. 3.16 shows buoyancy anomaly and PV anomaly distributions at day 1 for
the Standard 3D simulation. PV is injected at the surface, but it is accumulated
only at the base of the ML and at the interface between the two regions’ fluids.

The vertically integrated PV anomaly at day 1 is plotted in the left panel in
Fig. 3.17, which represents the mean terms of Qmean, as in (3.2), for the Standard
3D simulation. The dotted blue line represents the fN2 term for the Standard 2D
case; the other components for the two-dimensional experiment are not plotted,
since the are not interestingly different from the three-dimensional ones and their
fluctuations would only cover the three-dimensional lines.

First, the UzM
2 term is almost zero, meaning that the horizontal buoyancy

gradients don’t affect PV, and the bigger component of buoyancy gradient and
relative vorticity in (3.1) are in the vertical direction. The planetary vorticity is
effective only in the open ocean region at the base of the ML, where vertical gra-
dients of buoyancy are bigger and locally there is unstable stratification N2 < 0.
The relative vorticity is active starting from the interface y = 0, where the slump
of the front creates vertical buoyancy gradients. Initially, the planetary vorticity
effect in the PV is smaller than the high relative vorticity originating at the inter-
face, since the small amount of buoyancy injected in 1 day doesn’t create strong
gradient at the ML base.
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Over time (Fig. 3.17), the negative buoyancy accumulated in the ML grows,
and, with it, the buoyancy gradient at the ML base in the open ocean region
strengthens, decreasing fN2.
Again, the difference between two and three-dimensional experiments is enhanced
after 10 days, once eddies are big. Indeed, the tree-dimensional stratification
(solid blue line) in the left region is more effectively spread away from the ice-edge
position y = 0 than the two-dimensional one (dotted blue line). At the same time,
UyN

2 lowers its magnitude as spreading away from the interface, being effective
mostly in the ice-covered region, and UzM

2 is always negligible. For long time
scales, the injection of PV released from brine rejection is mainly governed by

Q ≈ Qmean ≈ fN2 (3.3)

and it is the presence of submesoscale eddies that spreads away PV along the ML
base toward the left, a signal of frontal slumping.

To conclude, |PV | increases mainly in the open water region and travels away
from the ice-edge due to fN2; while a smaller blob of PV, due to UyN

2, travels in
the covered ML region.

3.7 Energetics

Figure 3.18: Horizontally averaged kinetic energy profiles at day 1 and day 10 for
Standard 3D (solid red lines), Standard 2D (dashed red lines), Nof (purple lines).
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Figure 3.19: On the left: horizontally averaged kinetic energy profiles at day 10
for Standard 3D experiment divided into the different components. On the right:
time evolution of vertically integrated horizontally averaged potential and kinetic
energy terms for Standard 3D experiment (solid lines), Standard 2D experiment
(dashed lines) and Nof case (dash-dot lines).

Vertical profiles of horizontally average kinetic energy for Tair = −20 °C at day
1 and day 10 are plotted in Fig. 3.18. Notably, the kinetic energy has two peaks,
one at the surface and one at the ML base, which correspond to the layers of
maximum velocities. Indeed, the light water is pushed from the ice-covered region
toward the denser region above the dense water that moves in the opposite direc-
tion at the base of the ML. Even when geostrophic currents are generated, they
are enhanced at the same depths of the currents in the across-ice-edge direction.
Initially, three and two-dimensional configurations have almost the same kinetic
energy. When eddies form, the EKE departs from the MKE, deviating the total
kinetic energy from the two-dimensional configuration. Eddies, also, over time,
become more energetic than the simple gravitational frontal slump in the absence
of the Earth rotation.

Vertical profile of kinetic energy at day 10 for the Standard 3D simulation is
deeply analyzed in the left panel of Fig. 3.19. The kinetic energy is first divided
into its x, y and z components. The vertical component of kinetic energy is, as ex-
pected, negligible; there is no convection due to vertical velocity, just parametrized
convective adjustment, which doesn’t affect the resolved vertical velocity. Then,
the kinetic energy is separated into mean kinetic energy (MKE) and eddy kinetic
energy (EKE) terms. At day 10 EKE is bigger than MKE, driving, as already
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Figure 3.20: An the top: time evolution of total kinetic energy for T0, Standard
and T40 simulations. Solid lines refer to 3D simulations; dashed lines to 2D simu-
lations. An the bottom: total kinetic energy ratio between 3D and 2D experiments
versus time for T0, Standard and T40 experiments.
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said, the departure from the two-dimensional configuration.

