
Stokes Drift and Meshless Wave Modeling

by

Adrean A. Webb

B.S., University of Oklahoma, 1998

M.S., University of New Hampshire, 2007

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Applied Mathematics

2013

This thesis entitled:
Stokes Drift and Meshless Wave Modeling

written by Adrean A. Webb
has been approved for the Department of Applied Mathematics

Baylor Fox-Kemper

Keith Julien

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.

iii

Webb, Adrean A. (Ph.D., Applied Mathematics)

Stokes Drift and Meshless Wave Modeling

Thesis directed by Assistant Professor Baylor Fox-Kemper

This dissertation is loosely organized around e↵orts to improve vertical ocean mixing in

global climate models and includes an in-depth analysis of Stokes drift, optimization of a new

global climate model wave component, and development of a meshless spectral wave model.

Stokes drift (hereafter SD) is an important vector component that appears often in wave-

averaged dynamics. Mathematically, SD is the mean di↵erence between Eulerian and Lagrangian

velocities and intuitively can be thought of as the near-surface ocean current induced from wave

motion. Increasingly, spectral wave models are being used to calculate SD globally. These models

solve a 5D wave action balance equation and typically require large computational resources to

make short to medium-range forecasts of the sea state.

In the first part, a hierarchy of SD approximations are investigated and new approximations

that remove systematic biases are derived. A new 1D spectral approximation is used to study the

e↵ects of multidirectional waves and directional wave spreading on SD. It is shown that these e↵ects

are largely uncorrelated and a↵ect both the magnitude and direction of SD in a nonlinear fashion

that is sensitive with depth.

In the second part, e↵orts to add a wave model component to the NCAR Community Earth

System Model are discussed. This coupled component will serve as the backbone to a new Lang-

muir mixing parameterization and uses a modified version of NOAA WAVEWATCH III (a third-

generation spectral wave model). In addition, the governing wave action balance equation is re-

viewed and several variations are derived and formulated.

In the third part, construction of a monochromatic spectral wave model using RBF-generated

finite di↵erences is described. Several numerical test cases are conducted to measure performance

and guide further development. In kinematic comparisons with WAVEWATCH III, the meshless

iv

prototype is approximately 70–210 times more accurate and uses a factor of 12 to 17 less unknowns.

Dedication

I dedicate this to my family and closest friends. This could not have been completed without

their constant encouragement and support.

vi

Acknowledgements

This work was funded by NASA ROSES Physical Oceanography NNX09AF38G. I thank the

agency for its support.

In addition, I would like to thank Keith Julien for looking out for me during my stay at

the Institute for Pure and Applied Mathematics and for his general support within the Applied

Mathematics Department.

I would also like to thank Bengt Fornberg and Natasha Flyer for allowing me to crash their

weekly RBF meetings and glean nuggets of useful information. In particular, I would like to thank

Natasha for answering my endless questions and helping me set up the meshless wave model.

And finally, I would like to thank my advisor Baylor Fox-Kemper, who in all his wisdom, had

me start writing early. I couldn’t have picked a better advisor and I am grateful for all his e↵orts

in helping me become a better scholar.

Contents

Chapter

1 Introduction 1

1.1 Framing the research . 1

1.1.1 Motivation for initial research . 1

1.1.2 Preliminary inclusion of Langmuir mixing . 2

1.1.3 Focus of research since preliminary results . 5

1.2 Review of surface gravity waves and linear wave theory 7

1.2.1 Description of setup . 7

1.2.2 Balance equations . 8

1.2.3 Velocity potential . 9

1.2.4 Boundary conditions . 10

1.2.5 Governing nonlinear wave equations . 11

1.2.6 Treatment of atmospheric pressure fluctuations 11

1.2.7 Non-steep regimes of the governing nonlinear wave equations 12

1.2.8 Governing linear wave equations . 13

1.2.9 Linear deep-water approximation . 15

2 Stokes drift 17

2.1 Introduction and motivation for analysis . 17

2.2 Formal definition in Cartesian coordinates . 19

viii

2.3 Derivation of the SD spectral density estimate . 21

2.3.1 Wave field decomposition for model inclusion 22

2.3.2 Discrete wave spectra . 24

2.3.3 The cell-averaged SD estimate . 26

2.3.4 The spectral density SD estimate . 27

2.4 Global comparisons of SD . 28

2.4.1 The 1Dh-SD approximation . 28

2.4.2 Lower-order SD approximations . 29

2.4.3 Summary of spectral-moment-SD approximations and global comparisons . . 31

2.5 Comparison of 1Dh- and 2Dh-SD approximations . 32

2.5.1 Pitfalls of the unidirectional assumption . 34

2.5.2 Directional distribution and SD . 36

2.5.3 The 1Dh-DHH-SD approximation . 37

2.5.4 Analysis of SD magnitudes using the 1Dh-DHH-SD approximation 40

2.5.5 Analysis of SD direction using the 1Dh-DHH-SD approximation 47

2.5.6 A qualitative treatment of error in the 1Dh-SD approximation 48

3 Spectral wave modeling 51

3.1 Introduction to spectral wave modeling . 51

3.1.1 Third-generation spectral wave models . 54

3.1.2 Coupling WAVEWATCH III to NCAR CESM 55

3.2 Wave action balance equation . 61

3.2.1 Overview of derivation . 63

3.2.2 Generalized equation and simplifications . 65

3.2.3 Derivation in polar coordinates . 66

3.3 The wave action balance equation in di↵erent geometries 73

3.3.1 Test geometries . 74

ix

3.3.2 Spatial 1D periodic with spectral scalar formulation (ring-point) 74

3.3.3 Spatial 1D periodic with spectral 1D formulation (ring-line) 75

3.3.4 Spatial spherical surface with spectral 1D periodic formulation (sphere-ring) . 76

3.3.5 Spatial spherical surface with spectral cylindrical surface formulation (sphere-

cylinder) . 77

3.4 Nonsingular wave action balance equation on a sphere 78

4 Meshless spectral wave modeling using RBF-generated finite di↵erences 79

4.1 Introduction . 79

4.2 Overview of the numerical method . 81

4.2.1 Global RBF methodology . 81

4.2.2 Local RBF-FD methodology . 82

4.3 Problem formulation . 83

4.3.1 RBF-FD linear operator discretization . 84

4.3.2 Equation discretizations . 85

4.3.3 Node stencil construction for the sphere-ring geometry 86

4.3.4 Boundary attenuation for the sphere-ring geometry 87

4.4 Numerical test case studies . 89

4.4.1 Case 1: Toy problem . 89

4.4.2 Case 2: Spectral stencil selection . 92

4.4.3 Case 3: Spatial stencil selection . 94

4.4.4 Case 4: Boundary attenuation . 101

4.4.5 Case 5: Evolution in the coupled domains . 103

4.4.6 Case 6: Comparison with WAVEWATCH III 112

5 Summary and conclusions 118

x

Bibliography 121

Appendix

A Definitions and derivations 128

A.1 Craik-Leibovich equations . 128

A.2 Spectral moments . 128

A.3 Mean Wave Direction . 130

A.4 The DHH-B directional-SD-component . 130

A.5 SD spectral tail calculations . 130

A.5.1 Subsurface SD tail . 131

A.5.2 Surface SD tail . 131

A.5.3 1D spectra simplification . 132

A.6 Del in polar coordinates . 132

A.7 Miscellaneous formulations . 133

A.7.1 Normalizing an interval for use with a unit circle 133

A.7.2 Mapping 1D functions from an interval to a unit circle 133

A.7.3 Projection onto a sphere . 134

A.7.4 Propagation on a Sphere . 134

A.7.5 Rotation on a Sphere . 134

B Numerical wave modeling 135

B.1 NOAA WAVEWATCH III details . 135

B.2 Numerical SD calculations . 136

B.2.1 2Dh-SD . 136

B.2.2 Directional 1Dh-SD . 136

B.2.3 Unidirectional 1Dh-SD . 137

xi

C Formal SD truncation error 138

C.1 Nonlinear assumption for convergence . 138

D Analytic solutions to wave action balance equations 142

D.1 Problem 1 . 142

D.2 Problem 2 . 144

D.3 Problem 3 . 144

D.3.1 Variant 1 . 145

D.3.2 Variant 2 . 145

D.3.3 Variant 3 . 149

E Peer reviewed articles 151

E.1 Webb & Fox-Kemper, 2011 . 151

F Numerical code 168

F.1 Matlab SD functions . 168

F.2 Matlab RBF-FD model scripts and functions . 204

Tables

Table

2.1 Proposed coe�cients for the (surface) spectral-moment-SD approximation using dif-

ferent mean periods from di↵erent spectra. Dots and brackets indicate truncation of

an analytical solution and temporal and global means respectively. 33

2.2 Example e-folding depths |zn| (m) for the peak frequencies fp = 0.05, 0.16, 0.34 (Hz). 42

2.3 Ratio of 1Dh-DHH- to 1Dh-SD magnitudes using empirical spectra for various

e-folding depths. Ratios with DHH1 (fetch-limited) and DHH2 (fully-developed) are

not provided at z0 since the spectra is undefined at the surface (see Section 2.5.4.1). 42

Figures

Figure

1.1 Images of Langmuir mixing: (a) a photograph of Rodeo Lagoon in CA (Szeri 1996), (b) an infrared

image of the surface of Tama Bay (courtesy of G. Marmorino, NRL, D.C.), and (c) the evolution of

surface tracers in a large eddy simulation of Langmuir turbulence (McWilliams et al., 1997). Images

are reproduced from Chini et al. (2009). 3

1.2 Observations of Langmuir mixing (a) from buoy data in the Pacific (Weller et al., 1985) and (b)

satellite after the Deepwater Horizon oil spill (DigitalGlobe, 2010). A plane is circled in the satellite

image to indicate scale. Images are reproduced from Stewart (2008) and NPR.org respectively. . . 3

1.3 Comparison of observations and NCAR CCSM 3.5 output in the Southern Ocean with and without

the Langmuir mixing parametrization. Biases are reduced in both the (a) CFC column inventory and

(b) mixed layer depth. GCM output and images were generated by S. Peacock and G. Danabasoglu

(Webb et al., 2013). 6

2.1 The basic principle of SD in 2D and absence of background currents is illustrated here. The (a)

leading-order and (b) actual, fluid parcel trajectories (governed by solutions to the linear wave

equations) have closed and non-closed orbits respectively. This di↵erence leads to (c) a nonlinear

mean drift over time. Cartoons are reproduced from Kundu and Cohen (2008). 18

2.2 Eight year mean (1994-2001) of the residual and relative-residual surface SD magnitudes between

the 1D
h

-SD and a2-spectral-moment-SD approximations. Figures are reproduced from Webb and

Fox-Kemper (2011). 33

xiv

2.3 Here, pairs of monochromatic waves (red and blue) are shown traveling about a mean direction

✓̄=⇡/2 with a total directional di↵erence (for each pair) of 2✓0. Only the y vector components of

the bichromatic waves contribute to SD. 38

2.4 The magnitude of the DHH directional-SD-component. 38

2.5 Ratios of 1D
h

-DHH- to 1D
h

-SD magnitudes using empirical spectra for continuous e-folding

depths: JONSWAP (gray solid), PM (gray dashed), fetch-limited DHH (black solid), and

fully-developed DHH (black dashed). 42

2.6 Observational buoy data: a snapshot of SD magnitudes at depth; the 2D
h

-SD approximation

indicates the presence of multidirectional waves. 44

2.7 Observational buoy data: median SD magnitude ratios with the two-thirds centered distribution

shaded. 44

2.8 Density-shaded scatter plots generated from one year of global model data (WAVEWATCH III). The

colors red, green, and blue indicate the highest 0�30%, 31�60%, and 61�90% centered distributions

respectively. Surface magnitude (m/s) comparison of (a) 2D
h

-SD (y-axis) versus 1D
h

-SD (x-axis),

(b) 2D
h

-SD (y-axis) versus 1D
h

-DHH-SD (x-axis), (c) 1D
h

-DHH-SD (y-axis) versus 1D
h

-SD

(x-axis), and (d) 2D
h

-SD (y-axis) versus m⇥1D
h

-SD (x-axis). Here, m = 0.795 is the slope of

the red line in (c). 46

2.9 Density-shaded scatter plots of the 2D
h

-SD (y-axis) versus 10 m surface wind (x-axis) directions

(rad) for di↵erent depths (m): (a) z=0, (b) z=1, (c) z=3, and (d) z=9. See Fig. 2.8 for an

explanation of the colors. 49

2.10 Density-shaded scatter plots of the 2D
h

-SD (y-axis) versus surface mean wave (x-axis) directions

(rad) for di↵erent depths (m): (a) z=0, (b) z=1, (c) z=3, and (d) z=9. See Fig. 2.8 for an explanation

of the colors. 49

3.1 Illustration of wave spectra from di↵erent types of ocean surface waves. Figure is reproduced from

Holthuijsen (2007). 53

xv

3.2 Example of a spectral model approach. The random sea of each gridded region in (a) is Fourier

decomposed in (b). The statistical di↵erences between neighboring gridded regions are assumed

to be small enough such that evolution of wave energy can be modeled by a PDE. Figures are

reproduced from Holthuijsen (2007). 53

3.3 Examples of third-generation model grids: (a) spatial latitude-longitude grid spaced equally and

non-equally in latitude and longitude (respectively); (b) spectral directional-frequency grid spaced

evenly and logarithmically in direction and frequency (respectively). 56

3.4 A general comparison of WAVEWATCH III cost versus spatial resolution using the same number

of time steps and a fixed spectral grid (25
f

⇥ 24
✓

). In reverse order of the legend, the four di↵erent

model runs are (1) with sources, (2) without sources but with input interpolation, (3) without

sources and input, and (4) without sources or input but with a larger time step. 59

3.5 Mean WAVEWATCH III grid performance results with benchmarking targets on two di↵erent ma-

chines. Performance is measured in the number of simulated years per day of running. Benchmark-

ing was performed on (a) NASA Pleaides and (b) NCAR Bluefire on several di↵erent spatial (N
x

)

and spectral (N
f✓

) grids. The following spatial lat-lon grids were tested: 1� ⇥ 1.25� (N
x

=30730),

1.9� ⇥ 2.5� (N
x

=12096), 2.4� ⇥ 3� (N
x

=7920), and 3.2� ⇥ 4� (N
x

=4500). In addition, the follow-

ing spectral frequency-direction grids were tested: 32 ⇥ 24 (N
f✓

=768), 25 ⇥ 24 (N
f✓

=600), and

13 ⇥ 12 (N
f✓

=156). 59

3.6 An example comparison of significant wave height using a normal (25
f

⇥ 24
✓

) and coarsened (13
f

⇥

12
✓

) spectral grid on a standard spatial lat-lon grid (1� ⇥ 1.25�). 62

3.7 Comparison test of the coupled wave model (WAVE) with an uncoupled WAVEWATCH III (WW3)

on NCAR Bluefire. Sample output on the new grid is after a 1 day spin-up with seeded spectra of

(a) significant wave height (Hm0) and (b) the relative di↵erences (of Hm0) between the models. . 62

xvi

4.1 (a) Sample minimal energy node distribution (b) overlaid with RBF-FD di↵erentiation weights for

a selected node (boxed). The scaled blue and red solid circles correspond to negative and positive

values respectively and the green circles represent zero entries in the di↵erentiation matrix. Image

is reproduced from Flyer et al. (2012). 88

4.2 A boundary attenuation filter is used to prevent evolution of wave action near the singular poles.

The ice lines are approximately at ±75�. See Eq. (4.15) for details. 88

4.3 Sparse solution and error using 40
~x

⇥ 20
k

nodes with a staggered layout in k for logarithmically

increasing �k after (a) 1 time step and (b) 1/2 revolution of the fastest wave. The interpolated

solution uses 100
~x

⇥ 100
k

Halton nodes. 90

4.4 Sparse interpolated solution and error using 40
~x

⇥ 20
k

nodes with a staggered layout in k for fixed

�k after (a) 1 time step and (b) 1/2 revolution of the fastest wave. Interpolated solution uses

100
~x

⇥ 100
k

Halton nodes. 91

4.5 Initial conditions (first column) for the ring-point 1D periodic tests with relative time step

error after 1/4 a revolution for N
✓

= 60 (second column): (a) cosine squared, W0(✓) = (cos 2✓)2;

(c) Gaussian bell, W0(✓) = exp[�(9✓/⇡)2]; (e) cosine bell, W0(✓) = (cos 2✓)2 for |✓| < ⇡/4 and 0

otherwise. The time step is normalized by the propagation speed in (b), (d), and (f). 93

4.6 Ring-point test with initial condition W0(✓) = (cos 2✓)2. In (a)–(e), the relative `2 error after 1

time step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter for di↵erent

spatial nodes. A value of a = 0.2 from Fig. 4.5b was used to determine the time step in each. In

(f), the relative `2 error after 1/4 revolution is plotted versus N
x

for di↵erent stencil sizes. 95

4.7 Ring-point test with initial condition W0(✓) = exp[�(9✓/⇡)2] (Gaussian bell). In (a)–(e), the

relative `2 error after 1 time step (dashed) and 1/4 revolution (solid) are plotted versus shape

parameter for di↵erent spatial nodes. A value of a = 0.2 from Fig. 4.5d was used to determine the

time step in each. In (f), the relative `2 error after 1/4 revolution is plotted versus N
x

for di↵erent

stencil sizes. 96

xvii

4.8 Ring-point test with initial condition W0(✓) = (cos 2✓)2 for |✓| < ⇡/4 and 0 otherwise (cosine

bell). In (a)–(e), the relative `2 error after 1 time step (dashed) and 1/4 revolution (solid) are

plotted versus shape parameter for di↵erent spatial nodes. A value of a = 0.2 from Fig. 4.5f was

used to determine the time step in each. In (f), the relative `2 error after 1/4 revolution is plotted

versus N
x

for di↵erent stencil sizes. 97

4.9 Sphere-ring test along the equator with a Gaussian bell initial condition,W0(⇠) = exp[�(27⇠/2⇡)2].

In (a), sample node layout with the test path (red), (approximate) initial bell edge (blue), and

ice cap edges (black) are marked. Actual tests used a larger Gaussian bell and smaller ice caps

than displayed. In (b), relative errors (`2) after 1/4 revolution are plotted versus a relative time

step for N
x

= 3600 and di↵erent stencil sizes. In (c)–(e), relative errors (`2) after 1 time step

(dashed) and 1/4 revolution (solid) are plotted versus shape parameter for di↵erent N
~x

with

a = 0.2. And in (f), the spatial node convergence rates are plotted for di↵erent stencils sizes. 99

4.10 Sphere-ring test along the equator with a cosine bell initial condition, W0(⇠) = (cos 3⇠)2 for

|⇠ < ⇡/6 and 0 otherwise. In (a), sample node layout with the test path (red), initial bell edge

(blue), and ice cap edges (black) are marked. Actual tests used a larger Gaussian bell and smaller

ice caps than displayed. In (b), relative errors (`2) after 1/4 revolution are plotted versus a relative

time step for N
x

= 3600 and di↵erent stencil sizes. In (c)–(e), relative errors (`2) after 1 time

step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter for di↵erent N
~x

with

a = 0.2. And in (f), the spatial node convergence rates are plotted for di↵erent stencils sizes. 100

4.11 The Boundary attenuation filter is tested to ensure that wave action is properly attenuated before

reaching the singular pole. Here (a) the wave action and (b) corresponding error are shown at

di↵erent time steps along a great circle path. The ice line (or edge of the attenuation filter) is

situated at ±70� and a cosine bell centered at (� = 0, µ = 0) with width d4 = ⇡/6 and direction

~k = (0, k
c

) is used for the initial condition. The solution is generated using a 4000
~x

⇥4
k

global node

set with a 50
~x

⇥2
k

stencil. The displayed solution is interpolated to a new grid using 10, 000 Halton

nodes. In addition, the ice line and analytical solution are displayed in solid gray for reference. . 102

xviii

4.12 The wave action is displayed for select directions at time = 0�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a

Gaussian bell with width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3. 105

4.13 The wave action is displayed for select directions at time = 50�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a

Gaussian bell with width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3. 106

4.14 The wave action is displayed for select directions at time = 100�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a

Gaussian bell with width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3. 107

4.15 The wave action is displayed for select directions at time = 150�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a

Gaussian bell with width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3. 108

4.16 The total directional relative `2 errors after 1/2 revolution are displayed for select initial directions.

The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2.

