Global Stokes Drift and Climate Wave Modeling

Adrean Webb

University of Colorado, Boulder Department of Applied Mathematics

February 20, 2012

In Collaboration with:

Baylor Fox-Kemper, Natasha Flyer

Research funded by:

NASA ROSES Physical Oceanography NNX09AF38G

Conclusions

Hierarchy of Stokes Drift Approximations:

1. 2D spectral data known: Use first-order 2D Stokes drift

Random Error $\sim 10\%$

- 2. 1D spectral data known: Use 1D wave spread approximation
 - ID Unidirectional approximation is not advised since it systematically overestimates the 2D Stokes drift by approximately 33%
- 3. Third-spectral-moment known: Same as 1D wave spread at the surface

Random Error $\sim 10\%$

4. *Third-spectral-moment unknown:* Use the second moment to empirically approximate the third moment

Climate Wave Model:

- 1. Unstructured node approach removes advective and directional singularities
- 2. Prototype model shows promise in great circle test case

Introduction: Stokes Drift Velocity

Stokes drift = mean(Lagrangian fluid velocity - Eularian current)

- Appears often in wave-averaged dynamics like Langmuir mixing
- Accuracy and data coverage remain challenges in global estimates
- Use of atmospheric data alone can be untrustworthy

Figure: 2D particle trajectories governed by the (a) linear and (b) nonlinear small-amplitude wave equations, and (c) the latter nonlinear mean drift over time (Kundu and Cohen, 2008)

Motivation: Importance for Climate Research

There is a persistent, shallow mixed layer bias in the Southern Ocean in global climate models (GCM): Langmuir mixing missing???

 Stokes drift plays a dominant role in determining the strength of Langmuir mixing

$$\blacktriangleright~1/La_t^2~\sim~u^s(z=0)/u^*$$

• Langmuir mixing is not currently in any GCM [2/2012]

Figure: Mixed layer depth bias is reduced in CCSM 3.5 model runs

Lower First-order Stokes Drift Approximations

Overview:

- Survey and error analysis of lower first-order Stokes drift approximations (spectral moments)
- Comparison of surface Stokes drift estimates using different data products (e.g., satellites, buoys, models) = Factor of 50% difference!

ARTICLE INFO

Article history:

Received 10 January 2011 Received in revised form 17 August 2011 Accented 18 August 2011

ABSTRACT

The relationships between the moments of wave spectra and Stokes drift velocity are calculated for empirical spectral shapes and a third-generation wave model. From an assumed spectral shape and only an estimate of wave period and significant wave height, one may determine: the leading-order Stokes

Global Wave Variable Examples

Surface Stokes Drift Magnitude (cm/s) 40°N 0° $40^{\circ}S$ $40^{\circ}S$ $100^{\circ}E$ $100^{\circ}W$ $100^{\circ}W$

Stokes Drift and Wave Spectra Examples

The first-order Stokes drift magnitude depends both on the directional components of the wave field and the directional spread of wave energy

$$\mathbf{u}^{S} \approx \frac{16\pi^{3}}{\mathrm{g}} \int_{0}^{\infty} \int_{-\pi}^{\pi} \left(\cos\theta, \sin\theta, 0\right) f^{3} \mathcal{S}_{f\theta}(f, \theta) e^{\frac{8\pi^{2}f^{2}}{\mathrm{g}}z} d\theta df \quad (1)$$

Figure: Examples of wave spectra: (a) 2D spectra generated by WAVEWATCH III, (b) idealized directional spread (Holthuijsen), and (c) 1D Pierson and Moskowitz observational spectra (Stewart)

Stokes Drift and Multidirectional Waves

Example: Consider a bichromatic spectrum with the same amplitude and peak frequency for each monochromatic wave but separated by an angle of incidence θ' .