The time evolution of the energy terms is studied through Fig. 3.19 and 3.20.
The right panel in Fig. 3.19 shows the time evolution for the total potential en-
ergy (blue line), the total vertically integrated and horizontally averaged kinetic
energy and its MKE and EKE components, of the system driven by Tair = −20 °C.
Solid lines refer to the Standard 3D experiment, dashed lines to the Standard 2D
experiment and the dash-dot lines to the Nof experiment. The potential energy
is the same for the three experiments, since it depends only on the total nega-
tive buoyancy injected into the system, which is governed by surface fluxes. It
grows as brine is rejected. MKE matches KE for two-dimensional configurations,
since there are no eddies driving the EKE. The kinetic energy is more effectively
extracted from the front in the f = 0 case, where the more tilt in the front trans-
fers energy to currents. In the Nof experiment, however, currents are, then, soon
calmed, when the front has already slumped. Finally, the three-dimensional case
is even different. When eddies grow, they creates EKE that grows in time. More-
over, the EKE grows at the expense of the MKE, which in fact is lowered than
the two-dimensional one. At about 10 days the total kinetic energy is only due to
submesoscale eddies.

The upper panel in Fig. 3.20 compares the time evolution of kinetic energy
terms for different external temperatures. The behaviour is very similar; how-
ever, the magnitude of kinetic energy depends on the external forcing, which also
controls the rate at which EKE is created. It can be noted that at increases in
MKE corresponds decreases of EKE, since the two are related through the shear
production terms that have opposite sign in the two energy budgets (see equations
(2.40) and (2.41); this will be further discussed later in this section).

In order to study the overall effect of eddies in the energetics of the brine driven
system and the role of external forcing, the ratio between three-dimensional and
two-dimensional total kinetic energy versus time is plotted in the lower box in Fig.
3.20. First, the kinetic energy ratio increases in time during the experiment run
period, confirming that the High stratification chosen as initial condition prevents
sinks of energy into the ocean interior. Secondly, the differences between external
forcing effects are enhanced as time grows. At day 10 the 3D kinetic energy has
reached twice the kinetic energy of the 2D experiment. At day 20 the ratio reaches
4 and it overcomes 6 in 30 days.

The EKE budget in (2.41) is studied by analyzing the buoyancy production
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Figure 3.21: EKE buoyancy production (BP), shear production source terms and
their net effect for the Standard 3D experiment.
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and the shear production terms separately:

BP = w′b′ (3.4)

SP = u′v′ Uy + u′w′ Uz + v′w′ Vz + v′w′Wy (3.5)

Fig. 3.21 shows the vertical profiles and the vertically integrated time evolution of
these terms and their net effect, counting them with their relative signs. Notably,
the buoyancy production drives the EKE formation. In baroclinic instability prob-
lems, most of the energy comes from the conversion of potential energy into eddy
kinetic energy and eddy potential energy (see equation (A.4)). BP has a positive
sign in the ML, where submesoscale eddies act to restratify the ML; it has a neg-
ative sign below the ML where the water is locally stable. While BP increases in
time, shear production terms are always present with almost the same magnitude
over time. However, among them, the Wy term is negligible, while, on average
over time, the bigger one is u′v′ Uy. This term oscillates in time, causing, due to
its negative effect (see equation (2.41)), an opposite oscillation in the net source
terms of EKE. This, exactly, confirms and explains why the upper plots in Fig.
3.20 have an oscillating MKE opposite to EKE: the two energy budget equations
are related through the shear production term which is alternately bringing energy
from the mean flow to the eddy flow and viceversa.

3.8 Eulerian and eddy overturning streamfunc-

tions

Here, the overturning streamfunction introduced in Sec. 2.3.6 is studied. The
overturning circulation is due both to the mean circulation and the eddy circula-
tion, which act to tilt the front.