The initial condition is a Gaussian bell with width ⇡/3 and directional spread ⇡/3. 109

4.17 The total directional relative `2 errors after 1/2 revolution are displayed for select model settings.

The default settings are in the first column. The model uses a 3600
~x

⇥ 36
k

global node set with

a 17
~x

⇥ 9
k

stencil. The initial condition is a Gaussian bell with width ⇡/3, and directional spread

⇡/3. The initial direction is 6⇡/18 in (a) and (b) and 3⇡/18 in (c) through (f). 111

4.18 The total directional relative `2 errors after 1/2 revolution are displayed for select global node and

stencil sizes. The model uses a time step ratio a = 0.2 and a Gaussian bell initial condition with

width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3. 113

4.19 Exact (first column) and numerical (second column) wave action for dominant direction ✓ =

�⇡/6 after 1/2 revolution. Both WAVEWATCH III (first and second rows) and the RBF-FD

model (third row) are initialized with a spatial Gaussian bell with width 0.31797⇡ and a cosine-20-

power directional spread (⇡ 64⇡/180). In addition, the initial wave action are scaled such that the

maximum significant wave height is 2.5m. Spatial resolutions are indicated in subfigures. 115

xix

4.20 The total directional relative `2 errors after 1/2 revolution are displayed for WAVEWATCH III

(first row) and the RBF-FD model (second row) using di↵erent resolutions. The models are

initialized with a spatial Gaussian bell with width 64⇡/180 and a cosine-20-power directional spread

(⇡ 64⇡/180). In addition, the initial wave action are scaled such that the maximum significant wave

height is 2.5m. Spatial resolutions are indicated in subfigures. 117

Mathematical Notation

Generic vector space:

• ↵ = (↵1,↵2, . . . ,↵d) d-dimensional vector.

• @↵
i

= @
@↵

i

Partial derivative with respect to ↵i.

• r
↵

= (@↵1 , @↵2 , . . . , @↵
d

) d-dimensional gradient.

• Cr(Rd)
Space of r-times continuously di↵erentiable

scalar functions in a d-dimensional domain.

Cartesian vector space:

• x = (x, y, z) 3D spatial vector.

• xh = (x, y) 2D spatial vector (horizontal).

• k = (kx, ky) 2D spectral vector (wavevector).

• r = r
x

= rc,x = (@x, @y, @z) 3D spatial gradient.

• rh = r
x

h

= rc,x
h

= (@x, @y) 2D spatial gradient (horizontal).

• rk = rc,k =
�

@k
x

, @k
y

�

2D spectral gradient (wavevector).

• Dt = @t + u ·r Material derivative.

Cartesian scalar and vector functions:

• u = uE = (ux, uy, uz) Eulerian velocity.

• uL =
�

uLx , u
L
y , u

L
z

�

Lagrangian velocity.

• ' = '(x, t) Eulerian velocity potential.

• ⌘ = ⌘(xh, t) Ocean surface height perturbation.

xxi

• H = H(xh) Ocean depth.

Cartesian miscellaneous:

• g = (0, 0,�g)
Gravitational acceleration vector for standard

gravity g.

• k = |k| Wavenumber.

In chapter 3, new notation is added and modified to distinguish between analytical and

discretized equations.

Modifications:

• ~↵ = (↵1,↵2, . . . ,↵d) d-dimensional vector.

Discretized vector space:

• ai ith sampled value.

• a = ai =

2

6

6

6

6

6

4

a1
...

aN

3

7

7

7

7

7

5

Column vector of size N .

• a = aij =

2

6

6

6

6

6

4

a11 · · · a1N
...

. . .
...

aM1 · · · aMN

3

7

7

7

7

7

5

Matrix of size M ⇥ N where the subscripts

refer to the element in the ith row and jth

column.

xxii

Terminology

Abbreviations:

• LM
Vertical mixing caused by Langmuir circulation and turbu-

lence.

• SD
Stokes drift velocity; The mean Eulerian and Lagrangian

wave velocity di↵erence.

• RBF Radial basis functions.

• RBF-FD RBF-generated finite di↵erences.

• 1Dh, 2Dh Horizontally one-, two-dimensional.

• 2Dh-SD
Horizontally two-dimensional SD approximation; Uses 2D

wave spectra.

• 1Dh-SD
Horizontally one-dimensional SD approximation; Uses 1D

wave spectra.

• 1Dh-DHH-SD

Horizontally one-dimensional SD approximation; Uses 1D

wave spectra with the DHH directional distribution to cor-

rect for wave spreading.

Chapter 1

Introduction

1.1 Framing the research

This research grew out of a small project to roughly estimate the e↵ects of Langmuir mixing,

small wind and wave-driven vertical mixing in the near-surface ocean, in global climate models.

Results from a preliminary parametrization demonstrated a need to improve approximations of

Stokes drift, near-surface wave-induced currents, and use a prognostic wave field for future pa-

rameterizations. Since then, much work has been done. Analysis of Stokes drift has led to better

understanding and a hierarchy of approximations. In addition, a meshless prototype using RBF-

generated finite di↵erences has been built and shows potential as a viable approach to future spectral

wave modeling.

In this chapter, a short background of Langmuir mixing is given and early e↵orts to estimate

its e↵ect in global climate models is discussed. In addition, a review of linear wave theory is

presented. The rest of the chapters focus on Stokes drift, spectral wave modeling, and the meshless

prototype. For convenience, the preamble contains a description of the mathematical notation used

and a brief glossary of common terms and abbreviations.

1.1.1 Motivation for initial research

The oceans play a dominant role in regulating Earth’s climate through mechanisms such

as heat transport from the equator to the poles and storage of greenhouses gasses. The air-sea

interface, or the ocean surface, is a particularly important region as it filters the exchanges of

2

momentum, energy, and gasses (Kump et al., 2004). These exchanges are dependent upon the

sea surface state as well as the depth and properties of the surface mixed layer, a homogeneously

mixed layer that contains the photic zone where phytoplankton grow (Segar, 2007). The physics

(submesoscale and smaller) that create and preserve this environment are unresolved in climate

models; therefore it is important to accurately model and parameterize this turbulent region for

climate predictions.

Traditionally, the near-surface mixing schemes used in global climate models (GCMs) have

focused on convective and shear-driven turbulence. However, surface wave breaking and Langmuir

mixing (LM), a type of mixing due to the interaction of wind and waves, also play a role (Tseng and

D’Asaro, 2004). Up until now, these latter e↵ects have been included only indirectly through tuned

parameterizations that do not use explicit wave information (Wang et al., 1998; Large et al., 1994).

The majority of this thesis has been motivated by the need to implement better parameterizations.

1.1.2 Preliminary inclusion of Langmuir mixing

Langmuir cells are small overturning cells (10–100 m wide and 1–10 km long) that form

in the near–surface ocean when wind and waves are moving approximately in the same direction

(Smith, 2001). Depending on the speed of the wind and waves, these cells can increase greatly the

amount of mixing in the mixed layer (Tseng and D’Asaro, 2004; Belcher et al., 2012). Observations

indicate that even when these cells are not obvious, Langmuir turbulence – a disordered jumble

of Langmuir cells – can lead to near-surface turbulent kinetic energy double what is expected

without it (D’Asaro, 2001). Here, LM refers to vertical mixing caused by either Langmuir cells or

turbulence. See Figs. 1.1 and 1.2 for images and observations of LM.

Analytical and numerical modeling of LM is a broad and active area of research and is only

discussed briefly here (Sullivan and McWilliams, 2010). The broadly accepted theory behind LM is

a set of surface-wave filtered Navier-Stokes equations called the Craik-Leibovich equations (Chini,

2008). In the simplified case of wind-wave alignment, much work has been done to simplify the

Craik-Leibovich equations (Chini et al., 2009) and develop vertical mixing schemes (McWilliams

3

Figure 1.1: Images of Langmuir mixing: (a) a photograph of Rodeo Lagoon in CA (Szeri 1996), (b) an infrared

image of the surface of Tama Bay (courtesy of G. Marmorino, NRL, D.C.), and (c) the evolution of surface tracers in

a large eddy simulation of Langmuir turbulence (McWilliams et al., 1997). Images are reproduced from Chini et al.

(2009).

Stewart: p147-8

Figure 1.2: Observations of Langmuir mixing (a) from buoy data in the Pacific (Weller et al., 1985) and (b) satellite

after the Deepwater Horizon oil spill (DigitalGlobe, 2010). A plane is circled in the satellite image to indicate scale.

Images are reproduced from Stewart (2008) and NPR.org respectively.

4

and Sullivan, 2000; Kantha and Clayson, 2004; Harcourt, 2012). A common measurement in the

aligned case of LM strength is the nondimensional parameter Lat ⌘ (u⇤/usz=0)
1/2, known as the

turbulent Langmuir number (McWilliams et al., 1997). These aligned unidirectional velocities, u⇤

and usz=0, represent the frictional and current velocity scales of the ocean surface due to wind drag

(skin friction) and wave motion (Stokes drift) respectively. Intuitively, the turbulent Langmuir

number can also be interpreted as the ratio of the production of turbulent kinetic energy due

to Eulerian and Stokes shear (Grant and Belcher, 2009). In addition to the turbulent Langmuir

number, other alternative parameters have been proposed. One such is the surface layer Langmuir

number, which uses a depth average of Stokes drift, the wave-induced current, instead of its surface

value (Harcourt and D’Asaro, 2008).

Before research on this dissertation began, it was unclear what role (if any) LM played in

determining the depth of the ocean surface mixed layer since mixing occurred in a region already

well-mixed. To test its potential importance, a preliminary LM parametrization was added to a

GCM1 to compare with observational data and simulations without the parameterization (a climate

version of a “back of the envelope calculation”). This parametrization modified the near-surface

mixing scheme of the GCM ocean component by using an energetic scaling and a climatology

of the turbulent Langmuir number to determine when to deepen the mixed layer (Webb et al.,

2010). The climatology was developed by Webb and Fox-Kemper (2009) and is based on wave

spectra data (from an operational forecast ocean wave model)2 and many simplifications (including

a monochromatic approximation of the surface Stokes drift and an ansatz to handle wind-wave

misalignment).

Observations (satellites, buoys, field campaigns, etc) of CFC column inventories and mixed

layer depths are routinely used to tune and validate ocean circulation models. In most GCMs,

there is a persistent, shallow mixed-layer bias (compared with observations) in the northern and

southern oceans during their respective winters (when convective mixing is weakest) (Belcher et al.,

1 NCAR Community Climate System Model version 3.5.
2 NOAA WAVEWATCH III version 2.22.

5

2012; Fox-Kemper et al., 2011; Sallee et al., 2013) and as such there is interest among the ocean

modeling community in reducing or correcting this bias. In this region, it is plausible that LM

and convective mixing are of similar magnitude due to a prevalent combination of strong winds

and large swell (Belcher et al., 2012). Initial tests of the LM parametrization in a GCM (NCAR

CCSM 3.5) deepened the global mean mixed layer substantially (⇠10%) and dramatically improved

the Southern Ocean shallow mixed-layer bias (see Fig. 1.3b). However, subsequent tests of a later

model (NCAR CCSM 4) revealed that this preliminary parametrization was extremely sensitive to

the details of the climatology (far beyond what could be inferred from data) and demonstrated a

need for further work to accurately parametrize these e↵ects (Webb et al., 2013). While much work

is still needed, inclusion of LM in GCMs has the potential to correct a long-standing open problem

in climate modeling.

1.1.3 Focus of research since preliminary results

Since these early investigations, much work has been done to improve the LM parametriza-

tion. Three components were identified as essential for improvement: the use of a prognostic wave

field, better estimation of Stokes drift, and sounder treatment of wind-wave misalignment. First,

to match the high variability of winds, a static LM climatology was replaced with a prognostic one,

calculated with an evolving 2D wave field. A modified version of a third-generation wave model3

has been coupled to a GCM4 to calculate this field. Configuration, benchmarking, and testing of

the wave module were conducted by Webb (Webb et al., 2013). Second, monochromatic approxi-

mations of the Stokes drift velocity were replaced with higher order, 2D spectral estimates (Webb

and Fox-Kemper, 2011). And third, Van Roekel et al. (2012) derived and validated a new nondi-

mensional parameter, the projected Langmuir number, to assess LM strength during wind-wave

misalignment. Progress on all three components can now be combined with more sophisticated mix-

ing schemes that utilize the 2D wave field (McWilliams and Sullivan, 2000; Harcourt and D’Asaro,

3 NOAA WAVEWATCH III version 3.14. See Chapter 3 and Appendix B.1 for additional information.
4 NCAR CESM 1.0.

6

Figure 1.3: Comparison of observations and NCAR CCSM 3.5 output in the Southern Ocean with and without the

Langmuir mixing parametrization. Biases are reduced in both the (a) CFC column inventory and (b) mixed layer

depth. GCM output and images were generated by S. Peacock and G. Danabasoglu (Webb et al., 2013).

7

2008; Grant and Belcher, 2009) to build a more robust and accurate LM parametrization.

The majority of this thesis will focus on areas of research that were part of and grew from the

aforementioned LM parametrization. Chapter 2 will derive a hierarchy of Stokes drift approxima-

tions and analyze their associated error. Chapter 3 will introduce spectral wave modeling, discuss

the coupled wave model, and derive wave action balance equations5 for use with a new spectral

wave model. And finally, Chapter 4 covers construction of the meshless spectral wave prototype

and analyzes its performance.

1.2 Review of surface gravity waves and linear wave theory

Surface gravity waves and linear wave theory are an important component in this dissertation.

In Chapters 2 and 3, a superposition of linear wave trains are used to approximate Stokes drift

and derive a wave action balance equation respectively. In addition, a deep-water approximation is

used throughout to simplify many calculations. As such, a brief review is warranted and presented

here.

1.2.1 Description of setup

Let x = (xh, z) 2 R2⇥R. Consider a large basin filled with a fluid of some depth H = H(xh)

and assume the horizontal domain of the basin, (�Lx/2, Lx/2) ⇥ (�Ly/2, Ly/2), is large enough

such that a dense set of surface gravity modes exist. Also, denote the upper dynamic boundary

interface or surface height perturbation as ⌘ = ⌘(xh, t). Here we will assume the fluid is ideal

with the following properties: continuous (no bubbles), inviscid (no internal frictional forces), and

incompressible (Batchelor, 1967; Currie, 2003). In addition, we will assume any wave motion is

irrotational.6

5 The governing equation for spectral wave models.
6 It will be assumed throughout the dissertation that the fluid is ideal and irrotational.

8

1.2.2 Balance equations

The governing linear wave equations are essentially a linearized set of balance equations for

mass and momentum density combined with boundary conditions. Generalizing the results in

Holthuijsen (2007) to include vectors, the following basic balance equations7 for a unit cube of

an arbitrary density property (scalar � or vector v) are used to derive the governing equations:

B(�) = @t� +r · (�u) = S (1.1)

B(v) = @tv + div(v ⌦ u) = S. (1.2)

Here the term ‘div’ is used to note that this is the divergence of a tensor. The ⌦ denotes the outer

product for two vectors with dimensions m,n, given by

v ⌦ u = vuT =

2

6

6

6

6

6

4

v1
...

vm

3

7

7

7

7

7

5

u1 . . . un

�

=

2

6

6

6

6

6

4

v1u1 . . . v1un
...

. . .
...

vmu1 . . . vmun

3

7

7

7

7

7

5

=

u1v . . . unv

�

.

In 3D Cartesian space, it follows that

div (v ⌦ u) =

2

6

6

6

6

6

4

@x(vxux) + @y(vxuy) + @z(vxuz)

@x(vyux) + @y(vyuy) + @z(vyuz)

@x(vzux) + @y(vzuy) + @z(vzuz)

3

7

7

7

7

7

5

=

@x(uxv) + @y(uyv) + @z(uzv)

�

.

Let u 2 C1(R3) represent the Eulerian fluid velocity. Then for constant mass density and no

production of water, the mass density balance equation gives

B(⇢) = @t⇢+r · (⇢u) = 0,

r · u = 0, (1.3)

7 Greater care is required if formulated in other coordinate systems.

9

which is also known as the continuity equation (Holthuijsen, 2007). Likewise, for an arbitrary

G but constant ⇢, the momentum density balance equation gives

B(⇢u) = @t(⇢u) + div(⇢u⌦ u) = G,

@tu+ @x(uxu) + @y(uyu) + @z(uzu) =
1

⇢
G,

@tu+ (u ·r)u =
1

⇢
G. (1.4)

For an inviscid fluid, the momentum density balance equation only needs to consider the e↵ects of

pressure and gravity.8 Using the Dt (= @t + u ·r) material derivative notation (Childress, 2009)

and setting G = �rp+ ⇢g for an arbitrary pressure field p = ⇢P , yields

Dtu = �rP + g, (1.5)

which with Eq. (1.3), are known as the incompressible Euler equations with constant density

(Kundu and Cohen, 2008).

1.2.3 Velocity potential

Since the wave motion is irrotational, the velocity vector can be rewritten as

u = r', (1.6)

where ' = '(x, t) is the scalar velocity potential (Kundu and Cohen, 2008). Then Eq. (1.3)

becomes

r2' = 0. (1.7)

Substituting first the z-component of Eq. (1.4) gives

@t(@z') +r' ·r(@z') = � @zP � g,

@z

✓

@t'+
1

2
r' ·r'

◆

= � @z (P + gz) .

8 It should be noted that gravity is aligned with the z-component in 3D Cartesian space.

10

Combining the other components, switching the order of di↵erentiation,9 and integrating, we find

that

r
✓

@t'+
1

2
r' ·r'

◆

= �r (P + gz) ,

@t'+
1

2
r' ·r'+ P + gz = F, (1.8)

This is known as the Bernoulli equation for unsteady irrotational motion, where F = F (t)

is some arbitrary integrating function (Currie, 2003).

1.2.4 Boundary conditions

Three boundary conditions, one at the bottom and two at the surface, are employed to close

and combine the balance equations. The first condition simply states that the fluid cannot penetrate

the bottom. This implies that the velocity component normal to the bottom at the bottom must

equal zero. If the bottom boundary is rewritten implicitly as the equation

Hsurface(x, y, z) = z +H(x, y) = 0, (1.9)

then a normal to the bottom boundary can be written as rHsurface = (@xH, @yH, 1). Since the

normal velocity must vanish (Whitham, 1974), the bottom boundary condition can then be

derived as:

(rHsurface) · u = 0, z = �H

@z'+rhH ·rh' = 0, z = �H. (1.10)

The second condition states that if a fluid parcel is at the surface at some initial time, then it must

remain on the surface for all later time (i.e., no spray or cavitation) (Currie, 2003). This implies

Dt (⌘ � z) = 0, z = ⌘,

@t⌘ + @x'@x⌘ + @y'@y⌘ = @z', z = ⌘, (1.11)

9 Since it is assumed u 2 C1(R3), @
↵i↵j' 2 C0(R3) and the order of di↵erentiation can be switched.

11

and gives the kinematic boundary condition at the surface. And thirdly, the dynamic

boundary condition at the surface is obtained by evaluating the Bernoulli equation for unsteady

irrotational motion at the surface (Currie, 2003), giving

@t'+
1

2
r' ·r'+ Patm + g⌘ = F, z = ⌘. (1.12)

If we split the atmospheric pressure per density Patm = Patm(x, t) such that

Patm(xh, z = ⌘, t) = P�(xh, t) +
1

LxLy

Z L
y

/2

�L
y

/2

Z L
x

/2

�L
x

/2
Patm|z=0 dxdy, (1.13)

then Eq. (1.12) can be rewritten as

@t'+
1

2
r' ·r'+ g⌘ = �P�, z = ⌘, (1.14)

since the integrating function is arbitrary.