$$\mathbf{u}^{S} \approx \frac{16\pi^{3}}{\mathrm{g}} \int_{0}^{\infty} \int_{-\pi}^{\pi} \left(\cos\theta, \sin\theta, 0\right) f^{3} \mathcal{S}_{f\theta}(f, \theta) e^{\frac{8\pi^{2}f^{2}}{\mathrm{g}}z} d\theta df$$

Then the following relation holds¹:

$$\mathbf{u}_{bi}^{S} \neq 2 \mathbf{u}_{mono}^{S}$$
$$= 2 (\cos \theta', 0, 0) \mathbf{u}_{mono}^{S}$$

Figure: Example of how the directional components of a wave field affect the magnitude of Stokes drift

¹The mean wave direction is along the x-axis

Stokes Drift: Improving 1D Estimates

Stokes drift error due to wave spreading in 1D approximates can be minimized by first recreating the 2D wave spectrum

Idea: Use an *empirical directional distribution* (D_f) to recover the 2D spectrum

$$\int_0^\infty \int_{-\pi}^{\pi} \mathcal{S}_{f\theta}(f,\theta) \, d\theta \, df = \int_0^\infty \left[\int_{-\pi}^{\pi} D_f(f,\theta) \, d\theta \right] \mathcal{S}_f(f) \, df = \int_0^\infty \mathcal{S}_f(f) \, df$$

Higher Order: Comparison of 2D and 1D Estimates

Current State: Third-generation Wave Models

Figure: Spatial and spectral grid examples

Current Model Basics:

- Uses structured grids (lat-lon, polar)
- Includes extensive physics and parameterizations

Current Model Deficiencies:

- Spatial and spectral singularities near the poles
- Performance declines as N/S boundaries are moved higher (presently $\pm 75^\circ)$
- Designed to forecast weather not climate

Figure: WAVEWATCH III grid performance with benchmarking targets for coupling to NCAR CESM

Unstructured Approach: RBF-Generated Finite Differences

Figure: Possible node layout

Figure: Great circle propagation

RBF-Generated Finite Difference Method (RBF-FD):

- Solves advective problems with near spectral accuracy
- Uses an unstructured node layout
- Allows geometric flexibility and local node refinement
- No advective and directional singularities
- Computational costs are spread equally
- Possibly well-suited for parallelization

Great Circle Propagation Test Case:

- 20 spatial × 10 spectral nodes
- Dissipation and dispersion error after 0.5 cycles
 - For the third-order upwind ~ 0.2
 - ▶ Radial Basis Functions $\sim 0.5 \times 10^{-4}$

Conclusions

Hierarchy of Stokes Drift Approximations:

1. 2D spectral data known: Use first-order 2D Stokes drift

Random Error $\sim 10\%$

- 2. 1D spectral data known: Use 1D wave spread approximation
 - ID Unidirectional approximation is not advised since it systematically overestimates the 2D Stokes drift by approximately 33%
- 3. Third-spectral-moment known: Same as 1D wave spread at the surface

Random Error $\sim 10\%$

4. Third-spectral-moment unknown: Use the second moment to empirically approximate the third moment

Climate Wave Model:

- 1. Unstructured node approach removes advective and directional singularities
- 2. Prototype model shows promise in great circle test case

Thank You!

References

Stokes Drift:

• Webb, A., Fox-Kemper, B., 2011. Wave Spectral moments and Stokes drift estimation. Ocean Modelling, Volume 40.

Langmuir Mixing:

 Fox-Kemper, B., Webb, A., Baldwin-Stevens, E., Danabasoglu, G., Hamlington, B., Large, WG., Peacock, S., in preparation. Global climate model sensitivity to estimated Langmuir Mixing.

RBF-Generated Finite Difference Method:

- Flyer, N., Lehto, E., Blaise, S., Wright, G., A. St-Cyr, 2011. RBF-generated finite differences for nonlinear transport on a sphere: shallow water simulations. Preprint.
- Fornberg, B., Lehto, E., 2011. Stabilization of RBF-generated finite difference methods for convective PDEs. Journal of Computational Physics, Volume 230, Issue 6.