The eddy overturning streamfunction (2.47) can be computed from the eddy
buoyancy fluxes. The Eulerian and eddy overturning streamfunctions, ΨE and Ψ∗,
at days 5 and 10, are plotted in Fig. 3.22. ΨE is computed integrating the zonally
average V velocity:

ΨE =

∫ z

−H
vdz (3.6)

where the bottom z = −H is chosen as reference, so that ΨE(z = −H) = 0. Ψ∗,
which is due to eddy buoyancy fluxes and mean buoyancy gradient, is computed
using the horizontal buoyancy fluxes

Ψ∗ = −v
′b′

bz
(3.7)
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Figure 3.22: Eulerian overturning streamfunction (upper figures) and eddy over-
turning streamfunction (lower figures) at days 5 and 10 for the Standard 3D sim-
ulation.
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Figure 3.23: Domain average Eulerian, eddy and residual overturning streamfunc-
tions versus time for the Standard 3D simulation.

Figure 3.24: Vertical profiles of Eulerian, Bolus and residual meridional velocities
at days 3, 5 and 10 for the Standard 3D simulation.
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This is because the horizontal buoyancy gradient by is so small compared to w′b′

in the open ocean region, leading to blowup in the streamfunction computation.
Both the two streamfunctions are predominately positive, indicating that the two
circulations act in the same direction and work together to flat the isopycnals.
However, the magnitude of the streamfunction is very different: initially, the Eu-
lerian streamfunction is higher than the eddy one; later, when eddies become
important they become the main driver of the residual overturning circulation.

This is also visible in Fig. 3.23 which shows the average streamfunction value
in the domain for the two circulation and their sum. Clearly, initially, the residual
streamfunction Ψres = ΨE + Ψ∗ is only given by ΨE, but, as soon as submesoscale
eddies form, it is mainly given by Ψ∗. Moreover, the eddy overturning streamfunc-
tion increases in time, with a rate of change that doubles in 10 days.

Finally, from the eddy overturning streamfunction the Bolus velocity can be
computed as

v∗ =
∂Ψ∗

∂z
(3.8)

and compared to the zonally averaged across-edge velocity v. Again, initially the
residual velocity vres = v + v∗ coincides with the Eulerian velocity, while it starts
to deviate at day 5 and it is completely overlapping the Bolus velocity at day 10.

3.9 Lateral density transfer scale analysis

In theories of frontal adjustment the lateral density transfer length scale is
an important parameter that is related to and predicts the eddy size length scale.
Here the scaling proposed by Matsumura and Hasumi [2008] for the refreezing lead
is analyzed in a single sea ice edge system and compared to the observed length
scale of lateral density transfer. The typical length scale in geostrophic adjustment
processes is the Rossby deformation radius

Ld =
NH

f
=

√
∆bH

f
(3.9)

where H is the mixed-layer depth and ∆b is the buoyancy difference between the
two sides of the front. As already said in Sec. 1.7, Matsumura and Hasumi [2008]
suggest a scaling for the deformation radius based on buoyancy conservation in
the domain, and find a length scale ∝ t1/2 or t1/3 accordingly to the ratio between
Ld and the opening width (1.27). When applied to this study, it is found that the
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Figure 3.25: Upper left: deformation radius using Matsumura and Hasumi [2008]
(red line), common definition (yellow line) and the measured lateral density trans-
fer distance Lfit (black line) for Standard 2D experiment. Upper right: Lfit for
Standard 2D and 3D cases. Bottom left: bL/bleft as a measure of confidence level.
Bottom right: Lfit for Standard, T0, T40 simulations.
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Figure 3.26: Deformation radius (red line) and measured lateral transfer distance
Lfit (black line) for Standard 2D (left) and Standard 3D (right) simulations.

valid scaling is

Ld =

√
Ḃt

f
(3.10)

where Ḃ is the buoyancy flux at the surface, measured in m2s−3 and computed as

Ḃ =
g

ρ0 [gm−3]
Ṡ (3.11)

with Ṡ the surface fluxes of salinity (g m−2 s−1). Although the buoyancy flux is
variable in time, Ld in (3.10) is still ∝ t1/2. This scaling is compared with the
deformation radius in (3.9). Since in the frontal region it is difficult to point out
the stratification N2 which gives different Ld for different choices, the ∆b formula
is here used. In particular, ∆b is computed as the difference between the two
symmetric averaged ML areas with respect to the ice edge. Although the frontal
spin-down affects the buoyancy in the two regions, in the two-dimensional config-
uration this method is not introducing error since isopycnals are almost vertical.
The mixed-layer depth is considered constant. The scaling in (3.9) and (3.10)
gives the same deformation radius measure for two-dimensional simulations. The
comparison is plotted in the left upper panel in Fig. 3.25 for the Standard 2D
simulation.