1.2.5 Governing nonlinear wave equations

For an incompressible and inviscid fluid, the governing nonlinear wave equations are

then

r2' = 0, z 2 (�H, ⌘) , (1.15)

@t⌘ + @x'@x⌘ + @y'@y⌘ = @z', z = ⌘, (1.16)

@t'+
1

2
r' ·r'+ g⌘ = �P�, z = ⌘, (1.17)

@z'+rhH ·rh' = 0, z = �H. (1.18)

1.2.6 Treatment of atmospheric pressure fluctuations

To be as general as possible, the pressure per density deviation (P�) is included in Eq. (1.17).

It can be removed however if the horizontal material derivative of the deviation is fairly small (i.e.,

Dh
t P� ⌧ 1). This can be shown explicitly later if the two surface boundary conditions are combined

12

first by taking the horizontal material derivative of Eq. (1.17) and substituting into Eq. (1.16) as

Dh
t

@t'+
1

2
r' ·r'

�

+ g (@t⌘ + @x'@x⌘ + @y'@y⌘) =

@tt'+ @t (rh' ·rh') +
1

2
@t (@z')

2+

1

2
rh' ·rh (r' ·r') + g @z' = �Dh

t [P�] , z = ⌘. (1.19)

While the use of Eq. (1.19) is unorthodox and tedious at best, it does permit a single asymptotic

expansion between the nonlinear shallow and classical linear regimes.

1.2.7 Non-steep regimes of the governing nonlinear wave equations

With an appropriate nondimensionalization, the governing nonlinear wave equations can be

split into di↵erent regimes. To simplify the problem, the case of constant depth (H(xh) = Hc) only

is considered here and the notation P = Dh
t [P�] is used. Similar to Hendershott et al. (1989), let

xh = Lx̃h, z = Hcz̃, t =
Lp
gHc

t̃, ⌘ = a⌘̃, ' = aL

r

g

Hc
'̃, P = �P̃, (1.20)

where the scaling for P is unspecified yet and ' is based on @t' + g⌘ ' 0. Potential di↵erences

in horizontal length scales are ignored and the scaling for t is chosen for convenience. Substituting

into Eqs. (1.15), and (1.18), and (1.19) and dropping tildes, we find

1

L2
r2

x

h

'+
1

H2
c

@zz' = 0, z 2
✓

�1,
a

Hc
⌘

◆

, (1.21)

@tt'+
a

Hc
@t (rx

h

' ·r
x

h

') +
aL2

2H3
c

@t (@z')
2+

a2

2H2
c

r
x

h

' ·r
x

h

r
x

h

' ·r
x

h

'+
L2

H2
c

(@z')
2

�

+

L2

H2
c

@z'� �L

a
p

g3Hc

P̃ = 0, z =
a

Hc
⌘, (1.22)

@z' = 0, z = �1. (1.23)

If the following dimensionless quantities are introduced

" ⌘ a/Hc, � ⌘ Hc/L, (1.24)

13

then the quantity "� can be used and di↵erentiate between non-steep and steep waves. In addition,

if � = �0(a2
p

g3Hc)/L2 for �0 2 [0, 1], then P can be neglected. Substituting into Eqs. (1.21) to

(1.23) gives

�r2
x

h

'+
1

�
@zz' = 0, z 2 (�1, "⌘) , (1.25)

@tt'+ " @t (rx

h

' ·r
x

h

') +
"

2�2
@t (@z')

2+

"2

2
r

x

h

' ·r
x

h

r
x

h

' ·r
x

h

'+
1

�2
(@z')

2

�

+
1

�2
@z' = "��0P̃, z = "⌘, (1.26)

@z' = 0, z = �1. (1.27)

For non-steep, intermediate-length waves, or " ⌧ 1 and � ⇠ 1, Eqs. (1.25) to (1.27) reduce to the

dimensionless, governing linear wave equations:

r2
x

' = 0, z 2 (�1, 0) (1.28)

@tt'+ @z' = 0, z = 0 (1.29)

@z' = 0, z = �1. (1.30)

Similarly, for non-steep but long waves, or � ⌧ 1 and " ⇠ 1, one can derive the dimensionless,

governing nonlinear shallow-water equations (Hendershott et al., 1989).

1.2.8 Governing linear wave equations

Choosing the distinguished limits "⌧ 1, � ⇠ 1 and reverting back to dimensional form, yields

the governing linear wave equations for non-varying depth:

r2' = 0, z 2 (�Hc, 0) (1.31)

@tt'+ g @z' = 0, z = 0 (1.32)

@z' = 0, z = �Hc. (1.33)

14

To solve, the linear equations are decomposed into Fourier modes using the following plane wave

ansatzes (Ablowitz, 2011):

⌘(xh, t) = <
n

Aei[k·xh

�!t+⌧]
o

(1.34)

'(x, t) = <
n

B(z)ei[k·xh

�!t+⌧]
o

(1.35)

u(x, t) = (uh(x, t), uz(x, t)) = <
n

(ikB(z), @zB(z)) ei[k·xh

�!t+⌧]
o

. (1.36)

Here, k = (kx, ky), A 2 R+, and ! = !(k) is the absolute angular frequency for some arbitrary

initialization ⌧ . In addition, Eq. (1.17) is linearized to establish

B|z=0 =
�ig

!
A. (1.37)

Inserting Eq. (1.35) into Eq. (1.31) yields

@zzB = |k|2B, z 2 (�Hc, 0) .

Solving and employing Eq. (1.33), we find

B(z) = Bc cosh[|k|(z +Hc)] ,

for some yet to be determined constant Bc. Finally, employing Eq. (1.32), yields

@zB =
!2

g
B, z = 0,

and for ! = !± = ±�, gives the following linear dispersion relation:

�(k) = (g |k| tanh[|k|Hc])
1/2 . (1.38)

Utilizing Eq. (1.37), we finally derive the monochromatic linear wave solutions

'(x, t) = <
⇢

�ig cosh[|k|(z +Hc)]

! cosh[|k|Hc]
Aei[k·xh

�!t+⌧]

�

= <
⇢

�i! cosh[|k|(z +Hc)]

|k| sinh[|k|Hc]
Aei[k·xh

�!t+⌧]

�

,

uh(x, t) = <
⇢

k
! cosh[|k| (z +Hc)]

|k| sinh[|k|Hc]
Aei[k·xh

�!t+⌧]

�

,

uz(x, t) = <
⇢

�i! sinh[|k|(z +Hc)]

sinh[|k|Hc]
Aei[k·xh

�!t+⌧]

�

.

15

which simplify to

⌘(xh, t) = A cos[k · xh � !(k)t+ ⌧] , (1.39)

'(x, t) =
!(k) cosh[|k|(z +Hc)]

|k| sinh[|k|Hc]
A sin[k · xh � !(k)t+ ⌧] , (1.40)

uh(x, t) = k
!(k) cosh[|k|(z +Hc)]

|k| sinh[|k|Hc]
A cos[k · xh � !(k)t+ ⌧] , (1.41)

uz(x, t) =
!(k) sinh[|k|(z +Hc)]

sinh[|k|Hc]
A sin[k · xh � !(k)t+ ⌧] . (1.42)

Since Eqs. (1.31) to (1.33) are linear, any linear superposition of Eqs. (1.39) through Eqs. (1.42)

will also be a solution as long as they do not violate the original assumptions (i.e., "⌧ 1, � ⇠ 1).

1.2.9 Linear deep-water approximation

For a large part of the ocean, the deep-water approximation is adequate if the dynamics of

interest are away from the coastlines and confined to an upper portion of the vertical domain. The

term ‘deep’ is relative to wavelength and is generally used when depths are greater than half the

wavelength (Holthuijsen, 2007). To elucidate, error to the deep-water approximation is bounded

for wave motion restricted to the top third of the vertical domain and depths greater than a third

of the longest wavelengths.

Since wind-generated surface gravity waves are characterized by wave lengths of 0.1 to 1500

m (Holthuijsen, 2007), let � 2 [0.1, 1500]. Then for depths greater than 500 m (max{�}/3 Hc),

|k|Hc (= 2⇡Hc/�) can be bounded below as

2⇡

3
=

1

3
min{|k|}max{�} |k|Hc,

and tanh [|k|Hc] ⇡ 1, or

1� (tanh [|k|Hc])
1/2 1.5⇥ 10�2.

Then the linear dispersion relation simplifies to the deep-water dispersion relation as

�(k) ⇡
p

g |k|, (1.43)

16

with the error bounded as ⇠ 10�2. In addition, u and ' simplify as well. Let µ = �z/Hc > 0 and

� = |k|Hc � 2⇡/3. Then the z-components of Eqs. (1.40) to (1.42) can be rewritten as

cosh [|k| (z +Hc)]

sinh [|k|Hc]
=

cosh [� (1� µ)]

sinh [�]
= e��µ

h

1 + (coth [�]� 1) cosh [�µ] e�µ
i

,

and

sinh [|k| (z +Hc)]

sinh [|k|Hc]
=

sinh [� (1� µ)]

sinh [�]
= e��µ

h

1 + (1� coth [�]) sinh [�µ] e�µ
i

.

Notice that if µ 1/3, then

(coth [�]� 1) cosh [�µ] e�µ (coth [�]� 1) cosh [�/3] e�/3 7.8⇥ 10�2,

(coth [�]� 1) sinh [�µ] e�µ (coth [�]� 1) sinh [�/3] e�/3 4.7⇥ 10�2.

This implies that if the dynamics of interest are confined to the top third vertical domain (z 2

[�Hc/3, 0]), then the z-components of u and ' simplify to e|k|z, with the error bounded as O(10�2)

as well. Then for depths greater than 500 m (max{�}/3 Hc), Eqs. (1.39) to (1.42) reduce to the

monochromatic linear deep-water solutions as

⌘k(xh, t) = A cos
⇣

k · xh ⌥
p

g|k| t+ ⌧
⌘

, (1.44)

'k(x, t) = ±
r

g

|k| Ae|k|z sin
⇣

k · xh ⌥
p

g|k| t+ ⌧
⌘

, (1.45)

uh,k(x, t) = ±k

r

g

|k| Ae|k|z cos
⇣

k · xh ⌥
p

g|k| t+ ⌧
⌘

, (1.46)

uz,k(x, t) = ±
p

g|k|Ae|k|z sin
⇣

k · xh ⌥
p

g|k| t+ ⌧
⌘

. (1.47)

Chapter 2

Stokes drift

2.1 Introduction and motivation for analysis

The Stokes drift velocity (hereafter Stokes drift1 and abbreviated as SD) is an important

vector component that appears often in wave-averaged dynamics. Mathematically, SD is the mean

di↵erence between Eulerian and Lagrangian velocities and intuitively can be thought of as the near-

surface ocean current induced from wave action. This nonlinear phenomenon was first identified

by George G. Stokes in 1847 (Craik, 2005), and the correspondingly named Stokes transport

is the vertically integrated SD (Kenyon, 1970; Smith, 2006). In the absence of other currents,

Fig. 2.1 illustrates the basic principle of SD. For monochromatic linear deep-water waves (see

Section 1.2.9), fluid parcel trajectories to leading-order are closed orbits (Fig. 2.1a) and the mean

Eulerian velocities (at a point) must be zero due to irrotationality of the fluid. However, the actual

orbits of the linear waves are not closed (Fig. 2.1b) and over time there is depth-dependent drift

(Fig. 2.1c) (Kundu and Cohen, 2008). Even though this is a second-order e↵ect, the magnitudes

of these near-surface currents can be significant (Longuet-Higgins, 1969; Ardhuin et al., 2009).

SD appears naturally in the Craik-Leibovich equations. In this set of surface-wave-filtered

Navier-Stokes equations, the waves are assumed to be linear and the Navier-Stokes equations are

time-averaged over periods that are long compared to the waves but short compared to other

motions. These equations2 are derived explicitly and completely in Craik and Leibovich (1976) and

1 Technically, Stokes drift refers to the mean horizontal displacement (not velocity) but the shortened usage is
common in literature.

2 See Appendix A.1 for a brief description of the Craik-Leibovich equations.

18

Figure 2.1: The basic principle of SD in 2D and absence of background currents is illustrated here. The (a) leading-

order and (b) actual, fluid parcel trajectories (governed by solutions to the linear wave equations) have closed and

non-closed orbits respectively. This di↵erence leads to (c) a nonlinear mean drift over time. Cartoons are reproduced

from Kundu and Cohen (2008).

19

in the rotating Boussinesq form in Holm (1996). In large-eddy simulations of upper ocean turbulence

(e.g., McWilliams et al., 1997; Grant and Belcher, 2009; Van Roekel et al., 2012), it is generally

presumed that the Boussinesq form of the equations are a useful intermediate step between full

wave-resolving models (that are expensive) and models that completely neglect surface-wave e↵ects.

Essentially all present parameterizations of LM include some sort of SD velocity or equivalent (e.g.,

McWilliams and Sullivan, 2001; Axell, 2002; Smyth et al., 2002; Kantha and Clayson, 2004; Harcourt

and D’Asaro, 2008; Van Roekel et al., 2012).

While our primary interest in SD is due to its role in LM, it is important in other areas as

well. It is involved in the upper ocean momentum balance and the transport of tracers, and is

closely related to the mass transport by waves, the wave-related pressure, and the wave surface

stress correction (McWilliams and Restrepo, 1999; McWilliams et al., 2004; McWilliams and Fox-

Kemper, 2013). Any one of these quantities may be of interest for inclusion in large-scale ocean

modeling. In addition, SD also plays a role in the emerging field of drift forecasting, for operations

such as search-and-rescue and oil spill containment (Hackett et al., 2006; Haza et al., 2012). Thus,

it is well established in the literature that SD is an important property of the wave field.

This chapter will go into details on how SD may be derived and estimated from varying

degrees of spectral information. Sections 2.2 and 2.3 originally appeared in the appendix of Webb

and Fox-Kemper (2011) and are modified and expanded here to fit within the chapter. The main

text of Webb and Fox-Kemper (2011) is summarized in Section 2.4. To account for directional

spreading of wave energy, a new lower-order SD approximation is proposed in Section 2.5 and is

used to diagnose di↵erences between other lower and higher-order approximations.

2.2 Formal definition in Cartesian coordinates

Generally, SD is the mean di↵erence between the Lagrangian velocity uL (the velocity fol-

lowing the motion of a fluid parcel) and the Eulerian velocity uE . Alternative definitions can be

found in Longuet-Higgins (1969), Jansons and Lythe (1998), and Mellor (2011). The leading-order

SD velocity will be formally defined here in Cartesian coordinates in a domain similar to the one

20

in Section 1.2.1. While this definition holds for many types of motions (such as tidal and inertial),

we will assume the wave motions of interest are to leading-order, periodic surface gravity waves

(Longuet-Higgins, 1969).

We will define SD as a time and spatial mean over a period T 6= 0 (since the instantaneous

value of these velocities is identical at a given location) and a horizontal length scale Xh = (Xh, Yh)

(to remove high frequency variations). Let the position of a fluid parcel at time t be given by

xp(t). Here the interest is in estimating the basic wave-averaged dynamics as set out by Craik

and Leibovich (1976) and McWilliams and Restrepo (1999), without higher-order e↵ects. The

Lagrangian and Eulerian velocities and fluid parcel displacements can be related through the same

Taylor-series expansions,

uL(xp(t0), t) = uE(xp(t), t)

= uE(xp(t0), t) + [xp(t)� xp(t0)] ·ruE(xp(t0), t) +R1(xp(t);xp(t0)) ,

xp(t)� xp(t0) =

Z t

t0

uL
�

xp(t0), s
0� ds0

=

Z t

t0

⇥

uE
�

xp(t0), s
0�+R0

�

xp(s
0);xp(t0)

�⇤

ds0,

where R0 and R1 are zeroth and first-order remainder vector terms. As previously mentioned, we

will formally define SD as

uS(x, t;Xh, T) ⌘
⌦

uL(x, t)� uE(x, t)
↵

X

h

,T
(2.1)

⌘ 1

T

Z t+T/2

t�T/2

⌦

uL(x, s)� uE(x, s)
↵

X

h

ds (2.2)

⌘ 1

XhYh

Z

x

h

+X

h

/2

x

h

�X

h

/2

⌦

uL
�

x0
h, z, t

�

� uE
�

x0
h, z, t

�↵

T
dx0

h, (2.3)

where angle brackets denote time or spatial averaging. Ignoring the remainder terms for now and

reorganizing, first gives

uL(xp(t0), t)� uE(xp(t0), t) ⇡ [xp(t)� xp(t0)] ·ruE(xp(t0), t)

⇡

Z t

t0

uE(xp(t0), s
0)ds0

�

·ruE(xp(t0), t) . (2.4)

21

Substitution and temporal averaging next yield a leading-order estimate

1

T

Z t0+T/2

t0�T/2

⇥

uL(xp(t0), t)� uE(xp(t0), t)
⇤

dt

=
1

T

Z t0+T/2

t0�T/2

Z t

t0

uE
�

xp(t0), s
0� ds0

�

·ruE(xp(t0), t) dt

=
⌦

uL(xp(t0), t0)� uE(xp(t0), t0)
↵

T
. (2.5)

Finally, spatial averaging gives the leading-order SD,

uS(x, t;Xh, T) ⇡
*

1

T

Z t+T/2

t�T/2

Z s

t
uw

�

x, s0
�

ds0
�

·ruw(x, s) ds

+

X

h

, (2.6)

where uE has been replaced with uw to distinguish scales.

It should be emphasized that the interval T is su�cient to average over relevant wave dis-

placements by the fast wave velocity uw, but not so long that SD is not a function of time, for

example due to wind variability. Similarly, the horizontal length scale Xh is su�cient to remove

high frequency fluctuations but not long enough to smooth the frequencies of interest. This smooth-

ing is essential for SD since it removes possible spatially-oscillatory waves that are independent of

time (Webb and Fox-Kemper, 2011).

Up until this point, there has been no discussion on the necessary conditions for the approx-

imation to hold. Since for our purposes we have assumed the wave motion to be linear (ideal,

irrotational, non-steep waves, etc.), the inclusion of remainder terms R0 and R1 is guaranteed

to be third-order or less. This is due to the fact that uw is periodic to leading-order (Longuet-

Higgins, 1969). However for more general motion, this is no longer the case. While it is possible to

bound the higher-order terms for a finite period (see Appendix C.1), the results are uninteresting

without further assumptions. For a related in-depth treatment, the reader is directed to work by

Hasselmann (1971) and McWilliams et al. (2004).

2.3 Derivation of the SD spectral density estimate

A spectral density form of SD for linear surface gravity waves is necessary to estimate LM

with a prognostic wave field. Previous derivations of SD in spectral density form can be found

22

in Kenyon (1969), Huang (1971), and McWilliams and Restrepo (1999). To further illustrate, a

spectral density estimate based on grid cell averages is presented here for use in a spectral wave

model. Since spectral wave modeling will be discussed in detail in Chapter 3, only a cursory

description of the modeling approach is given. However, it is prudent to describe the discrete

spectra and a thorough treatment of how spectra and SD are formulated within the model is given

here.