In order to estimate the realistic deformation radius in frontal adjustment pro-
cesses, the simulated ML average buoyancy field is fitted with an exponential or
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a linear behaviour. The typical length scale of the fit is then used to track the
intrusion of dense water at the base of the ML. Here, it is observed that both the
linear and the exponential fits give the same length scale. This fact is expected
since the frontal region is symmetrically distributed between the two regions and
in the fit the extremes of the frontal region are taken symmetrically with respect
to y = 0. The frontal slump is well described by a linear behaviour also in the
three-dimensional configuration, where eddies are enhanced.

A consideration has to be made: since brine rejection happens also in the
ice-covered region, the frontal adjustment process is affected by a combination of
overturning processes from the two sides of the front. In order to simplify the anal-
ysis, the ice-covered far right ML average buoyancy field is subtracted from the
buoyancy in the whole domain. This procedures is not affecting the comparison
between the two methods, as long as the buoyancy difference in (3.9) is computed
as ∆b(t) = bML,covered(t) − bML,open(t) with a time variable ice covered ML buoy-
ancy bML,covered.

Upper left panel in Fig. 3.25 shows also the time evolution of the typical dis-
tance indicated as Lfit for the Standard 2D experiment. After 5 days, the typical
frontal spin-down distance departs from the deformation radius law proposed by
Matsumura and Hasumi [2008]. The three-dimensional front tilts more rapidly
than the two-dimensional one, as visible in Fig. 3.25 (upper right). The bottom
left plot in Fig. 3.25 shows the ratio bL/bleft between the value of ML buoyancy at
distance L from the ice edge in the open ocean region and the ML buoyancy at the
far left boundary, for L equal to Lfit and Ld in (3.10). Both 2D and 3D Standard
simulations are shown. The ratio bL/bleft is a measure of the confidence of the
deformation radius scaling. The realistic Lfit is located at the distance at which
the density varies of about 95% or 90% (for 2D and 3D experiments, respectively);
the classical deformation radius instead is not well representing the spread of the
front after 5 days, for both two and three-dimensional configuration. The front is
spreading faster than expected also in the geostrophic adjusted front.

Higher forcing implies a faster spread, although in the three-dimensional case
oscillations appear in the solution after 15 days due to the interaction between big
eddies and with the domain boundaries (bottom right in Fig. 3.25).

A visualization of the Hovmöller diagram of the ML buoyancy and the observed
lateral transfer distance (black line) and the deformation radius (red line) is plot-
ted in Fig. 3.26 for the Standard 2D and 3D simulations. The far right buoyancy
has been already subtracted.
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This result urges to find an explanation for the different behaviour, not only in
the more complex agesotrophic submesoscale context but also in the geostrophic
adjustment process. A diffusion process that enhances the restratification has to
be considered.
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Conclusion

In this work the wintertime refreezing of an open ocean area near a sea ice edge
has been studied through idealized high resolution numerical simulations. The hy-
drostatic version of the Massachusetts Institute of Technology general circulation
model (MITgcm) [Marshall et al., 1997] has been used. Sea ice thermodynamics
has been modeled with the two-layer sea ice thermodynamic package of the MIT-
gcm model [Winton, 2000]. The ocean model domain is a square channel of 50x50
km initially equally divided in an open ocean part and a sea ice covered region.
The control experiment of a three-dimensional configuration forced by an external
air temperature of −20 °C is compared with the analogous two-dimensional con-
figuration, its non rotating case and higher and lower forcing experiments with air
temperatures of −40 and 0 °C, respectively.