2.3.1 Wave field decomposition for model inclusion

To illustrate how the wave field is decomposed concretely, consider a spectral linear wave

model with an arbitrary domain Lh consisting of grid cells L⇥L in size. Furthermore, assume that

the wave dynamics being modeled are separable into fast and slow scales, such that the fast dynamics

can be represented within each grid cell by a periodic, statistically homogeneous and stationary

wave field. Then the slower dynamics can be represented by mean properties of each cell that vary

slowly from neighbor to neighbor. For purposes of this derivation, a series approximation will be

used to represent the fast dynamics while grid cell averages will serve to model the slower ones. Now

within each grid cell, let an arbitrary wave field with a surface displacement ⌘ be approximated by

⌘w, a superposition of monochromatic linear deep-water solutions from Section 1.2.9. For reference,

the classical solutions in more compact form are

uk = (uh,k, wk) = �r'k, (2.7)

'k = �ekz

k
@t ⌘k(xh, t), (2.8)

⌘k = ak cos
⇥

k · xh � !+

k t+ ⌧k
⇤

. (2.9)

Here, ⌘k, for a given wavevector k (and wavenumber k = |k|), has amplitude ak (slowly varying

in space and time), phase shift ⌧k, and positive frequency !+

k = !+

k =
p
gk. These solutions and

dispersion relation are only appropriate if small wave slope (kak ⌧ 1) and deep water (kD � 1)

are assumed. If in addition, the approximate wave field is periodic at the boundary, ⌘k has discrete

wavevectors (k = km,n = (kx
m

, ky
n

) = 2⇡
L (m,n), for m,n = 0,±1,±2, . . .) and can be reformulated

23

as

⌘k
mn

= ck
mn

ei[kmn

·x
h

�!k
mn

t] + c⇤k
mn

e�i[k
mn

·x
h

�!k
mn

t], (2.10)

where ck
mn

corresponds to 1
2akmn

ei⌧kmn . For further simplicity, assume that the grid cell is centered

at the origin and ⌘, @
@t⌘ are known at time t = 0. Also let all m,n subscripts be implied. Then the

approximated surface displacement ⌘w may be rewritten as a finite superposition of linear solutions

(discretized in the wavevector domain) with readily determined Fourier coe�cients (Tolstov, 1976;

Pinkus and Zafrany, 1997):

⌘ ⇡ ⌘w(xh, t) =
N
X

m,n=�N

ck e
i[k·x

h

�!kt] + c⇤k e
�i[k·x

h

�!kt] (2.11)

<{ck} =
1

2
(ck + c⇤k) =

1

2L2

Z

L

h

/2

�L

h

/2
⌘(xh, 0) e

�i[k·x
h

] dxh (2.12)

={ck} =
1

2i
(ck � c⇤k) =

1

2L2

Z

L

h

/2

�L

h

/2

1

!k

@⌘(xh, 0)

@t
e�i[k·x

h

] dxh. (2.13)

It then follows that ak = 2 |ck|, ⌧k = arg(ck), and h⌘w(xh, t)iL
h

= 0 (since ⌘wk is horizontally

harmonic). It should be noted though that the surface displacement is not a Fourier series in time

due to the dispersion relation and in general, h⌘w(x0
h

, t)iT 6= 0 for any fixed point x0
h

and arbitrary

T since

h⌘w(x0
h

, t)iT =
1

T

Z t+T/2

t�T/2
⌘w(x0

h

, s) dt (2.14)

=
1

T

Z t+T/2

t�T/2

8

<

:

N
X

m,n=�N

⇣

ck e
i[k·x0

h

�!ks] + c.c
⌘

9

=

;

ds (2.15)

=
N
X

m,n=�N

2<{dk(t)}
sin (T!k/2)

T!k/2
, (2.16)

where dk(t) = cke
i[k·x0

h

�!kt] and c.c. denotes the complex conjugate. Although ⌘w is defined

deterministically, it can be thought of as a statistically stationary process (in the wide-sense) since

the expected mean (for time) is constant (E{⌘w}=0) and the autocorrelation function (for time)

is only dependent on one variable (R(t1, t2) = R(t) for t = t1 � t2) (Phillips, 1966; Massel, 1996;

Ochi, 1998). To minimize error in this first order approximation, it will be assumed T �
p

2L/⇡g

throughout.

24

Lastly, to su�ciently model wind and swell conditions for SD, L needs to be on the order of

1 km or greater. On a typical 1� ⇥ 1.25� latitude-longitude grid, the dimensions of the grid range

approximately from 110⇥ 140 km (at the equator) to 110⇥ 35 km (75� latitude). Capillary waves

can be excluded in the summation by ensuring the smallest wavelength is approximately 10 cm,

equivalent to N = O(104L) (per km).

2.3.2 Discrete wave spectra

For statistically homogeneous and stationary waves, there is a direct relationship between

the expected wave variance (the height deviation squared) and the Fourier transform of the height

deviation, magnitude squared, in the frequency and wavevector domain. This latter part is often

referred to as the spectral density (Massel, 1996; Ochi, 1998) and can be derived using a modified

form of Plancherel’s theorem. For simplification, consider the 1D time-frequency relationship for

some point xh0 where the surface displacement is ignored outside an interval of length T . Let

⌘T (t) =

8

>

>

>

<

>

>

>

:

⌘(xh0 , t), |t| T

0, |t| > T,

(2.17)

F [⌘T](!) =
1p
2⇡

Z 1

�1
⌘T (t)e

�i!tdt. (2.18)

Then Plancherel’s theorem (Pinkus and Zafrany, 1997) can be used for piecewise continuous ⌘ —

whether or not it is absolutely and quadratically integrable3 — to establish a relationship between

the variance of Eq. (2.18) and the magnitude square of Eq. (2.17). Taking limits, a general spectral

density S can be defined to satisfy

lim
T!1

1

T

Z 1

�1
|⌘T (s)|2 ds = lim

T!1

1

T

Z 1

�1
|F [⌘T](!)|2 d! =

Z 1

�1
S(!)d!. (2.19)

If ⌘ is statistically stationary (as previously defined), it can be shown (Ochi, 1998) that

lim
T!1

1

T
|F [⌘T](!)|2 = S(!), (2.20)

3 The use of ⌘
T

ensures the Fourier transform exists and Eqs. (2.17) and (2.18) are quadratically integrable.

25

and a discrete frequency form of Eq. (2.19) follows as

lim
�!!0

1
X

i=�1

lim
T!1

|Fi[⌘wT]|
2

T

!

�!i = lim
�!!0

1
X

i=�1
Sw
i �!i, (2.21)

where Fi denotes the Fourier transform for a discrete frequency !i of ⌘wT .

Similarly, a relationship can be derived for the entire domain utilizing the deep–water dis-

persion relation (and noting ⌘ is real):

lim
T,L!1

⌦

⌘(xh, t)
2
↵

T,L
h

⌘
Z Z 1

�1
G(k,!) dkd! ⌘

Z 1

�1
Sk(k) dk, (2.22)

where4

Sk(k) = 2

Z 1

0
�(! �

p

gk)G(k,!) d!. (2.23)

Using Eq. (2.22), a spectral density estimate now can be defined in the large T and L approach.

First note that

Z

L

h

/2

�L

h

/2
⌘w(xh, s)

2 dx =

Z

L

h

/2

�L

h

/2

0

@

N
X

m,n=�N

ck e
i[k·x

h

�!ks] + c⇤k e
�i[k·x

h

�!ks]

1

A

2

dx

=
N
X

m,n=�N

L2
�

2ckc
⇤
k + ckc-k e

�i2!ks + c⇤kc
⇤
-k e

i2!ks
�

,

and

1

TL2

Z t+T

2

t�T

2

Z

L

h

/2

�L

h

/2
⌘w(xh, s)

2 dxhds =
N
X

m,n=�N

2ckc
⇤
k

1 +
sin (T!k)

T!k
cos (2!kt)

�

.

It then follows for L su�ciently large, the wavevector spectral density of the surface displace-

ment ⌘ can be approximated as a sum of Fourier coe�cients of a linear approximation, or

Z 1

�1
Sk(k)dk ⇡ lim

T,L!1

⌦

⌘w(xh, t)
2
↵

T,L
h

⇡
N
X

m,n=�N

2ckc
⇤
k. (2.24)

4 If ⌘ is real, G(k0,!) is even (Phillips, 1966).

26

2.3.3 The cell-averaged SD estimate

With ⌘w in series form, the other series for wave variables and desired forms follow formally:

'w(x, t) =
N
X

m,n=�N

ick!k

k
ekz+i[k·x

h

�!kt] + c.c., (2.25)

uw(x, t) =
N
X

m,n=�N

(kx, ky,�ik)
ck!k

k
ekz+i[k·x

h

�!kt] + c.c., (2.26)

ruw(x, t) =
N
X

m,n=�N

(kx, ky,�ik)⌦ (ikx, iky, k)
ck!k

k
ekz+i[k·x

h

�!kt] + c.c., (2.27)

Z s

t
uw(x, s0)ds0 =

N
X

m,n=�N

(ikx, iky, k)
ck
k
ekz+i[k·x

h

]
�

e�i!ks � e�i!kt
�

+ c.c.. (2.28)

Here, the outer product ⌦ emphasizes the tensor rank of ruw(x, t). It then follows that the

di↵erence between the Eulerian and Lagrangian velocities at time s for some fixed initial t is

✓

Z s

t
uw(x, s0)ds0

◆

·ruw(x, s)

=

("

N
X

m,n=�N

(ikx, iky, k)
ck
k
ekz+i[k·x

h

]
�

e�i!ks � e�i!kt
�

+ c.c.

#

·
"

N
X

m0,n0=�N

⇣

k̀x, k̀y,�ik̀
⌘

⌦
⇣

ik̀x, ik̀y, k̀
⌘ c̀k!̀k

k̀
ek̀z+i[k̀·x

h

�!̀ks] + c.c.

#)

=
N
X

m,n,m0,n0=�N

(

⇣

k̀x, k̀y,�ik̀
⌘ c̀k!̀k

kk̀
e(k+k̀)z

"

⇣

�kxk̀x � kyk̀y + k̀k
⌘

cke
i[(k+k̀)·x

h

]
⇣

e�i[(!k+!̀k)s] � e�i[!kt+!̀ks]
⌘

+
⇣

kxk̀x + kyk̀y + kk̀
⌘

c⇤ke
�i[(k�k̀)·x

h

]
⇣

ei[(!k�!̀k)s] � ei[!kt�!̀ks]
⌘

#

+ c.c.

)

.

The spatial average of the di↵erence over the periodic domain gives

1

L2

Z

L

h

/2

�L

h

/2

"

✓

Z s

t
uw(x, s0)ds0

◆

·ruw(x, s)

#

dxh

=
N
X

m,n=�N

(

(kx, ky, ik) 2ckc-k!ke
2kz

⇣

e�i[!k(t+s)] � e�i2!ks
⌘

+ (kx, ky,�ik) 2c⇤kck!ke
2kz

⇣

1� ei[!k(t�s)]
⌘

)

+ c.c. .

27

Similarly, integrating in time over the interval [t� T/2, t+ t/2], we find

1

T

Z t+T/2

t�T/2

(

1

L2

Z

L

h

/2

�L

h

/2

"

✓

Z s

t
uw(x, s0)ds0

◆

·ruw(x, s)

#

dxh

)

ds

=
N
X

m,n=�N

(

2!ke
2kz

(kx, ky, ik) ckc-k

✓

sin (!kT/2)

!kT/2
+

e�i2!kt sin (!kT)

!kT

◆

+ (kx, ky,�ik) c⇤kck

✓

1� sin (!kT/2)

!kT/2

◆�

+ c.c.

)

⇡
N
X

m,n=�N

(kx, ky, 0) 4 ckc
⇤
k!ke

2kz, (2.29)

for T su�ciently large (T �
p

2L/⇡g). Then the cell-averaged SD centered at the origin for an

arbitrary t yields

uS(0, 0, z, t;Lh, T) ⇡
N
X

m,n=�N

4 ckc
⇤
k!kke

2kz. (2.30)

Now let xg represent the center of any grid cell (with dimension Lh) but with an arbitrary depth

z. Then Eq. (2.30) can be generalized as the cell-averaged SD estimate:

uS(xg, t;Lh, T) ⇡
N
X

m,n=�N

4 ckc
⇤
k

p

gk k e2kz. (2.31)

2.3.4 The spectral density SD estimate

Let Sk
r

,k
✓

(with kr = k) represent the wavevector spectral density in polar coordinates. Then

using the deep-water dispersion relation with the following change of variables,

Sf✓(f, ✓) =
8⇡2f

g
Sk

r

k
✓

�

kr=(2⇡f)2/g, k✓ = ✓
�

,

Sk
r

k
✓

(kr, k✓) = kS
k

(kx=kr cos k✓, ky=kr sin k✓),

the total spectra can be reformulated in terms of the directional-frequency spectral density,

Sf✓, as

Z 1

�1
Sk(k) dk =

Z 1

0

Z ⇡

�⇡
Sk

r

k
✓

(kr, k✓) dk✓dkr =

Z 1

0

Z ⇡

�⇡
Sf✓(f, ✓) d✓df. (2.32)

28

Using Eq. (2.20), it follows that the cell-averaged SD from Eq. (2.31) can be rewritten in

spectral density form (for L � 1km, T �
p

2L/⇡g) as

uS
2D

h

(xg, t;Lh, T) ⇡
Z 1

�1
2
p

gk kSk(k)dk (2.33)

=
16⇡3

g

Z 1

0

Z ⇡

�⇡

⇣

cos ✓, sin ✓, 0
⌘

f3Sf✓(f, ✓)e
8⇡2

f

2

g

zd✓df. (2.34)

This vector quantity is the spectral density estimate of the leading-order SD for linear surface gravity

waves and is the basis for all lower-order spectral density approximations. Here, the horizontally-

two-dimensional quantity is termed 2Dh-SD to distinguish it from from later horizontally-one-

dimensional approximations.

2.4 Global comparisons of SD

There are numerous nondimensional LM numbers (La, Lat, LaTKE , Laproj , etc.) used to

estimate the vertical velocity of LM and SD is a major component of each. In order to validate

any LM parametrization, it is essential to have global estimates of these numbers as well as com-

parisons of them using di↵erent observational and model datasets. Motivated by this, a survey of

lower-order SD approximations was conducted and used to estimate and compare global SD using

empirical spectra, observations, and models in Webb and Fox-Kemper (2011). These lower-order

SD approximations were derived from a unidirectional approximation (see the following section)

using spectral moments and empirically-derived relations between them. This further simplification

was an essential first step for comparisons since access to 1D spectral data across a wide range of

data products was limited and no previous error analyses had been conducted.

2.4.1 The 1Dh-SD approximation

Due to a limitation in directional-frequency spectral data from both observations and models,

the following unidirectional wave assumption is often used to simplify calculations of SD:

Sf✓(f, ✓) = �(✓ � ✓0)Sf (f). (2.35)

29

Here, ✓0 is used to define the assumed SD direction as êw = (cos ✓0, sin ✓0). This simplifies the

interior integral in Eq. (2.34) as

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(f, ✓) d✓ = êwSf (f), (2.36)

and results in a simpler horizontally-one-dimensional (henceforth 1Dh or 1Dh-unidirectional)

form of SD and its surface value, given as:

uS
1D

h

= êw
16⇡3

g

Z 1

0
f3Sf (f)e

8⇡2
f

2

g z df (2.37)

uS
1D

h

�

�

z=0
= êw

16⇡3

g

Z 1

0
f3Sf (f) df = êw

16⇡3m3

g
. (2.38)

Notice now that only the third moment5 of the 1D wave spectrum, m3, is required to estimate the

surface 1Dh-SD.

Even though the 1Dh-SD approximation is common in literature (Kenyon, 1969; McWilliams

and Restrepo, 1999, etc.), it should be pointed out that the assumption of unidirectionality is

a strong one that a↵ects both the magnitude and direction of SD. A detailed discussion of the

approximation will be delayed until the following section — however it should be noted that typically

the direction of SD varies with depth and its magnitude will be overestimated by the unidirectional

approximation. Despite this, the assumption is often preferable since access to 2D spectral data

has been historically limited.

2.4.2 Lower-order SD approximations

Estimating global SD from observations requires further simplifications since both coverage

and spectral data are limited. Satellite radar altimeters provide adequate coverage but only measure

wave properties. Buoys calculate wave spectra but are sparsely distributed and data are typically

stored in spectral moment form. As a result, lower-order SD approximations are necessary for

comparing observational estimates with analytical and model-derived ones.

Traditional measures of wave properties can be defined clearly using 1D spectral moments.

The spectral significant wave height is a commonly used measure of wave height and is defined

5 See Appendix A.2 for a definition of moments.

30

as Hm0 = 4
p
m0. Likewise, the ratio of moments Tn = (m0/mn)

1/n can be used to approximate

various wave periods such as the mean wave period (n = 1) and zero-crossing wave period

(n = 2) (Gommenginger et al., 2003). With these two properties alone, it is possible to estimate

the surface 1Dh-SD as

uS
1D

h

�

�

z=0
= êw

⇡3 (16m0)

g (m0/m3)
= êw

⇡3H2
m0

gT 3
3

. (2.39)

Thus if T3 were routinely saved in data, it would be straightforward to estimate the surface 1Dh-SD.

However, T3 is uncommon in archived data, in comparison to T1 and T2, so conversions among wave

periods or spectral moments would be valuable.

For a monochromatic spectrum, there is only one wave period, the peak period, and all Tn

are equivalent. Replacing T3 with Tn in Eq. (2.39) yields a surface monochromatic SD approxi-

mation which is sometimes used with polychromatic spectra. In Webb and Fox-Kemper (2011),

relationships between di↵erent moments, period estimates, and SD approximations (both surface

and subsurface) were found and tabulated using a wide range of spectra. These relationships in-

cluded unimodal empirical spectra6 based on various sea states as well as more complex bimodal

spectra generated from NOAA WAVEWATCH III (a third-generation spectral wave model).7 To

account for polychromatic spectra, the following leading order correction to the monochromatic SD

approximation (henceforth spectral-moment-SD) was proposed:

uS
mmnt

�

�

z=0
= êw

an⇡3H2
m0

gT 3
n

. (2.40)

Values of an were calculated for the inverse, first, second, and third moments and are re-tabulated

from Webb and Fox-Kemper (2011) in Table 2.1 for convenience. Best estimates using WAVE-

WATCH III spectra were determined using a linear weighted least-squares fit to minimize the

temporal global-mean-square error8 over an eight year period.

6 See Webb and Fox-Kemper (2011), Hasselmann et al. (1973), and Pierson and Moskowitz (1964) for a description
of the di↵erent types of empirically-derived spectra.

7 See Chapter 3 for a discussion of third-generation spectral wave models and Appendix B.1 for details of the
NOAA WAVEWATCH III implementation.

8 The global mean is an area-weighted mean that adjusts for grid cell size changes due to latitude.

31

It is clear that di↵erent spectral shapes produce di↵erent values. Indeed, the reason why mul-

tiple 1D spectra were used was to exemplify a realistic range of values. The inverse-moment wave-

period estimate is not reliable for 1Dh-SD, as it depends sensitively on wave spectrum shape (dif-

ferences between them are greater than 40%). However, the first and second-moment wave-period

estimates di↵er among the spectra by about 23% and 13% respectively. While this uncertainty is

not negligible, the spectral-moment-SD approximation is an improvement to the monochromatic

one and di↵erences (of a1 and a2 among the spectra) are modest when compared to the discrepan-

cies found between di↵erent data sources (as will be discussed in the next subsection). The same

method can be applied to estimate subsurface values of SD, given a pair of spectral moments and

a prescribed spectral shape (see Webb and Fox-Kemper, 2011).

2.4.3 Summary of spectral-moment-SD approximations and global comparisons

The reliability of the spectral-moment-SD approximation may be judged both by comparisons

between di↵erent spectral shapes and by comparison to discrepancies between available wave data

products. In Webb and Fox-Kemper (2011), a detailed comparison of the spectral-moment-SD

approximation is made with the 1Dh-SD approximation. At the surface, it was found that the

most reliable approximation is based on the second moment, which is usually quite accurate away

from coastal areas with a normalized root-global-mean-square error of roughly 10%. For reference,

the monochromatic approximation (based on the inverse-moment) used for the preliminary LM

parametrization performed the poorest and had normalized errors higher than 100%.