Due to the temperature difference between air and ocean, heat fluxes are es-
tablished. Since the oceanic temperature is already near freezing, new sea ice
forms, causing salt fluxes by rejecting dense brine into the ocean mixed-layer (ML).
Simulations show that brine rejection is weaker, but still present, in the initially
ice-covered region. Density increases especially in the open ocean area and is
immediately vertically mixed throughout the ML by convective adjustment. A
buoyancy front grows at the sea ice edge and undergoes gravitational overturn-
ing, with velocities at the surface and the bottom of the ML acting in opposite
directions. As a response to jet formation, along sea ice edge currents with the
same opposite behaviour are geostrophically adjusted. Baroclinic instabilities de-
velop into mixed-layer eddies (MLEs), also called submesoscale eddies, which are
allowed only in three-dimensional simulations. It is observed that submesoscale
eddies grow in 5 days and totally dominate the dynamics after 10 days. Since the
Coriolis effect can not be neglected at high latitudes, the restratification mecha-
nism of an ice-edge front is controlled by MLEs.

Brine rejection at the oceanic surface also injects negative potential vorticity
(PV) into the ocean, which settles at the base of the ML, being mainly driven by
the mean stratification N2. MLEs drive faster restratification of the ML, lowering
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|PV | in the frontal region. In the non rotating case, instead, this can not happen
due to the absence of vorticity in the flow.

The energetics of the system is studied decomposing total kinetic energy into
mean kinetic energy (MKE) and eddy kinetic energy (EKE). TKE peaks at the
surface and the bottom of the ML, where jets are established. In the control exper-
iment, EKE and MKE becomes comparable in 5 days and the total kinetic energy
is perfectly equal to EKE at day 10. Turbulent kinetic energy budget is dominated
by the buoyancy production term w′b′ > 0, that leads the ML restratification.

The effect of submesoscale eddies in the frontal spin-down process is also stud-
ied by comparing the Eulerian overturning streamfunction with the eddy overturn-
ing streamfunction. For the control experiment, after 5 days, the eddy overturning
streamfunction is of the same order of magnitude of the Eulerian one, and it com-
pletely drives the slumping after 10 days.

An important length scale to describe the frontal spin-down problem is the
distance at which the dense-enriched water intrudes into the buoyant water at the
ML base. In geostrophic adjustment problem the typical distance is determined
by the Rossby deformation radius Ld = NH/f =

√
∆bH/f . Through buoyancy

conservation, Matsumura and Hasumi [2008] scale the typical buoyancy transfer
length as ∝ t1/2 or t1/3, accordingly to the relative size of Ld with respect to the
opening length. Here, it is found that the scaling proposed by Matsumura and
Hasumi [2008] holds for initial times up to 3 days, with a faster rate for increasing
times, when used in two-dimensional configurations. The transfer rate is further
increased when MLEs are present. This can be explained assuming that a diffusive
ageostrophic process increases the spread of lateral transfer at longer times. Note
that Matsumura and Hasumi [2008] adopt a lead configuration with maximum
width of 800 m, artificially close the opening after 1, 3 or 10 days and prove the
t1/3 scaling. The difference in geometry and time scales between their configura-
tion and the present study can explain why they didn’t observe this diffusion.

The comparison between external forcing strength reveals that a higher forc-
ing drives faster and larger submesoscale eddies and larger frontal density transfer
length scale, although after 15 days the interaction of eddies with the domain
boundaries can not be neglected and affects the solution.

In the present study the Arctic Ocean has been idealized and some assumptions
have been made. The wind driven circulation has not been considered. This is
suitable for weak winds, although it is estimated that winds will likely be more
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important in the future reduced Arctic sea ice cover. For future studies, it would
be interesting to explore the interaction of a sea ice edge front with a spiraling
flow in the Ekman layer. Winds can impress a mechanical stress also on sea ice
dynamics, though sea ice drift is not expected for sufficiently thick and compact
sea ice cover that may be connected to land. For the time scales considered in
this work it is possible to assume that sea ice is governed by thermodynamics.
Also oceanic waves have not been considered and the ocean is initially at rest.
The interactions with waves can importantly affect the ML restratification; they
could more efficiently spread properties laterally or break up submesoscale eddies
toward dissipation. Oceanic waves also move sea ice, that is transported toward
the Atlantic Ocean on long time scales. The coupling with ocean surface waves is
a target for future work. In the present study, atmospheric freshwater fluxes, such
as precipitation, are omitted.