In addition, global SD magnitudes were calculated in Webb and Fox-Kemper (2011). The goal

was to use three substantially di↵erent estimates of SD – from satellites, a data-assimilating model,

and a forward model – to see how reasonable estimates of SD di↵er. Since 1D spectral information

from two of the data sets were not available, the a2-spectral-moment-SD approximation was used

for comparisons. In summary, SD estimates from the di↵erent data products disagreed by 30�50%,

roughly equally divided between discrepancies in significant wave height and wave period. Based on

the spectral shapes studied, the a2-spectral-moment-SD errors would need to be four times larger

32

to rival the contributions from the significant wave height and period discrepancies found among

the data products.

While the a2-spectral-moment-SD is an improvement to the more common monochromatic

approximation (McWilliams et al., 1997), there is structure to the error patterns (see Fig. 2.2) and

an accurate and full reconstruction of the wave spectrum is recommended to remove the systematic

error and fully diagnose SD. At the time of writing, it was concluded that there was no presently

well-accepted way to determine both surface and subsurface global SD. It was hoped that the

analysis presented would guide future wave data collection and aid in the determination of a global

SD climatology and variability.

2.5 Comparison of 1Dh- and 2Dh-SD approximations

Estimating the error in the 1Dh-SD approximation without access to the directional-frequency

spectra can be challenging since the degree of spreading is unknown and the presence of multidi-

rectional waves can be hidden. These features a↵ect both the magnitude and direction of SD in a

nonlinear fashion that is sensitive with depth. By assumption, the 1Dh-SD approximation ignores

these features and as a result overestimates the magnitude of SD. In addition, the assumed direction

(wind seas direction) is often misaligned with the actual direction of SD. These di↵erences can be

substantial and are not readily quantifiable.

Recently, there has been a trend toward using the 2Dh-SD approximation for calculations that

are sensitive to SD despite the necessary exponential increase in computation and storage. While

this is appropriate, the role that the missing physics play is still unclear and there is no adequate

way yet to compare calculations using 1Dh- and 2Dh-SD approximations confidently. Here, a first

attempt has been made to better understand and quantify the influence of directional spreading

and multidirectional waves on SD.

33

Table 2.1: Proposed coe�cients for the (surface) spectral-moment-SD approximation using di↵erent
mean periods from di↵erent spectra. Dots and brackets indicate truncation of an analytical solution
and temporal and global means respectively.

a�1 a1 a2 a3
Monochromatic 1 1 1 1
JONSWAP (empirical) 2.34 1.84 1.49 1
PM (empirical) 2.700... 1.970... 1.537... 1
hWAVEWATCH IIIi

G,T

3.34 2.31 1.69 1

(a)
⌦�

uS
1Dh

� uS
mmnt

�

|z=0

↵

T
(cm/s) (b)

⌦�

uS
1Dh

� uS
mmnt

�

|z=0

↵

T
/
⌦

uS
1Dh

|z=0

↵

G,T
(%)

Figure 2.2: Eight year mean (1994-2001) of the residual and relative-residual surface SD magnitudes between the

1D
h

-SD and a2-spectral-moment-SD approximations. Figures are reproduced from Webb and Fox-Kemper (2011).

34

2.5.1 Pitfalls of the unidirectional assumption

Several simple examples are given below to illustrate some of the challenges of using 1D

wave spectra to calculate SD. The last example will provide some insight on how the 1Dh-SD

approximation can be improved.

2.5.1.1 Multidirectional waves and SD magnitude

When multidirectional waves are present, the magnitude of SD depends on the angle of

incidence between the di↵erent waves. A monochromatic spectrum for a peak frequency fp, wave

amplitude a, and direction ✓̃, can be defined as

Smono,f✓(f, ✓) =
a2

2
�(f � fp) �(✓ � ✓̃). (2.41)

The resulting SD for the simplest wave is then

uS
mono

�

�

x0
=
⇣

cos ✓̃, sin ✓̃, 0
⌘ 8⇡3a2f3

p

g
exp

�8⇡2 |z0|
g

f2
p

�

. (2.42)

To illustrate the importance of multidirectional spectra on SD, consider two monochromatic waves

passing through the same point from di↵erent directions (see Fig. 2.3). For simplicity, let the peak

frequency and amplitude of the waves be the same. The bichromatic spectra can then be defined

for some mean direction ✓̄ and angle of incidence ✓0 as

Sbi,f✓(f, ✓) =
a2

2
�(f � fp)

⇥

�(✓ � ✓̄ � ✓0) + �(✓ � ✓̄ + ✓0)
⇤

. (2.43)

The resulting SD is then

uS
bi

�

�

x0
=
�

cos
�

✓̄ + ✓0
�

+ cos
�

✓̄ � ✓0
�

, sin
�

✓̄ + ✓0
�

+ sin
�

✓̄ � ✓0
�

, 0
� 8⇡3a2f3

p

g
exp

�8⇡2|z0|
g

f2
p

�

= 2 cos ✓0 uS
mono

�

�

x0
. (2.44)

In terms of approximations, this is equivalent to

uS
2D

h

�

�

x0
= cos ✓0 uS

1D
h

�

�

x0
(2.45)

and in general, the 1Dh-SD approximation will overestimate SD whenever both wind seas and swell

are present.

35

2.5.1.2 Multidirectional waves and SD direction

In the previous example, the resulting SD magnitude follows simple vector addition. This

generalizes for any n-chromatic wave, Sn-chro,f✓ =
Pn

i=1
a2
i

2 �(f � fi)�(✓ � ✓i), as

uS
n-chro

�

�

x0
=

n
X

i=1

(cos ✓i, sin ✓i, 0)Ai(z0) (2.46)

where Ai(z) =
8⇡3a2

i

f3
i

g exp
h

�8⇡2|z|
g f2

i

i

for some amplitude and peak frequency ai and fi. Again

for simplicity, consider a bichromatic wave but with di↵erent peak frequencies such that a1 = a2,

✓1 6= ✓2 and f2 = e1f1. Then for the depth

z =
�g

8⇡2 (e2 � 1) f2
1

, (2.47)

the SD direction will be the directional average of both waves, (✓1 + ✓2) /2. However, for any depth

above or below this value, the dominant SD direction will be determined by either the higher-

or lower-frequency monochromatic wave respectively. This will be discussed in more detail later,

however the direction of SD should be expected to align with wind seas at the surface and swell at

greater depths, whenever both are present.

2.5.1.3 Wave spreading and SD magnitude

In addition to multidirectional waves, the degree of wave spreading also plays a large role in

determining the magnitude of SD. To illustrate, consider the two following hypothetical unidirec-

tional spectra, one with spreading and one without:

S1,f✓(f, ✓) =

r

2

⇡
exp

⇥

�2✓2
⇤

Sf (f),

S2,f✓(f, ✓) = �(✓)Sf (f).

Notice that both spectra are normalized in ✓ and directed in the ê1 direction. However due to

spreading, the magnitudes are not equivalent and
�

�uS
1

�

�

`2
= 0.882

�

�uS
2

�

�

`2
.

In all three examples, the magnitude and/or direction of SD is a↵ected by the use of

directionally-averaged 1D wave spectra. In the first two examples, the di↵erences between 1Dh-

36

and 2Dh-SD are dependent upon properties of a random sea (e.g., how often are the waves multidi-

rectional, what are typical frequency and directional di↵erences, etc.). In this example however, the

di↵erences are systematic (i.e., determined by the spreading function) and not a random process. It

will be later shown that the error due to wave spreading in 1Dh-SD approximations can be removed

if the directional (spread) distribution is known.

2.5.2 Directional distribution and SD

To aid understanding, formal relations between 1Dh- and 2Dh-SD approximations are defined.

The relations will be used in the following section to develop an improved 1Dh-SD approximation.

2.5.2.1 Defining a generic directional distribution

The 1D frequency spectrum is defined such that

Sf (f) =

Z ⇡

�⇡
Sf✓(f, ✓) d✓. (2.48)

This is equivalent to splitting the directional-frequency spectrum into a frequency component (Sf)

and a directional distribution (D) and integrating in ✓. For a fixed frequency f↵, a fixed directional

distribution can be defined as

D(✓; f↵) =

8

>

<

>

:

S
f✓

(f
↵

,✓)R
⇡

�⇡

S
f✓

(f
↵

,✓) d✓
, Sf✓(f↵, ✓) 6= 0,

1
2⇡ , Sf✓(f↵, ✓) = 0.

(2.49)

Assuming D can be defined continuously in f , the directional distribution has the property

Z ⇡

�⇡
D(f, ✓) d✓ = 1, (2.50)

for every f , and the directional-frequency and frequency spectrum can be related by

Z 1

0

Z ⇡

�⇡
Sf✓(f, ✓) d✓ df =

Z 1

0

Z ⇡

�⇡
D(f, ✓)Sf (f) d✓ df =

Z 1

0
Sf (f) df. (2.51)

37

2.5.2.2 Defining a generic directional component

Due to the vector component (cos ✓, sin ✓, 0) in the integrand, the behavior of SD is not always

intuitive. To identify the role it plays more concretely, let the combined integral of any generic

directional distribution and vector component, or

H(f) =

Z ⇡

�⇡
(cos ✓, sin ✓, 0)D(f, ✓) d✓, (2.52)

be termed the directional-SD-component. Then the 2Dh-SD can be rewritten as

uS
2D

h

=
16⇡3

g

Z 1

0
H(f)f3Sf (f) exp

8⇡2f2

g
z

�

df. (2.53)

Notice that for all unidirectional waves (i.e., Sf,✓(f, ✓) = �(✓ � ✓̄)Sf (f)), kH(f)k`2 = 1 for all

f 2 R+. In this context, the 1Dh-SD can be thought of as a 2Dh-SD approximation with kHk`2 = 1

and H/ kHk`2 =
�

cos ✓̄, sin ✓̄, 0
�

for some assumed direction ✓̄. The directional-SD-component can

now be used to quantify the e↵ect of wave spreading.

2.5.3 The 1Dh-DHH-SD approximation

Here, an intermediary approximation (between 1Dh- and 2Dh-SD) is defined to di↵erentiate

the importance of spreading and multidirectional waves in SD. This 1Dh approximation will use an

empirically-derived directional distribution to include the e↵ects of spreading.

2.5.3.1 The DHH spreading function

Based on observational data, Donelan et al. (1985) derived a frequency-dependent spreading

function. Here, the Donelan-Hamilton-Hui (henceforth abbreviated DDH) spreading function has

38

Figure 2.3: Here, pairs of monochromatic waves (red and blue) are shown traveling about a mean direction ✓̄=⇡/2

with a total directional di↵erence (for each pair) of 2✓0. Only the y vector components of the bichromatic waves

contribute to SD.

H0.95,0.93L

H0.56,0.78L H1.6,0.78L
0 0.5 1 1.5 20.7

0.8

0.9

1

f ê fp

H
Hfê

f p
L

Figure 2.4: The magnitude of the DHH directional-SD-component.

39

been normalized and the domain shifted to be periodic for ✓ as

DDHH(f, ✓; fp, ✓̄) =

�(f/fp)

2 tanh[�(f/fp)⇡]

8

>

>

>

>

>

<

>

>

>

>

>

:

sech2[�(f/fp) ✓] , ✓̄(f) = 0,

sech2
⇥

�(f/fp)
�

✓ � ✓̄(f)
�⇤

, �⇡ +
�

�✓̄(f)
�

� sgn[✓̄(f)] ✓ ⇡,

sech2
⇥

�(f/fp)
�

✓ � ✓̄(f) + 2⇡ sgn[✓̄(f)]
�⇤

, �⇡ sgn[✓̄(f)] ✓ �⇡ +
�

�✓̄(f)
�

� .

(2.54)

Here, fp is the peak frequency, ✓̄(f) 2 [�⇡,⇡] is the mean direction for a particular f , and � is

given by

�(r) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2.61 r1.3, 0.56 < r 0.95,

2.28 r�1.3, 0.95 < r < 1.6,

1.24, otherwise.

(2.55)

2.5.3.2 The DHH directional-SD-component

Unfortunately, calculating the directional-SD-component for the DHH spreading function is

fairly complicated and requires the use of hypergeometric functions with complex arguments (Luke,

1969). To simplify, a Padé approximate of order [2/2] (Bender and Orszag, 1978) has been used to

approximate the exact solution within a relative error of 3⇥ 10�3, given by

HDHH(f ; fp, ✓̄) =
�

cos ✓̄, sin ✓̄, 0
�

8

>

>

>

>

>

<

>

>

>

>

>

:

0.52f2
p

�3.3f
p

f+8.9f2

f2
p

�3.4f
p

f+8.9f2 , 0.56 < f/fp 0.95,

0.98f2
p

�0.19f
p

f+0.0058f2

f2
p

�0.26f
p

f+0.12f2 , 0.95 < f/fp < 1.6,

0.777, otherwise.

(2.56)

Notice that the DHH directional-SD-component requires knowledge of the peak frequency and the

mean direction is still a function in terms of frequency (i.e. the mean direction is not necessarily

constant for all frequencies).

The magnitude of the DHH directional-SD-component is depicted in Fig. 2.4. Notice that it

is bounded by 0.777 kHDHHk`2 0.934. This implies 1Dh-SD approximations may be overesti-

mating 2Dh-SD by as much as 30% due to spreading alone.

40

2.5.3.3 An improved 1Dh-SD estimate

As mentioned in the example in Section 2.5.1.3, the 1Dh-SD approximation can be improved

by using an empirically-derived directional distribution to approximate the full 2D spectra for SD

calculations. Here, the Padé-approximated, DHH directional-SD-component (Eq. 2.56) will be used

to modify Eq. (2.37) as

uS
DHH = êw

16⇡3

g

Z 1

0
H(f/fp)f

3Sf (f)e
8⇡2

f

2

g z df, (2.57)

where H(f/fp) = kHDHHk`2 and êw is a chosen mean direction. The approximation requires

knowledge of the peak frequency but this is fairly straight-forward to calculate in a model imple-

mentation. As with any 1Dh-SD approximation, the choice of êw is not always clear and will be

discussed in Section 2.5.5. The improved 1Dh estimate will be termed 1Dh-DHH-SD to distin-

guish it from the unidirectional 1Dh-SD approximation. The improved estimate is not limited to

the use of the DHH directional-SD-component. An alternative directional-SD-component is derived

in Appendix A.4 and is based on a modification to the DHH spreading function.

2.5.4 Analysis of SD magnitudes using the 1Dh-DHH-SD approximation

Here, the 1Dh-DHH-SD will be used with prescribed wave spectra (i.e., empirically formu-

lated) and observational and model output to di↵erentiate the e↵ects of spreading and multidi-

rectional waves in SD. For surface SD magnitudes, it will be shown that estimates from all three

types are in close agreement and that it is possible to correct 1Dh-SD for directional spreading by

multiplying by a constant.

2.5.4.1 Analysis using 1Dh-DHH-SD with prescribed wave spectra

Here, spectra from three di↵erent empirically-derived formulas will be used to examine the

role of spreading. Since empirical spectra require knowledge of the peak frequency, e-folding depths

will be used instead of depth to remove the peak frequency dependence and analyze the results.

41

Let n 2 R+ and zn = �ng/(8⇡2f2
p). Then for a monochromatic wave,

�

�uS
mono(zn)

�

�

`2
= e�n

�

�uS
mono(z=0)

�

�

`2
. (2.58)

In Table 2.2, three di↵erent peak frequencies are chosen (from high to low) to illustrate a typical

range of e-folding depths. Notice that at each e-folding depth, the depth for the lowest frequency

is approximately 50 times larger than the highest. This will aid an intuitive understanding shortly.

In addition to JONSWAP and PM empirical spectra (previously used in Section 2.4.2), pre-

scribed spectral shapes from Donelan et al. (1985) (abbreviated DHH as well) are also used to

analyze the e↵ects of spreading. Fetch-limited and fully-developed cases are chosen for the DHH

spectra to mirror JONSWAP and PM shapes respectively. See Webb and Fox-Kemper (2011) for

details and a visual comparison of the spectra.

To examine the reduction in SD magnitude due to directional spreading, ratios of 1Dh-DHH-

to 1Dh-SD for e-folding depths are presented in Table 2.3 (for select values) and in Fig. 2.5. For

the empirical spectra selected, there is approximately a 10�25% magnitude loss when using 1Dh-

DHH-SD instead of 1Dh-SD. The loss is greatest for all spectra at the surface and flattens out

for higher e-folding depths. This is expected since the exponential component of SD will filter

mostly higher frequencies initially as depth is increased (see Table 2.2). Eventually however, the

majority of SD will be comprised of spectra with frequencies less than half of the peak and the

DHH directional-SD-component will no longer influence the magnitude.

2.5.4.2 Analysis using 1Dh-DHH-SD with observational data

Since comparisons with 2Dh-SD are not possible with empirical spectra, it is necessary to

use other data. Wave buoys have commonly been used to measure vertical velocities to infer the

frequency spectra at a point (Holthuijsen, 2007). It is also possible for some buoys to estimate

wave direction and thus infer the full directional-frequency spectra. This data (both 1D and 2D)

is often used for validation of and assimilation in forecast spectral wave models (Tolman, 2009).

Here, observational data from a CDIP9 directional buoy, stationed in deep water in the
9 Coastal Data Information Program, Scripps Institution of Oceanography.

42

Table 2.2: Example e-folding depths |zn| (m) for the peak frequencies fp = 0.05, 0.16, 0.34 (Hz).

fp Tp |z0.01| |z0.5| |z1| |z2| |z3|
0.34 2.94 0.0107 0.537 1.07 2.15 3.22
0.16 6.25 0.0485 2.43 4.85 9.71 14.6
0.05 20 0.497 24.8 49.7 99.4 149

Table 2.3: Ratio of 1Dh-DHH- to 1Dh-SD magnitudes using empirical spectra for various e-
folding depths. Ratios with DHH1 (fetch-limited) and DHH2 (fully-developed) are not provided at
z0 since the spectra is undefined at the surface (see Section 2.5.4.1).

z0 z0.01 z0.5 z1 z2 z3
JONSWAP 0.812 0.820 0.874 0.893 0.908 0.913
DHH1 - 0.803 0.875 0.896 0.911 0.915
PM 0.799 0.805 0.854 0.877 0.898 0.906
DHH2 - 0.795 0.853 0.876 0.897 0.905

0 1 2 3
0.75

0.8

0.85

0.9

0.95

e - folding depths

SD
m
ag
ni
tu
de
ra
tio
s

Figure 2.5: Ratios of 1D
h

-DHH- to 1D
h

-SD magnitudes using empirical spectra for continuous e-folding depths:

JONSWAP (gray solid), PM (gray dashed), fetch-limited DHH (black solid), and fully-developed DHH (black

dashed).

43

northeastern Pacific Ocean,10 is used to compare 1Dh-, 1Dh-DHH-, and 2Dh-SD approximations.

The 2D spectral data was generated in 30 minute intervals and a 26 month period (2010/7/1–

2012/8/31) was selected for comparison.11 Casual inspection of the 2D spectral data shows that

both directional spreading and multidirectional waves are naturally present.

Occasionally, di↵erences between the approximations are starkly noticeable. In Fig. 2.6, a

snapshot of SD magnitudes are displayed for the first 10 m of the three di↵erent approximations.

In the absence of multidirectional waves, SD has an exponentially decaying profile. In this figure

interestingly, the surface magnitude of the 2Dh-SD is half its value at 10 m. This is can be

attributed to the presence of multidirectional waves (likely wind seas opposing a swell) since the

1Dh approximations do not exhibit this behavior.

From examples presented in Section 2.5.1, it is clear that both directional spreading and

multidirectional waves can a↵ect the magnitude of SD. To determine if one is more influential,

median ratios of the di↵erent SD approximations have been calculated for the two year period and

displayed in Fig. 2.7. The shaded interval indicates two-thirds of the distribution centered about

the median. The ratio of 1Dh-DHH-SD to 1Dh-SD has been displayed for comparison with the

empirical spectra. While it is unclear if the results from empirical spectra fall within the shaded

blue region (due to the use of an e-folding depth), the trend is similar with the largest loss at the

surface. Since the calculations were limited to depths of 10 m however, it is also unclear if the

observational curve will flatten out as well.

Common observational ratios between the 1Dh and 2Dh approximations are illustrated in

the other two curves, 2Dh-SD to 1Dh-SD and 2Dh-SD to 1Dh-DHH-SD. The (two-third centered)

distributions about the median are large in both and are likely caused by multidirectional waves, due

to asymmetry and a smaller distribution for the 1Dh-DHH-SD to 1Dh-SD ratio. In Webb and Fox-

Kemper (2011), it was identified that 1Dh-SD tended to overestimate the 2Dh-SD approximation

in the model data analyzed by about 33% at the surface. The unidirectional overestimation is

10 Datawell directional buoy (O’Reilly et al., 1996); Ocean Station Papa 166 (50�N, 145�W).
11 A O(f�5) spectral tail is used for later comparison with WAVEWATCH III model output (see Appendicies A.5

and B.2).

44

Figure 2.6: Observational buoy data: a snapshot of SD magnitudes at depth; the 2D
h

-SD approximation indicates

the presence of multidirectional waves.

Figure 2.7: Observational buoy data: median SD magnitude ratios with the two-thirds centered distribution

shaded.

45

nearly double in these observations at 62%. In comparison, the 1Dh-DHH-SD overestimates the

2Dh-SD by less than 28% at the surface and 14% after 3 m. This is still a sizable observational

di↵erence but it is a definite improvement. Further discussion on the role of directional spreading

and multidirectional waves will be delayed until Section 2.5.6.

2.5.4.3 Analysis using 1Dh-DHH-SD with model data

While buoys can provide superb spectral data, the data is sparse spatially and it is useful to

compare the results with global model-generated data. A 1-year 2D spectral data set12 has been

generated here by WAVEWATCH III and is used to compare di↵erences in SD approximations.

In the observational data analyzed, the majority of uncertainty (in the 1Dh approximations)

is likely due to the presence of multidirectional waves. To explore why, scatter plots13 have been

generated in Fig. 2.8 to help identify correlations. The dependent values, here surface SD magni-

tudes (m/s), are shaded by their density distribution. The regions are colored red, green, and blue

by the highest 0�30%, 31�60%, and 61�90% centered distributions respectively.

A comparison of Figs. 2.8a and 2.8b, surface magnitudes of 2Dh-SD (y-axis) versus 1Dh-SD

and 1Dh-DHH-SD (x-axes) respectively, reveals that the sources of error can be cleanly separated.

The shaded regions in both figures are approximately equivalent but oriented about di↵erent slopes.

In Fig. 2.8b, the upper part of the shaded regions aligns well with the line y = x and indicates that

the di↵erence in slopes between the figures is due to directional spreading. It should be pointed

out that the alignment in Fig. 2.8b is not guaranteed14 and the agreement is a testament of the

observational studies of Donelan et al. (1985).

Errors due to multidirectional waves are also present. In both figures, the (unnormalized)

density distribution normal to the slope of orientation is sharply peaked near the upper part and

then gradually descends (in the normal direction with the negative y component). This sharp

12 Previous analysis of the spectral-moment-SD approximations used an 8-year 1D spectral data set. See Ap-
pendix B.1 for details of the 2D spectral data set.

13 The scatter plots use the total raw (unweighted) data.
14 As an example, the slope could have easily been higher than unity if the directional distribution had been too

di↵use for higher frequencies.

46

Figure 2.8: Density-shaded scatter plots generated from one year of global model data (WAVEWATCH III). The

colors red, green, and blue indicate the highest 0�30%, 31�60%, and 61�90% centered distributions respectively.

Surface magnitude (m/s) comparison of (a) 2D
h

-SD (y-axis) versus 1D
h

-SD (x-axis), (b) 2D
h

-SD (y-axis) versus

1D
h

-DHH-SD (x-axis), (c) 1D
h

-DHH-SD (y-axis) versus 1D
h

-SD (x-axis), and (d) 2D
h

-SD (y-axis) versus

m⇥1D
h

-SD (x-axis). Here, m = 0.795 is the slope of the red line in (c).

47

peak is expected since the ocean surface is not predominately a mix of wind seas and swell. In

addition, the asymmetry is expected as well. Unlike with directional spreading, the presence of

multidirectional waves will only cause an overestimation by the 1Dh approximations and never the

opposite.

In Fig. 2.8c, surface magnitudes of 1Dh-DHH-SD (y-axis) versus 1Dh-SD (x-axis), the corre-

lation holds as well. Here the density distribution normal to the slope of orientation is singularly

peaked, which is expected since the magnitudes are invariant to the angle of incidence between the

multidirectional waves. In addition, the slope of the line the scatter plot falls on (plotted in red

with m = 0.795) is in close agreement with the values derived from empirical data (0.799, 0.812)

and in observations (0.789). This implies that multiplying the surface 1Dh-SD magnitudes by ap-

proximately 0.8, might be a good rule of thumb to correct for directional spreading (see Fig. 2.8d).

This could be very useful since surface magnitudes can be calculated without full knowledge of

the 1D wave spectra (as shown in Section 2.4.2). This approach could be extended to include the

e↵ects of multidirectional waves but would probably only be useful in a specific region where the

statistics of the wave field were well-known.

2.5.5 Analysis of SD direction using the 1Dh-DHH-SD approximation

Up until this point, the discussion has largely focused on SD magnitude and not direction.

Without full knowledge of the 2D wave spectra, it is not immediately clear what the actual direction

should be, particularly for subsurface calculations. At the surface, approximations typically assume

the direction of SD is the same as the wind sea. But what about subsurface directions? Should it

align with the direction of the wind, the mean wave direction,15 or a combination of both? Here,

this topic is lightly addressed using the same approach as the last section.

In the example in Section 2.5.1.2, the direction of the 2Dh-SD (for a bichromatic wave with

di↵erent peak frequencies) varied with depth, with a preference for the directions of the higher and

lower frequencies for (relatively) shallower and deeper depths respectively. This insight is explored

15 See Appendix A.3.

48

further in Figs. 2.9 and 2.10 to determine how well the 2Dh-SD aligns with the 10 m surface wind

and mean (surface) wave directions at various depths.

In the scatter plots, the 2Dh-SD aligns best with 10 m surface wind directions at the surface.

This result is expected since the higher frequencies of the wind seas contribute the most to the

surface SD magnitude. However, this correlation no longer holds as depth is increased. As the

higher frequencies are filtered by the exponential component, the direction of 2Dh-SD quickly

begins to reorientate with the mean wave direction. At a depth of 1 m, the correlations for both

wind and mean wave directions are already comparable and by 9 m, the 2Dh-SD direction is in

near complete agreement with the mean wave direction.

These results are consistent with the notion that wind seas and swell dominate SD for surface

and deeper subsurface depths respectively. If the intermediate subsurface SD direction is important

however, a spectral wave model is required to calculate this nonlocal, nonlinear vector component.

2.5.6 A qualitative treatment of error in the 1Dh-SD approximation

One of the main goals of this investigation is to identify the e↵ects of directional spreading and

multidirectional waves on SD. Using three di↵erent types of spectra, analyses of the approximations

suggest that directional spreading errors are both systematic and removable. Errors due to the

interaction of local and nonlocal waves however, appear to be random and add a large degree of

uncertainty in both 1Dh approximations. Further quantification of both error types would be useful

but only a qualitative treatment will be given here.

In Fig. 2.8c, the scatter plot comparison of 1Dh-DHH-SD versus 1Dh-SD indicates that the

addition of directional spreading does not increase uncertainty in the improved 1Dh approximation.

This implies that the physical processes may be independent of each other. In fact, further inspec-

tion of Fig. 2.7 reveals that the magnitude ratios, 2Dh-SD to 1Dh-DHH-SD and 1Dh-DHH-SD to

1Dh-SD, are largely uncorrelated since the following relation holds to within a few percent:

*

�

�uS
2D

h

�

�

�

�uS
1D

h

�

�

+

T

=

*

�

�uS
2D

h

�

�

�

�uS
DHH

�

�

�

�uS
DHH

�

�

�

�uS
1D

h

�

�

+

T

⇡
*

�

�uS
2D

h

�

�

�

�uS
DHH

�

�

+

T

⇥
*

�

�uS
DHH

�

�

�

�uS
1D

h

�

�

+

T

. (2.59)

49

Figure 2.9: Density-shaded scatter plots of the 2D
h

-SD (y-axis) versus 10 m surface wind (x-axis) directions

(rad) for di↵erent depths (m): (a) z=0, (b) z=1, (c) z=3, and (d) z=9. See Fig. 2.8 for an explanation of the colors.

Figure 2.10: Density-shaded scatter plots of the 2D
h

-SD (y-axis) versus surface mean wave (x-axis) directions

(rad) for di↵erent depths (m): (a) z=0, (b) z=1, (c) z=3, and (d) z=9. See Fig. 2.8 for an explanation of the colors.

50

Since both are largely uncorrelated, both can be compared side by side to measure the e↵ects

of directional spreading and multidirectional waves separately. Unfortunately, a clear comparison

between observational ratios in Fig. 2.7 is not possible since the centered two-thirds distribution

is so large for multidirectional waves. However, a comparison of model results is possible at the

surface at least and Figs. 2.8b and 2.8c suggest that the errors due to directional spreading will

mostly dominate, which agrees with the median curves in Fig. 2.7.

Chapter 3

Spectral wave modeling

3.1 Introduction to spectral wave modeling

A wide range of surface wave phenomenon can be found in the oceans. These can be roughly

organized in temporal or physical scale (descending) as trans-tidal waves, tides, storm surges,

tsunamis, seiches, infra-gravity waves, wind-generated waves, and capillary waves. The time and

length scales of these vary several orders of magnitude with periods of days for tides down to a

tenths of a second for capillary waves (see Fig. 3.1) (Holthuijsen, 2007).

Historically there has been much interest in predicting wind-generated waves, which pre-

dominantly make up the sea state. The gravity restoring force is characterized by periods shorter

than 30 s but greater than 0.25 s (wave lengths of 0.1�1500 m) (Holthuijsen, 2007). They can be

separated into two groups, wind sea, which are generated locally by wind, and swell, which have

propagated outside the generation area and have evolved into waves with longer wavelengths and

periods.

There are several approaches to modeling wind-generated waves that are based on the scale

of interest. On small scales of roughly 10�1000 m, hydrostatic equations of motion can be used

to fully model the waves deterministically. This is known as the phase-resolving approach.

On intermediate scales of roughly 0.1�10 km, phase-resolving quickly becomes computationally

prohibitive and a statistical approach is needed. In the phase-averaging approach, wind-generated

waves are treated as a random process and certain assumptions are made to simplify the modeling.

In general, the waves are assumed to have small amplitudes, be away from shallow water, and be

52

statistically homogeneous and stationary (Holthuijsen, 2007). On large basin to global scales, the

statistical properties of the waves on intermediate scales are assumed to vary smoothly with location

and the generation, propagation, and evolution of wave spectra are modeled deterministically by

a spectral wave modeling approach. See Fig. 3.2 for an illustration of the concept and the

following subsection for more details. Time scales are on the order of hours to days and the

latest formulation of the models, third-generation, are typically used to forecast the sea state for

commercial and recreational interests. Up until recently, running a third-generation spectral wave

model on longer climatological time scales has been computationally infeasible and only statistical

wave properties such as significant wave height or period have been calculated using empirical

relations or parameterizations.

Here, our primary interest is in extending the capabilities of spectral wave modeling to

include longer climatological time scales in order to calculate a prognostic wave field for GCMs.

This field is necessary to parameterize LM accurately and will help improve the modeling of air-

sea interactions and sea ice formation (Squire, 2007). There are several challenges that hinder

implementation though. The first and foremost is that operational forecast third-generation models

require significant computational resources and have similar running costs to an entire GCM ocean

component. In addition, the governing equations of these models are singular at the poles and

require an ice boundary in the northern hemisphere to run. This could be remedied by using a

nested polar version1 of the model and progress is being made on this front (Li, 2012) – but until

then, studying an ice-free climate scenario with a global prognostic wave field is not possible.

Running a GCM with a cost-e↵ective prognostic wave field is a challenge and is explored in

detail in this chapter. The beginning of the chapter includes an overview of an operational forecast

third-generation model, NOAA WAVEWATCH III (Tolman, 2009), with performance benchmark-

ing and progress on the GCM-coupled version. The rest of the chapter is devoted to analyzing the

singular governing equations and exploring possible non-singular alternatives.

1 This requires a new model with the singularities shifted to the equator.

53

arbitrary energy scale

tides

seiches --------------- wind-generated waves

trans-tidal waves surges - - ---- ----"'------- __ ts_t_m_a_m_i_s ___ _ }nfra-gravity waves

capillary
swell wind sea waves

10-6 10-5 J0-4 10-3 IQ-2 10-1 10° frequency (Hz) 10+1

24 h 3h 15min 100 s lOs 1 s period 0.1 s

Figure 1.1 Frequencies and periods of the vertical motions of the ocean surface (after Munk, 1950). Figure 3.1: Illustration of wave spectra from di↵erent types of ocean surface waves. Figure is reproduced from

Holthuijsen (2007).

Figure 3.2: Example of a spectral model approach. The random sea of each gridded region in (a) is Fourier

decomposed in (b). The statistical di↵erences between neighboring gridded regions are assumed to be small enough

such that evolution of wave energy can be modeled by a PDE. Figures are reproduced from Holthuijsen (2007).

54

3.1.1 Third-generation spectral wave models

As previously mentioned, spectral wave models solve the statistical characteristics of the

wave spectrum in a deterministic manner (Holthuijsen, 2007). These models solve an action balance

equation with weakly nonlinear sources and sinks to model the generation, dissipation, and evolution

of the local spectra of a random sea (Komen et al., 1994). Spectral wave model development over the

past 30 years has been dominated by the treatment of these sources and a thorough overview would

fill volumes (Komen et al., 1994; Massel, 1996; Janssen, 2004). However, di↵erent models can be

loosely categorized by their treatment of nonlinear wave-wave interactions and earlier models have

either neglected these (first-generation) or have parameterized them (second-generation) (Massel,

1996). In contemporary third-generation wave models, the nonlinear interactions are fully modeled

with a 2D wave spectrum.

The spectral balance equation is more commonly known as the wave action balance

equation and is similar to the Boltzmann transport equation found in statistical mechanics (Wille-

brand, 1975). In the equation, the spectral properties of the physical system are a local property

of the spatial domain. As a result, it is a numerically challenging equation to model due to its

high dimensionality. Instead of solving directly for the local wave spectrum,2 the balance equation

solves an adiabatic invariant,3 termed wave action, that is defined as

W(k;xh, t) =
gSk(k;xh, t)

�(k;xh)
, (3.1)

where � is the intermediate-water dispersion relation and Sk is the position and time-dependent

(2D) wavevector spectrum. On a 2 x 2 dimensional slab, the balance equation can be written as

@tW +r
x

h

· (Wrk⌦)�rk · (Wr
x

h

⌦) = Sources, (3.2)

where ⌦ is a Doppler-shifted dispersion relation and the term ‘Sources’ encompasses the non-

kinematic physics of the waves (generation, dissipation, nonlinear interactions, etc.) (Komen et al.,

2 Recall from Section 2.3.2 that the wave spectrum is defined here as the time-step averaged, magnitude squared,
truncated Fourier transform of the surface height deviation, for each grid cell in the directional-frequency or wavevector
domain.

3 The physical property or quantity remains invariant to slow changes in the system (Whitham, 1974).

55

1994). See the following section for a detailed discussion of the governing equation.

Third-generation models typically use structured grids in both the spatial and spectral do-

mains (See Fig. 3.3 for examples). Inputs can include surface wind velocities, ocean currents,

air and sea interface temperature di↵erences, sea ice concentrations, bathymetry and topography

data, and tidal information. In addition to 1D and 2D wave spectra, outputs can include spectral

moment quantities (significant wave height, period, etc.) as well as various analyses (wave peak,

direction, etc.). Data assimilation also plays a role and data from buoys and altimeters are typically

incorporated to improve forecasts.

As previously mentioned, third-generation models can be computationally demanding to run.

This is due to the extra spectral domain which typically adds 600�1000 more unknowns to calculate

at each spatial grid cell. The di↵erence in unknowns can be of several orders of magnitude when

compared with vertically-layered 3D models (⇠30�40 layers) of similar horizontal spatial resolution.

Because of this, global 0.5�1� resolution forecasts require massive computing power and need to

be run in parallel to produce medium range forecasts. Since it can takes weeks for swell generated

by a storm to transverse the oceans, restart capabilities are necessary for models to avoid lengthy

spin-up times to account for distant swell. The two main third-generation models in use for global

scales are NOAA WAVEWATCH III (Tolman, 2009) and ECMWF WAM (Janssen, 2008).4

3.1.2 Coupling WAVEWATCH III to NCAR CESM

In Section 1.1.2, a preliminary LM parameterization showed promise in reducing a Southern

Ocean shallow mixed-layer bias in the NCAR CCSM 3.5 model. However, further testing in NCAR

CCSM 4 indicated that use of a prognostic wave field is crucial in order to remove uncertainty from

the climatological-based parametrization (Webb et al., 2013). To remedy this, a modified form

of WAVEWATCH III (version 3.14) is being added and coupled to the NCAR Community Earth

System Model (CESM). This third-generation spectral wave model will provide the backbone of

4 The organizational acronyms stand for the National Oceanic and Atmospheric Administration and the European
Centre for Medium-Range Weather Forecasts respectively.

56

Figure 3.3: Examples of third-generation model grids: (a) spatial latitude-longitude grid spaced equally and

non-equally in latitude and longitude (respectively); (b) spectral directional-frequency grid spaced evenly and loga-

rithmically in direction and frequency (respectively).

57

the new LM parameterization and coupled output from it will eventually be used to improve air-sea

interactions and sea ice formation in the GCM.

WAVEWATCH III is generally regarded as the state-of-art in spectral wave modeling and

includes extensive physics and parameterizations. It uses a third-order accurate, fractional time

stepping and finite di↵erence scheme. In addition to data assimilation, it also has nested grid

capabilities to run higher resolution grids within larger coarser ones. Despite these advantages,

WAVEWATCH III is ultimately a forecast wave model and modifying it for climate purposes will

require addressing two challenges: increasing speed and overcoming polar singularities. It is exactly

these challenges that spawned prototype development of a new meshless spectral wave model for

climate modeling purposes in Chapter 4. However, until an operational version or another more

suitable alternative exists, a modified version of WAVEWATCH III is being used for coupling (see

Appendix B.1 for configuration and coupling details).

3.1.2.1 WAVEWATCH III computational costs

Before discussing the previously mentioned challenges, it is useful to know how computational

costs are allocated in WAVEWATCH III and how it scales with spatial resolution. In general, the

largest costs are attributable to spatial and temporal interpolation of input data, the use of nonlinear

source terms, and conversion of output data. A simple analysis of cost versus spatial resolution was

performed and is displayed in Fig. 3.4 for three di↵erent types of runs: a model run with sources,

a model run without sources but with input interpolation, and a baseline run without sources or

input.5 To simplify analysis, the same spectral resolution6 and number of time steps were used

for each di↵erent resolution. Since WAVEWATCH III uses a variable time step, the latter was

approximately achieved by specifying an arbitrary minimum time step for all runs near or above

the maximum CFL value. To verify that the results were not too sensitive to choice of time step,

a larger minimum time step (double the original) was also used and is presented as well.

5 Conversion of output data was not tested since this feature is not used (all output is coupled to the GCM).
6 The grid consists of 25 frequency and 24 directional bins with an initial and cuto↵ frequency of 0.0418 and 0.411

respectively.