To conclude, the present work has explored some theoretical tools that can be
used to investigate the oceanic response at a refreezing sea ice edge. Reynolds
decomposition helped in dividing into mean and turbulent features and in ob-
serving their relative magnitude. Here, it has been confirmed that MLEs rapidly
enhance the restratification process by subtracting energy from the mean flow and
increasing the turbulent kinetic energy of a brine driven ocean at a sea ice edge. Fi-
nally, through the length scale analysis, a new process emerges after several days
both in simple geostrophic adjustment of an overturning front and, even more
strongly, when submesoscale eddies are energized and drive restratification of the
mixed-layer and lateral transport – ageostrophic diffusion. This diffusive process
spreads the frontal region and its typical size departs from the scaling proposed
by Matsumura and Hasumi [2008]. Therefore, submesoscale eddies can be more
important than expected in high latitude seas. Future studies can help in further
investigating the process. At last, the present work will help in understanding the
more complex system of two interacting sea ice edge fronts at a refreezing lead,
that will be the objective of future study. Key questions in the brine driven lead
problem will be the relationship of submesoscale energetics and the lateral spread
of density to the length scales of the lead problem, notably lead width and the ML
depth.
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Appendix A

Derivation of MLE
parametrization

The derivation of the MLE parametrization follows Fox-Kemper et al. [2008].

Let’s consider the general diabatic Boussinesq mean buoyancy equation (where
∇ · u = 0):

Db̄

Dt
=
∂b

∂t
+∇ · u b+∇ · u′b′ = D (A.1)

where D is the diabatic term.

The potential energy per unit area can be computed as

PE =
1

A

∫
A

∫ η

−H
ρgz dxdydz

=
1

A

∫
A

[∫ η

−H
ρ0gzdz −

∫ η

−H
ρ0bzdz

]
dxdy

=
1

A

∫
A

ρ0

[
1

2
g(η2 −H2)−

∫ η

−H
bzdz

]
dxdy

(A.2)

and subtracting the initial value and dividing per ρ0(H + η) ≈ ρ0H gives

〈PE〉 = −〈bz〉+ 〈 1

2H
gη2 〉 (A.3)

where 〈·〉 represents the xyz average. In the frontal spindown problem the potential
energy is extracted by the submesoscale eddies (w̄ b̄ � w′b′) and the potential
energy variations are related to the vertical buoyancy eddy fluxes:

d〈PE〉
dt

= − d

dt
〈z′b′〉 = −〈w′b′〉 (A.4)
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A parametrization for the vertical buoyancy flux w′b′ is needed. First, the PE
release due to baroclinic instability can be represented by the exchange of fluid
parcels over a decorrelation distance (∆y,∆z) in ∆t:

d〈PE〉
dt

≈ ∆PE

∆t
∝ ∆z∆b

∆t
(A.5)

By writing the buoyancy variation as coming from the vertical and the horizontal
displacement

∆b = ∆y
∂b̄

∂y
+ ∆z

∂b̄

∂z
(A.6)

and using the proportionality between the slope of the fluxes and the isopycnal
slope

∆y

∆z
∝
− ∂b̄
∂z

∂b̄
∂y

(A.7)

it remains only the horizontal buoyancy gradient in the vertical restratification
process:

〈w′b′〉 ∝
∆z∆y ∂b̄

∂y

∆t
(A.8)

The time scale ∆t is the turnover time for the eddies ∆t = ∆y/V , where V is the
eddy velocity scale. V is of the same order of magnitude as the mean horizontal
velocity, i.e. the thermal wind velocity: V ∝ U ≈ −H

f
∂b̄
∂y

, using the vertical
constrain ∆z ∝ H. Finally the vertical buoyancy eddy flux scales with

〈w′b′〉 ∝ H2

|f |

(
∂b̄

∂y

)2

(A.9)

and it is set to be positive definite, with the absolute value of f taken to extract
PE in both hemispheres, thus placing dense water under light water and slumping
the front.