58

Using a least squares fit of five di↵erent global resolutions (from very coarse to standard),

the following cost scaling law was determined based on the number of ocean grid cells (N
x

):

Cost(N
x

) = ↵N1.07
x

, (3.3)

for an arbitrary machine-dependent ↵ and N
x

⇡ 2
3 (nX ⇥ nY).7 Essentially, the cost is linearly

dependent on N
x

and increasing the time step size by a factor of two has little e↵ect compared with

the other run types. Interestingly, processing input and calculating sources approximately doubled

and quadrupled the cost respectively. The massive computing power needed to run WAVEWATCH

III is often attributed to the need to calculate nonlinear source terms and we can see that running

the model with both input and sources is e↵ectively the same as running the model without at

double the resolution. However, the importance of nonlinear source terms diminishes somewhat

if we account for a changing time step due to grid resolution. Since the cost will change roughly

by a factor of
p

N
x

/N
x0 (N

x0 is the appropriate resolution for the original time step chosen), the

adjusted cost will be proportional to N3/2
x

and implies that the addition of input and sources will

be the same as running the model without at an increased resolution of approximately 1.6. While

it is now clear that the model scales quadratically with spatial resolution on a single processor, it

is not clear how it scales with multiple processors in parallel or with changes to spectral resolution

and further benchmarking is needed.

3.1.2.2 Benchmarking WAVEWATCH III for coupling

Since it is not uncommon for climate runs to span several hundred years, a high parallel model

throughput of 30 or more simulated years per computational day is ideal. To speed up the model,

WAVEWATCH III will be coupled to the CESM on an individual time step to remove the need to

interpolate input data. Even as such, a coarsened version of the model is still necessary in order

to achieve the high throughput. To estimate the optimal coupled grid for coupling, benchmarking

of the uncoupled wave model was performed on two di↵erent machines: a Westmere SGI at NASA

7 nX and nY are the number of longitudinal and latitudinal cells respectively.

59

Figure 3.4: A general comparison of WAVEWATCH III cost versus spatial resolution using the same number of

time steps and a fixed spectral grid (25
f

⇥ 24
✓

). In reverse order of the legend, the four di↵erent model runs are

(1) with sources, (2) without sources but with input interpolation, (3) without sources and input, and (4) without

sources or input but with a larger time step.

Figure 3.5: Mean WAVEWATCH III grid performance results with benchmarking targets on two di↵erent ma-

chines. Performance is measured in the number of simulated years per day of running. Benchmarking was performed

on (a) NASA Pleaides and (b) NCAR Bluefire on several di↵erent spatial (N
x

) and spectral (N
f✓

) grids. The fol-

lowing spatial lat-lon grids were tested: 1� ⇥ 1.25� (N
x

=30730), 1.9� ⇥ 2.5� (N
x

=12096), 2.4� ⇥ 3� (N
x

=7920), and

3.2� ⇥ 4� (N
x

=4500). In addition, the following spectral frequency-direction grids were tested: 32 ⇥ 24 (N
f✓

=768),

25 ⇥ 24 (N
f✓

=600), and 13 ⇥ 12 (N
f✓

=156).

60

and an IBM Power 6 at NCAR. Benchmarking was performed initially on the faster Westmere

SGI to determine the ideal spatial-to-spectral grid ratio and placement of northern and southern

ice boundaries. Followup benchmarking was performed on the IBM Power 6 to determine its

performance in relation to other components of the NCAR CCSM and CESM.

Benchmarking results are shown in Fig. 3.5. On the Westmere SGI, it was found that adjust-

ing the spectral resolution (Nf✓) did not significantly a↵ect model throughput as compared with

the spatial resolution (N
x

). This is due to how the coupled domains are split for parallelization

in WAVEWATCH III. However, since coarsening the spectral grid quickly rendered the spectral

output useless (See Fig. 3.6 for an example), a lower standard grid of 25f ⇥ 24✓ (Nf✓=600) was

chosen. A minimum throughput of 15 simulated years per day of running on the Westmere SGI was

achieved by reducing from the standard global resolution of 1� ⇥ 1.25� (N
x

=30730) to 1.9� ⇥ 2.5�

(N
x

=12096). On the IBM Power 6, a much coarser grid of 3.2� ⇥ 4� (N
x

=4500) was required

to reach the minimum and ultimately ideal throughput. In addition, a comparison of machines

shows that the (parallelization) e�ciencies vary widely between them. On the Westmere SGI, the

e�ciency roughly scales as P�1/3 for P processors up until about 64 and then quickly approaches

zero. On the IBM Power 6, the e�ciency does not scale as clearly due to a communication lag

between nodes (starts at P=32). Even so, the e�ciency is also poor and quickly approaches zero

for larger P with a recommended max of P=128.

3.1.2.3 The coupled wave model

Using the benchmarking results as a guide, a modified version of WAVEWATCH III (version

3.14) is now coupled to the NCAR CESM 1.2 (Webb et al., 2013). The coupled wave model

(WAVE) uses a coarse 3.2� ⇥ 4� latitude-longitude grid with latitudinal boundaries of ±78.4� (see

next paragraph). The CESM coupler handles all spatial interpolation to and from WAVE and

the wave model is coupled on a 30 minute time step (delayed one step) to remove any need for

interpolation by the model. Coupled inputs include surface interface temperatures, surface wind

velocities, ocean currents, sea ice grid cell concentrations, and mixed layer depths. At the moment,

61

output is limited but will eventually include SD and a new nondimensional LM number (sensitive

to wind-wave alignment) to be used for the LM parametrization. Installation testing of WAVE (on

Bluefire) has been completed and sample output with relative di↵erences from an uncoupled control

run are presented in Fig. 3.7. The actual relative di↵erences are closer to single precision and are

higher in the figure (⇠10�3) due to rounding in WAVEWATCH III’s output generator. Once the

output is fully coupled, additional testing will be necessary to ensure the coarsened model still

agrees reasonably well with observational data. While the resolution is less than desired, it is

hoped that the prognostic wave field will remove sensitivities in the LM parameterization and help

improve other model physics such as air-sea flux calculations and sea ice formation.

Before closing, it should be mentioned that the second challenge of coupling a third-generation

model to a GCM is largely unaddressed in the new LM parametrization. Since WAVEWATCH

III is both advectively and directionally singular at the poles, it requires the use of northern

and southern ice boundaries to run. These polar singularities are due to the numerical methods

employed and singularities in the projected version of the wave action balance equation used. While

this does make the model ill-suited for studying future polar-ice-free scenarios, there are no current

alternatives and mitigation is necessary.8 Removing the polar singularities from future spectral

wave models will require both a nonsingular form of the spherical wave action balance equation

and di↵erent numerical methods. Both of these issues are discussed further in Section 3.4 and

Chapter 4 respectively.

3.2 Wave action balance equation

As previously mentioned, the wave action balance equation is the governing equation used

in spectral wave models. It is a similar to the Boltzmann transport equation and uses a coupled

spatial-spectral domain to solve an equivalent form of the local wave spectrum for each grid cell

location. Several key assumptions are necessary for this large-scale modeling approach and we will

8 To mitigate, optimal ice lines were determined from Westmere SGI benchmark tests. The ice lines both maxi-
mized the region covered and minimized the need for prohibitively small time steps due to shrinking grid cells.

62

Figure 3.6: An example comparison of significant wave height using a normal (25
f

⇥24
✓

) and coarsened (13
f

⇥12
✓

)

spectral grid on a standard spatial lat-lon grid (1� ⇥ 1.25�).

Figure 3.7: Comparison test of the coupled wave model (WAVE) with an uncoupled WAVEWATCH III (WW3) on

NCAR Bluefire. Sample output on the new grid is after a 1 day spin-up with seeded spectra of (a) significant wave

height (Hm0) and (b) the relative di↵erences (of Hm0) between the models.

63

be following closely the methods outlined by Mei et al. (2005), Komen et al. (1994), and Janssen

(2004). Since work on the subject is broad, this section will focus on the kinematic part of the

governing equations only and will not address the source terms. For the sake of brevity, derivation

of the main equation will only be outlined and variants of the equation will be derived and discussed

in more detail later.

3.2.1 Overview of derivation

In Mei et al. (2005), a wave evolution equation with a slowly-varying amplitude but fast

phase speed is derived in Cartesian coordinates using the WKB Method (Bender and Orszag,

1978). Here, the depth, H = H(xh, t), is allowed to vary slowly in location and time such that a

new scale separation parameter can be defined as

µ = O

✓

rH

kH

◆

⌧ 1. (3.4)

Using µ, slow coordinates are introduced (excluding the vertical),

xh = µxh, t = µt, (3.5)

and a new set of governing linear wave equations for non-constant depth are derived for �(xh, z, t) =

�(xh/µ, z, t/µ)9 and H(xh, t) = H(xh/µ, t/µ). Dropping overbar notation, Eqs. (1.31) through

(1.33) become

µ2r2
h�+ @zz� = 0, z 2 (�H, 0) (3.6)

µ2 @tt�+ g @z� = 0, z = 0, (3.7)

@z�+ µ2rhH ·rh� = 0, z = �H. (3.8)

A key component of this approach is the assumption that only the phase varies with the

fastest scale (xh/µ, t/µ). As such, the following expansion is introduced:

� =
⇥

�0 + (�iµ)�1 + (�iµ)2�22 + . . .
⇤

eism,n

/µ, (3.9)

9 The velocity potential is capitalized in this chapter for asymptotic expansion.

64

where sm,n = sm,n(xh, t) and �j = �j(xh, z, t) are the eikonal and amplitude components respec-

tively.10 Here, the subscripts m, n have been used to emphasize that the solution is for a wave

component with the following dependent wavevector and frequency:

km,n(xh, t) = rh sm,n(xh, t) (3.10)

!m,n(xh, t) = � @t sm,n(xh, t). (3.11)

In addition, all dependent relations are stated explicitly for clarity. Note that Eqs. (3.10) and (3.11)

imply the following consistency relation:

@tkm,n +rh!m,n = 0. (3.12)

Di↵erentiating and collecting powers of µ gives an ordered set of meaningful physical equa-

tions. The leading order equation (O(µ0)) for the wave component gives the variable depth

dispersion relation,

!m,n;±(xh, t) = ±�m,n (xh,km,n(xh, t))

= ±{g |km,n(xh, t)| tanh[|km,n(xh, t)|H(xh)]}1/2 . (3.13)

This is the same relation as defined in Eq. (1.38) but with variable depth. Collecting the next set

of terms (O(�iµ)) gives the energy balance equation

@

@t

✓

Em,n

�m,n

◆

+rh ·
✓

cg;m,n
Em,n

�m,n

◆

= 0, (3.14)

where the total energy E and group velocity cg are defined here as

Em,n(xh, t) = ⇢g |Am,n(xh, t)|2 , (3.15)

and

cg;m,n(xh,km,n(xh, t)) = [rk �(xh,k(xh, t))]k=k
m,n

. (3.16)

10 Notice that z has not been rescaled.

65

Here, E/� in Eq. (3.14) is the wave action since it is a conserved quantity when transported by

group velocity (i.e., invariant to slow depth variations) (Bretherton and Garrett, 1968; Mei et al.,

2005).

The addition of slowly varying currents leads to a similar approximation. Let U = U(xh, t)

represent the depth-independent current. Then as before, the dispersion relation,

!m,n;±(xh, t) = ⌦m,n;±(xh,km,n(xh, t))

= U(xh, t) · km,n(xh, t)± �m,n(xh,km,n(xh, t)) , (3.17)

and the energy balance equation,

@

@t

✓

Em,n

�m,n

◆

+rh ·
✓

vg;m,n
Em,n

�m,n

◆

= 0, (3.18)

naturally follow (Komen et al., 1994). Here, ⌦ and vg are referred to here as the Doppler-shifted

dispersion relation and Doppler-shifted group velocity respectively, where the latter wave

component form is defined as,

vg;m,n(xh,km,n(xh, t)) = [rk⌦(xh,k(xh, t))]k=k
m,n

. (3.19)

The wave action balance equation for a continuous wave spectrum in an inhomogeneous

media (slow depth variations with slowly interacting currents) is given in Eq. (3.1). Derivation is

nontrivial and the reader is directed to and Willebrand (1975), Komen et al. (1994), and Janssen

(2004) for an in-depth treatment. Essentially, the wave component density is a function of time and

this leads to the extra term with r
x

h

⌦ in the balance equation (Willebrand, 1975; Komen et al.,

1994). In addition, unlike in previous Eqs. (3.14) and (3.18), k is no longer a dependent variable11

and the spectral and spatial domains are coupled.

3.2.2 Generalized equation and simplifications

While Eq. 3.1 is derived for a 2D spatial and 2D spectral domain, the balance equation can be

generalized for other coupled domains. Let x, k, and ↵ = (x,k) define generic spatial, spectral, and

11 The dispersion relations and group velocities derived for the wave components are still valid for the continuous
spectrum however.

66

coupled spatial-spectral domains respectively such that x,k 2 Rd and ↵ 2 R2d for some dimension

d.12 Then the spatial and spectral gradients for some scalar function F = F (↵) are defined as

r
x

F (↵) =

@x1F (↵) · · · @xd

F (↵)

�T

, (3.20)

r
k

F (↵) =

@k1F (↵) · · · @kdF (↵)

�T

. (3.21)

Here the spectral domain represents the local d-dimensional Fourier decomposition of some filtered

region about a point in the d-dimensional spatial domain. Let W = W(↵, t). Then Eq. (3.1) can

be rewritten as

@tW(↵, t) +r
x

· [W(↵, t)r
k

⌦(↵, t)]�r
k

· [W(↵, t)r
x

⌦(↵, t)] = Sources, (3.22)

where ⌦±(↵, t) = U(x, t) · k ± �(↵).

Since our interest lies with the kinematic part of the equation, only spatial and spectral

evolution are examined here. As such, it is useful to examine problems without source terms or

background currents. On an (2d)-dimensional slab, Eq. 3.22 simplifies to

@tW(↵, t)±r
k

�(↵) ·r
x

W(↵, t)⌥r
x

�(↵) ·r
k

W(↵, t) = 0. (3.23)

For problems of constant bathymetry, r
x

�(↵) = 0 (since �(↵) = �(k)) and Eq. 3.23 simplifies

further to

@tW ± c
g

(k) ·r
x

W = 0, (3.24)

where c
g

(k) = cg(|k|) k

|k| = r
k

�(k) is the spatially invariant group velocity.

3.2.3 Derivation in polar coordinates

One of the key goals of building a new spectral wave model is in removing both the numerical

and analytical singularities. This will require a thorough understanding of the kinematic part of

the governing equation and its projections. For initial insight, a simplified kinematic wave action

12 If d = 2, the earlier wavevector notation k = (k
x

, k
y

) is used instead.

67

balance equation (similar to Eq. 3.24) is derived here in polar coordinates and is analogous to

great-circle propagation on a sphere.

Here an abbreviated cylindrical del notion will be used for polar coordinates with the assump-

tion all cylindrical z-components are null. For clarity, these del operations are denoted rp and are

defined and derived in Appendix A.6. In this system, scalar and vector functions are represented

as f = f(r,�) and A = Arer +A�e� = (Ar, A�) with r 2 R+ and � 2 (�⇡,⇡].

3.2.3.1 Physical model and governing equations

For simplification, consider a horizontally periodic 1D problem such that the propagation

can be modeled in polar coordinates with a constant interior radius R and unperturbed ideal fluid

with thickness H. Define g = (�g, 0) and let ⌘ = ⌘(�, t) represent the surface displacement with

h⌘ � (R +H)i = 0.13 Then using Eq. (A.26), the governing linear wave equations (Eqs. 1.31 to

1.33) can be written in polar form as

1

r
@r�+ @rr�+

1

r2
@��� = 0, r 2 (R,R+H) , (3.25)

@tt�+ g @r� = 0, r = R+H, (3.26)

@r� = 0, r = R, (3.27)

where ⌘ and � are related through the linearized polar form of Eq. (1.17) as

@t�|r=R+H = �g⌘. (3.28)

3.2.3.2 Expansion basis for solution

Here, the same multiple-scales analysis as outlined in Section 3.2.1 is used to derive a wave

action balance equation. As such, it is necessary first to determine a basis for the asymptotic

expansion. Assume � is separable such that �(r,�, t) = P (r)⇤(�)T (t). Then Eq. (3.25) gives

r2
p� =

1

r
P 0⇤T + P 00⇤T +

1

r2
P⇤00T = 0.

13 Notice that for non-constant R, H would need to vary in conjunction.

68

Since the solution is separable and ⇤ is periodic,

r
P 0

P
+ r2

P 00

P
= m2 = �⇤00

⇤
,

and ⇤ / eim� for m 2 Z. In addition, if P / rq, then the following relation must hold

q2 � |m|2 = 0

and P / rm.

3.2.3.3 Multiple-scales analysis

For � ⌧ 1 and j 2 N+, let the slower variables be formally defined as

�j = �j�f , tj = �jtf . (3.29)

Here, the subscript f has been added to denote the original fast scale. This implies derivatives

with respect to � and t will be replaced with

@� = @�
f

+ � @�1 + �2 @�2 + . . . ,

@�� = @� (@�)

= @�
f

�
f

+ �
�

2 @�
f

�1

�

+ �2
�

2 @�
f

�2 + @�1�1

�

+

Let � = �(m) be some yet determined dispersion relation. Then for

� = � (r,�f ,�1,�2, . . . , tf , t1, t2, . . .) , (3.30)

 ↵ = ↵ (r,�1,�2, . . . , t1, t2, . . .) , ↵ = 0, 1, 2, . . . , (3.31)

assume the following solution ansatz:

� =
�

 0 + � 1 + �2 2 + . . .
�

ei[m�
f

�!t
f

]. (3.32)

Turning the crank, we find

@r� =
�

@r 0 + � @r 1 + �2 @r 2 + . . .
�

ei[m�
f

�!t
f

],

@rr� =
�

@rr 0 + � @rr 1 + �2 @rr 2 + . . .
�

ei[m�
f

�!t
f

],

69

@��� = @�
f

�
f

�+ �
�

2 @�
f

�1�
�

+ �2
�

2 @�
f

�2�+ @�1�1�
�

+ . . .

=
⇥

�m2 0 + �
�

�m2 1 + i 2m @�1 0

�

+ �2
�

�m2 2 + i 2m @�1 1 + i 2m @�2 0 + @�1�1 0

�

+ . . .
⇤

ei[m�
f

�!t
f

],

and

@tt� = @t
f

t
f

�+ �
�

2 @t
f

t1�
�

+ �2
�

2 @t
f

t2�+ @t1t1�
�

+ . . .

=
⇥

�!2 0 + �
�

�!2 1 � i 2! @t1 0

�

+ �2
�

�!2 2 � i 2! @t1 1 � i 2! @t2 0 + @t1t1 0

�

+ . . .
⇤

ei[m�
f

�!t
f

].

Collecting terms with �0 gives the first set of ordered equations:

1

r
@r 0 + @rr 0 �

m2

r2
 0 = 0, r 2 (R,R+H) (3.33)

g @r 0 � !2 0 = 0, r = R+H (3.34)

@r 0 = 0, r = R. (3.35)

Assume 0 is separable in r; then for B± = B±(�1,�2, . . . , t1, t2, . . .), the lowest ordered

solution becomes

 0 = B+rm +B�r�m. (3.36)

Employing Eq. (3.35), we find

@r 0

�

�

r=R
= m

�

B+Rm�1 �B�R�m�1
�

= 0, (3.37)

and implies

 0 = B+
�

rm +R2mr�m
�

.