In analogy, using the same consideration above, a scaling for the horizontal
eddy fluxes can be obtained:

w′b′ ∝ H2

|f |
(∇H b̄)

2

v′b′ ∝ −
H2 ∂b̄

∂z

|f |
∇H b̄

(A.10)

Vertical eddy fluxes are upward, they restratify the ML extracting PE. Horizontal
eddy fluxes are down the mean horizontal buoyancy gradient.
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Eddies effect is largely adiabatic. Thus, they can be represented by an over-
turning streamfunction. The eddy fluxes are related to this streamfunction and
the mean buoyancy gradient:

u′b′ ≡ Ψ×∇b̄ (A.11)

or equivalently

v′b′ = −Ψb̄z

w′b′ = Ψb̄y
(A.12)

where the indices stand for partial derivative in the given direction and with

Ψ ∝ H2

|f |
∇b̄× ẑ (A.13)

Note that, due to the perpendicularity of the horizontal mean buoyancy gradient
to the vertical direction, the overturning streamfunction is only in the along-front
direction. It represents the overturning of the front. The final form of the over-
turning streamfunction is found to be (FK08):

Ψ = Ce
H2µ(z)

|f |
∇b̄× ẑ (A.14)

with Ce = 0.06− 0.08 the efficiency factor and µ(z) the vertical structure function

µ(z) =

[
1−

(
2z

H
+ 1

)2
][

1 +
5

21

(
2z

H
+ 1

)2
]

(A.15)

This parametrization produces fluxes as in (A.11) and an eddy induced velocity,
called Bolus velocity:

u∗ = ∇×Ψ (A.16)
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Appendix B

Derivation of the Ertel PV
equation

The equation for the Ertel potential vorticity (PV) is obtained from the mo-
mentum equations and the buoyancy equation in the Boussinesq approximation:

Du

Dt
+ f × u = −∇φ+ b k̂ + F (B.1)

Db

Dt
= D (B.2)

where F are frictional forces, D diabatic forcing, and the material derivative is
D
Dt

= ∂
∂t

+ u · ∇. Moreover, in the Boussinesq system ∇ · u = 0. In this work,

f = f k̂ with f constant.

By taking the curl of the L.H.S in (B.1) and using the rule u ·∇u = 1
2
∇(uu)−

u× (∇× u) = ∇(uu) + ω × u with ω = ∇× u the relative vorticity, one gets

∇×
(
Du

Dt
+ f × u

)
=
∂ω

∂t
+∇× [(ω + f)× u]

=
∂ω

∂t
+ u · ∇(ω + f)− (ω + f) · ∇u

(B.3)

Finally, (B.1) becomes

D(ω + f)

Dt
= (ω + f) · ∇u +∇× b k̂ +∇×F (B.4)

The equation for the buoyancy gradient can be obtained taking the gradient of
from (B.2)

∇Db
Dt

= ∇∂b
∂t

+∇(u · ∇b) =
∂∇b
∂t

+ u · ∇(∇b) +∇b · ∇u (B.5)
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which gives
D∇b
∂t

= ∇Db
Dt
−∇b · ∇u = ∇D −∇b · ∇u (B.6)

To combine (B.4) and (B.6), the dot-product with ∇b and (ω+ f), respectively, is
taken:

(∇b) · D(ω + f)

Dt
= ∇b · [(ω + f) · ∇u] +∇b · (∇×F) (B.7)

(ω + f) · D∇b
∂t

= (ω + f) · ∇D −∇b · [(ω + f) · ∇u] (B.8)

Summing up (B.7) and (B.8), the equation for the Ertel PV is obtained:

DQ

Dt
= (∇×F) · ∇b+ (ω + f) · ∇D (B.9)

where Q is the Ertel PV defined as

Q = (ω + f) · ∇b (B.10)

Finally, (B.9) can be simply written in a conservation form

∂Q

∂t
= −∇ · J (B.11)

by introducing a flux of PV

J = uQ−F ×∇b− (ω + f)D (B.12)

PV evolves due to frictional and diabatic effects and it is redistributed through
advective processes of PV.

For inviscid and adiabatic flows, Ertel PV is conserved (DQ
Dt

= 0), and this
constraint is usefully used to solve easily problems, like in the quasi-geostrophic
theory.
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Appendix C

Derivation of MKE and EKE
equations

Using the Reynolds decomposition rule

u = U + u′ (C.1)

where u ≡ U and the () stands for the average value such that ()′ = 0, the average
of the kinetic energy of a fluid can be decomposed into a kinetic energy of the
mean and a kinetic energy of the perturbation:

KE =
1

2
u2
i =

1

2
ui

2 +
1

2
(u′)2

i

≡MKE + EKE
(C.2)

with MKE = 1
2
ui

2 the mean kinetic energy and EKE = 1
2
(u′)2

i the turbulent
kinetic energy.

Two governing equations for the rate of change of the two separate terms can
be build starting from the momentum equation:

Du

Dt
+ f × u = −∇φ+ b k̂ + F (C.3)

written in the Boussinesq approximation with f = f k̂ with f constant, and where
F are frictional forces. Moreover, the material derivative is D

Dt
= ∂

∂t
+ u · ∇ and

∇ · u = 0.

The energy budget equation is obtained by multiplying (C.3) by the velocity.
Since the coupling terms between the mean and the eddy kinetic energy are non
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linear, the derivation here is made posing F = 0 and zero Coriolis force. In the
Einstein notation, under these assumption, the momentum equation becomes

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂φ
∂xi

+ b δi3 (C.4)

Now, by decomposing each variable into the mean and the perturbation and taking
the average, the momentum equation for the mean can be obtained. It gives:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − ∂φ
∂xi

+ b δi3 −
∂

∂xj
u′iu
′
j (C.5)

Thus, due to the non linearity of the advection term, the mean flow is not inde-
pendent by the perturbation flow. By subtracting (C.5) to (C.4) the momentum
equation for the perturbation is found to be:

∂u′i
∂t

+ Uj
∂u′i
∂xj

+ u′j
∂Ui
∂xj

+ u′j
∂u′i
∂xj

= −∂φ
′

∂xi
+ b′ δi3 +

∂

∂xj
u′iu
′
j (C.6)

The two momentum equations for the mean and the eddy flows have a common
term that appears with opposite sign in the two momentum equations, indicating
a transfer of momentum from the mean flow to the turbulent flow.

Now, by multiplying (C.5) for Ui and (C.6) for u′i, and taking the average, after
some manipulations, the two equations for MKE and EKE are found:

∂

∂t

(
1

2
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i

)
+Uj
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2
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i

)
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Uiφ+Uib δi3−

∂

∂xj
(u′iu

′
jUi) +u′iu

′
j

∂Ui
∂xj

(C.7)
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(
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2

)
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(
1

2
(u′i)

2u′j

)
− u′iu′j

∂Ui
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− ∂

∂xi
u′iφ
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(C.8)
Finally, the MKE and EKE equations are

DM

Dt
(MKE) = − ∂

∂xi
Uiφ+Wb− ∂

∂xj
(u′iu

′
jUi) + u′iu

′
j

∂Ui
∂xj

(C.9)

DM

Dt
(EKE) = − ∂

∂xj

(
1

2
(u′i)

2u′j

)
− ∂

∂xi
u′iφ

′︸ ︷︷ ︸
PW

+ b′w′︸︷︷︸
BP

−u′iu′j
∂Ui
∂xj︸ ︷︷ ︸
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(C.10)

where DM

Dt
= ∂

∂t
+ Uj

∂
∂xj

is the material derivative with respect to the mean flow.

The linear Coriolis term and dissipation term can be now added to the equations.
Again, the budget equations for the mean and the turbulent kinetic energy have
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an identical and opposite term, the shear production term SP, indicating that the
two energy evolves one against the other.

The study of the EKE can be made by analyzing the effect of each terms in
the R.H.S. of (C.10). The pressure work term PW, the buoyancy production term
BP, and the shear production term SP can be positive or negative depending on
the structure of the stratification, the mean shear flow and the pressure. For
example, the buoyancy production term is positive if the fluid unstably stratified,
and negative if it is stably stratified. Indeed, if N2 < 0, bz < 0; thus, if the parcel
deviates toward the surface, w′ > 0, it would find itself around denser parcels,
creating b′ > 0, for which w′b′ > 0 and EKE is created by pushing lighter water
above denser water.
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