Using Eq. (3.28), B+ can be redefined such that

 0 = � i gB

!

rm +R2mr�m

(R+H)m +R2m (R+H)�m

�

, (3.38)

70

and

@r 0

�

�

�

r=R+H
= � i gmB

!(R+H)

"

(R+H)2m �R2m

(R+H)2m +R2m

#

. (3.39)

After employing Eq. (3.34), a polar linear dispersion relation is derived for ! = !± = ±�:

�(m) =

(

gm

R+H

"

(R+H)2m �R2m

(R+H)2m +R2m

#)1/2

=

(

g |m|
R+H

"

�

1 + H
R

�2|m| � 1
�

1 + H
R

�2|m|
+ 1

#)1/2

. (3.40)

Repeating and collecting terms with �1, gives the second set of ordered equations:

1

r
@r 1 + @rr 1 +

1

r2
�

�m2 1 + i 2m @�1 0

�

= 0, r 2 (R,R+H) , (3.41)

g @r 1 +
�

�!2 1 � i 2! @t1 0

�

= 0, r = R+H, (3.42)

@r 1 = 0, r = R. (3.43)

Notice now that Eqs. (3.41) and (3.42) are inhomogeneous. To solve, first note the following

property:

1

r
@r [r (0 @r 1 � 1 @r 0)] = 0

✓

1

r
@r 1 + @rr 1 �

m2

r2
 1

◆

� 1

✓

1

r
@r 0 + @rr 0 �

m2

r2
 0

◆

= 0

✓

� i 2m

r2
@�1 0

◆

. (3.44)

Integrating Eq. (3.44) with respect to r, yields

h

r (0 @r 1 � 1 @r 0)
ir=R+H

r=R
= �i 2m

Z R+H

R

1

r
 0 @�1 0dr. (3.45)

Applying Eqs. (3.42) and (3.43) on the LHS of Eq. (3.45), gives

LHS = (R+H)

(

� igB

!
@r 1 +

i gmB

!(R+H)

"

(R+H)2m �R2m

(R+H)2m +R2m

#

 1

)

r=R+H

= (R+H)

� i B

!
(i 2! @t1 0)

�

r=R+H

=

@t1

✓

gB2

!

◆�

[�i (R+H)] . (3.46)

71

Applying likewise on the RHS, gives

RHS = (@�1B)

✓

� i 2m

B

◆

Z R+H

R

1

r
 2
0dr

= (@�1B)

✓

i 2m

B

◆

Z R+H

R

g2B2

r!2

rm +R2mr�m

(R+H)m +R2m (R+H)�m

�2

dr

= (@�1B)

8

>

<

>

:

i 2mg2B(R+H)2m

!2
h

(R+H)2m +R2m
i2

9

>

=

>

;

Z R+H

R

1

r

�

r2m + 2R2m +R4mr�2m
�

dr

=

@�1

✓

gB2

!

◆�

i!(R+H)2m+1

(R+H)4m �R4m

�

Z R+H

R

�

r2m�1 + 2R2mr�1 +R4mr�2m�1
�

dr. (3.47)

Combining both sides (and multiplying by a constant ⇢) yields

@t1

✓

⇢gB2

!

◆�

=

@�1

✓

⇢gB2

!

◆�

�!(R+H)2m

(R+H)4m �R4m

�

⇥
Z R+H

R

�

r2m�1 + 2R2mr�1 +R4mr�2m�1
�

dr. (3.48)

Recall from earlier that the wave action can be defined as Wp = ⇢gB2/! (see Eq. 3.15).14 Assuming

m 6= 0, then Eq. (3.48) yields the wave action balance equation

@t1Wp = � (@�1Wp)

!(R+H)2m

(R+H)4m �R4m

�

1

2m
r2m � R4m

2m
r�2m + 2R2m ln r

�R+H

R

= � (@�1Wp) !

(

1

2m
+ sgn (m)

"

2
�

1 + H
R

�2|m|

�

1 + H
R

�4|m| � 1

#

ln

✓

1 +
H

R

◆

)

. (3.49)

3.2.3.4 Asymptotic simplification

For the solution to be useful, it is necessary to simplify about an appropriate scale. First,

notice that Eq. (3.49) is only dependent on (�1, t1) and the wave action can be truncated as

Wp(�1,�2, . . . , t1, t2, . . .) ⇡ Wp(�1, t1). Second, recall the following binomial series expansion:

✓

1 +
H

R

◆2|m|
=

1
X

n=0

0

B

@

2 |m|

n

1

C

A

✓

H

R

◆n

=

2|m|
X

n=0

(2 |m|)!
n!(2 |m|� n)!

✓

H

R

◆n

.

Expanding the squared dispersion relation as a binomial series, gives

�2 =
g |m|
R+H

"

�

1 + H
R

�2|m| � 1
�

1 + H
R

�2|m|
+ 1

#

=
g |m|
R+H

"

2 |m|
�

H
R

�

+ . . .

2 + 2 |m|
�

H
R

�

+ . . .

#

. (3.50)

14 The subscript p is used to denote polar coordinates.

72

Notice that each binomial term can be bounded as
0

B

@

2|m|

n

1

C

A

 (2|m|)n

n!
.

Let " = 2|m|H/R for m 6= 0. Then it follows that the binomial series can be bounded as

1 + "
✓

1 +
H

R

◆2|m|
 1 + "+

1

2
"2 + · · ·+ 1

(2 |m|)!"
2|m|.

There are two natural asymptotic limits to this bound. For " ⌧ 1, both Eqs. (3.50) and

(3.49) respectively simplify to

�2 ⇡ g|m|
R+H

✓

"

2 + "

◆

⇡ g|m|"
2(R+H)

=
gm2H

R(R+H)
, (3.51)

and

@t1Wp ⇡ � (@�1Wp)!

1

2m
+ sgn (m)

H

"R

�

= � (@�1Wp)
!

m

⇡ ⌥ (@�1Wp)

s

gH

R(R+H)
. (3.52)

However, if "� 1, then

✓

1 +
H

R

◆2|m|
� 1 � "� 1,

and

"

�

1 + H
R

�2|m| � 1
�

1 + H
R

�2|m|
+ 1

#

⇡ 1.

This implies for 2 |m| � R/H, both Eqs. (3.50) and (3.49) respectively simplify to the new limits

�2 ⇡ g |m|
R+H

, (3.53)

and

@t1Wp ⇡ � (@�1Wp)!

"

1

2m
+ sgn (m)

2H/R
�

1 + H
R

�2|m|

#

⇡ � (@�1Wp)
!

2m

⇡ ⌥ (@�1Wp)
1

2

r

g

|m| (R+H)
. (3.54)

73

3.2.3.5 Cartesian solution form

The units for the dispersion relations should be in m/s and rad/s in Cartesian and polar

coordinates respectively. In addition, converting from polar to Cartesian coordinates yields the

eikonal relation m = (R+H)k and the partial derivative @� = �y @x + x @y for x2 + y2 = 1. Since

H/R ⇠ 5 ⇥ 10�4 on average in the ocean, Eqs. (3.52) and (3.54) simplify to the following wave

action balance equations:

@tW ±
p
gH

R

�y x

�

2

6

4

@xW

@yW

3

7

5

= 0 (3.55)

@tW ± 1

2R

r

g

k

�y x

�

2

6

4

@xW

@yW

3

7

5

= 0. (3.56)

Notice that these equations are similar to Eq. (3.24). Since the bathymetry did not vary (i.e.,

H and R were held constant), no spectral gradient is expected. In addition, a closer inspection

reveals that
p
gH/R and

p
g/2R

p
k are in fact the group velocities for linear shallow and deep-

water (respectively) on a unit circle! A later comparison in Section 3.3.2 shows that Eqs. (3.55)

and (3.56) are indeed equivalent to Eq. (3.24) projected onto a unit circle.

3.3 The wave action balance equation in di↵erent geometries

The meshless spectral wave prototype in Chapter 4 uses a di↵erent numerical method than

WAVEWATCH III (as well as other third-generation wave models such as WAM and SWAN) and

as a result requires a di↵erent formulation of the tangent-plane approximation of Eq. (3.22) that

is used (see Section 3.3.4). In addition, it is beneficial to test the new prototype on simpler wave

action balance equations before proceeding to the full problem. As a consequence, it is necessary to

formulate wave action balance equations for several di↵erent geometries. For simpler geometries,

it is unnecessary to derive each balance equation using the WKB method as in Section 3.2.3, and

projections of the general wave action balance equation, Eq. (3.22), and its variants can be used.

Care is required though since projections into a particular coupled spatial-spectral domain are not

74

guaranteed to exist. For clarity, each balance equation explored in the prototype is derived or

stated here separately.

3.3.1 Test geometries

Di↵erent projections of the wave action balance equation onto the following geometries are

considered here: ring-point, ring-line, sphere-ring, and sphere-cylinder. The named compo-

nents denote the geometry of the spatial and spectral domains respectively. The first geometry,

ring-point, is essentially a 1D periodic advection problem on a 2D spatial ring with a fixed frequency.

It is primarily considered to aid in later numerical stencil selection for the other geometries. In

the ring-line geometry, a continuous spectrum of waves are considered, moving in a clockwise or

counter-clockwise fashion on a 2D spatial ring. In this cylindrical geometry, the spatial and spectral

domains can either be coupled or uncoupled depending on whether a non-constant bathymetry or

frequency dependent source term is used.

In the last two geometries, both domains are always coupled for any projection of Eq. (3.22).

In the sphere-ring geometry, only monochromatic waves are considered to propagate on a sphere.

However, unlike for the ring-point case, the domains are coupled since the spectral directional

component is locally dependent on its spatial position. In the last geometry, sphere-cylinder, the

spectral domain can be expanded from a 2D directional ring to include a continuous spectrum of

frequencies. Again, coupling of the frequency component with the spatial domain will only occur

when a non-constant bathymetry or frequency dependent source term is used.

3.3.2 Spatial 1D periodic with spectral scalar formulation (ring-point)

In Section 3.2.3, a wave action balance equation (in polar coordinates with constant depth)

and its asymptotic form were derived for propagation along a great-circle and unit circle respectively.

The latter asymptotic balance equation can also be derived directly from Eq. (3.24). Consider a

monochromatic wave propagating on a plane with constant direction. Without a loss of generality,

let kc = (kc, 0) and c
g

(kc) = (cg(kc), 0). Then the coupled domain collapses into a spatial one only

75

and Eq. (3.24) becomes

@tW = ⌥cg(kc) @xW. (3.57)

Using Eq. (A.31) for some finite length 2⇡R > 0, the equation can mapped into polar coordinates

with W(x, t) = W(x+ 2⇡nR, t) for n 2 Z as

@tWp = ⌥cg(kc)

R
@�Wp, (3.58)

where � 2 (�⇡,⇡]. Let x = x/R. Then a normalized Cartesian form of the equation in ring-point

geometry can be formulated as

@tW ± cg(kc)

R
(�y @xW + x @yW) = 0. (3.59)

Comparing Eqs. (3.56) and (3.59), we find the equations match if the deep-water group velocity on

a line, cg(k) = 1/2
p

g/k, is used.

3.3.3 Spatial 1D periodic with spectral 1D formulation (ring-line)

Expanding upon the previous geometry, consider not one but a continuous spectrum of waves

propagating on a plane with the same constant direction. To be general, it is necessary to consider

Eq. (3.22) or Eq. (3.23) since k is not fixed and the wave action can evolve if the bathymetry varies.

For simplicity however, initially consider a problem with constant bathymetry. Again without a loss

of generality, let k = (k, 0) and c
g

(k) = (cg(k), 0). Following Section 3.3.2, the spatially normalized

form (dropping overline notation) becomes

@tW ± cg(k)

R
(�y @xW + x @yW) = 0. (3.60)

Here we can interpret the new coupled domain ↵ = (x, k) = (x, y, k) as a cylinder oriented in k

with radius R. Intuitively, waves are propagating in a clockwise or counter-clockwise fashion on

a 2D spatial ring with some variable wavenumber. Since the bathymetry is constant, the group

velocity is independent of spatial location and individual waves are decoupled. If there are slow

depth variations however, the spatial and spectral domains are coupled and it is necessary to use

76

Eq. (3.13) (the variable depth dispersion relation) with Eq. (3.23) to project a new balance equation

onto the cylinder.

3.3.4 Spatial spherical surface with spectral 1D periodic formulation (sphere-ring)

Third-generation models solve a projected wave action balance equation that is global spa-

tially and local spectrally (Tolman, 2009). The spectral domain is a tangent-plane approximation

that is orientated to and singular at the North and South Poles (Groves and Melcer, 1961; Groves,

1966). The projected wave action balance equation from WAMDI Group (1988) and Tolman (2009)

can be simplified for a fixed frequency f as

@tW ± cg
R

x

cosµ

⇥

sin ✓0 @�W + cos ✓0 @µ (W cosµ) + sinµ @✓0
�

W sin ✓0
�⇤

= Sources. (3.61)

where ✓0 is measured clockwise with respect to true north and cg is the depth-dependent group

velocity. To convert to radians, let ✓0 = �✓+ ⇡
2 . Then sin ✓0 = cos ✓, cos ✓0 = sin ✓, and @✓0 = � @✓.

Rewriting and expanding, gives

@tW ± cg
R

x

cosµ
[cos ✓ @�W + sin ✓ @µ (W cosµ)� sinµ @✓ (W cos ✓)] =

@tW ± cg
R

x

cos ✓

cosµ
@� + sin ✓ @µ � tanµ cos ✓ @✓

�

W = Sources. (3.62)

To use with the meshless model, it is necessary to convert Eq. (3.62) into a form suitable

for the Euclidian norm. Here, the spherical and directional-frequency coordinates, (�, µ, r, f, ✓),

are converted to Cartesian and wavenumber ones, (x, y, z, k, l).15 Let kxk = R
x

and kkk = R
k

since propagation is confined to the sphere and frequency is fixed. In addition, note the following

definitions and transformations:

x = R
x

cos� cosµ, y = R
x

sin� cosµ, z = R
x

sinµ,

k = R
k

cos ✓, l = R
k

sin ✓.

This implies

cosµ =

p

x2 + y2

R
x

, tanµ =
z

p

x2 + y2
,

15 The notation k = (k, l) is used for the prototype model instead.

77

and

@� =
@x

@�
@x +

@y

@�
@y +

@z

@�
@z = �y @x + x @y,

@µ =
@x

@µ
@x +

@y

@µ
@y +

@z

@µ
@z =

z
p

x2 + y2
[�x @x � y @y] +

p

x2 + y2 @z,

@✓ =
@k

@✓
@k +

@l

@✓
@l = �l @k + k @l.

Plugging in, a suitable wave action balance equation (on a sphere for fixed frequency) for the new

prototype is obtained:

@tW ± cg
R

x

(

k

R
k

R
x

p

x2 + y2
[�y @x + x @y]

+
l

R
k

"

z
p

x2 + y2
(�x @x � y @y) +

p

x2 + y2 @z

#

� k

R
k

z
p

x2 + y2
[�l @k + k @l]

)

W =

@tW ± cg

R
x

R
k

p

x2 + y2
{(�R

x

yk � xzl) @x + (R
x

xk � yzl) @y

+ l
�

x2 + y2
�

@z + (zkl) @k +
�

�zk2
�

@l

W = Sources. (3.63)

As a simple check to verify that Eq. (3.63) can reproduce earlier great-circle propagation, let z = 0.

Then R
k

= k and

@tW ± cg
p

x2 + y2
{�y @x + x @y}W = Sources. (3.64)

This is equivalent to Eqs. (3.56) and (3.59) for the deep-water group velocity. This can be repeated

for northern and southern propagation only (i.e., y = k = 0) with similar results.

3.3.5 Spatial spherical surface with spectral cylindrical surface formulation (sphere-

cylinder)

In this dissertation, only aquaplanets with constant bathymetry are studied. As such, con-

sideration of the spectral gradient of the wave action is unnecessary and Eq. (3.63) can be used for

continuous frequencies.

78

3.4 Nonsingular wave action balance equation on a sphere

Deriving a nonsingular form of the wave action balance equation on a sphere is a nontrivial

task and there are several main hurdles. The first is the sheer complexity of the problem. Consider

a simplified version of the WKB method employed earlier for the Cartesian and polar solutions.

For some f = f(µ), the method essentially uses a scale substitution µ = µ(µ1, µ2; �) such that f

can be rewritten as

f(µ) = f(µ(µ1, µ2; �)) = [�↵0g0(µ2) + �↵1g1(µ2) + �↵1g2(µ2) + . . .]h(µ1),

where h is entirely described by the fast variable µ1. In Cartesian and polar coordinates, expo-

nentials are used as a solution basis to Laplace’s equation and the fast derivatives of f are easily

calculable. However, in spherical coordinates this no longer the case since the solution basis in-

cludes associated Legendre polynomials, which have mode dependent derivatives that would most

likely need to be calculated numerically for higher mode solutions.

There are spherical harmonic solutions to the Boltzmann transport equation, so it is possible

a solution also exists for the kinematic part of the wave action balance equation. However, and

this is where the second hurdle lies, any asymptotic solution would need to be repeated for each

and every source term! Recent work by Hong et al. (2011) suggest that it is possible to project the

Cartesian form of Eq. 3.22, the general wave action balance equation (with source terms), onto a

sphere and this is worth exploring.

The final hurdle, and perhaps the most serious, is that any projected equation would then be

global – both spatially and spectrally. It is not clear yet if a solution of this type would be practical

or useful, particularly since the solution would probably require a high number of spherical harmonic

modes to resolve the surface gravity waves. In addition, the use of some sort of intermediate spectra,

such as the Wigner-Ville spectrum (Martin and Flandrin, 1985), would probably be necessary. As

a consequence, wave modelers are stuck with the singular wave action balance equation until these

issues can be resolved or a new approach formulated.

Chapter 4

Meshless spectral wave modeling using RBF-generated finite di↵erences

4.1 Introduction

During analysis of SD, WAVEWATCH III was used extensively to generate 1D and 2D

spectral data and it quickly became clear that running a spectral wave model within a coupled

climate model would be computationally expensive. Several alternatives were considered, including

a simplified surface wave model that parametrized the frequency component of the 2D directional-

frequency spectrum (Mellor et al., 2008). However, the model was new and untested and did not

include wave-wave interactions. Instead, a numerical approach was taken to improve accuracy and

speed. Since WAVEWATCH III uses a third-order finite di↵erence scheme, a numerical method

better suited for spherical geometry was selected and work on the new prototype began.

For advective problems on a sphere, traditional finite di↵erence methods (abbreviated FD

hereafter) typically compare poorly in terms of accuracy with other mesh and meshless methods

(e.g., pseudospectral, radial basis functions, finite elements). The traditional FD methods have

higher errors and require much finer grids to achieve comparable accuracy with other gridded

methods such as pseudospectral-Fourier and spherical harmonic (Fornberg and Merrill, 1997). In

addition, application of the FD method in higher dimensions requires a smart stencil selection to

minimize error (Iserles, 2009; Fornberg, 1998a,b). For flow on a sphere,1 the advective direction

can be quite important and errors will be large if care is not taken to avoid using nonlocal values to

calculate derivatives in o↵-axes directions. This is not a problem however for radial basis functions

1 The FD method commonly uses the cylindrical Mercator projection to model flow on a sphere.

80

(abbreviated as RBF hereafter), a meshless method, since they naturally use local information.

Errors are largely independent of direction and only depend on the number of nodes (N) and node

layout used (Fornberg et al., 2010).

For many reasons, RBFs are an attractive alternative. In addition to being well-suited

for advective problems on a sphere, the method is spectrally accurate (Flyer and Wright, 2007)

and requires much fewer unknowns (compared with FDs) to solve problems with smooth solutions.

However, the method is global and requires inversion of an N⇥N matrix to determine interpolation

weights. As a result, the global method does not scale well for full 3D and higher dimensional

problems (Fornberg and Lehto, 2011), such as the wave action balance equation.

The RBF-generated finite di↵erence method (hereafter RBF-FD) is a novel compromise be-

tween the local FD and global RBF methods. Instead of polynomials, RBFs are used to generate

FD stencils that are exact for the linear operator being approximated. These stencils work in

a meshless layout and reduce the size of the matrix needed for inversion (Fornberg and Lehto,

2011; Flyer et al., 2012). However, the method may introduce spurious eigenvalues and render the

problem unstable unless treated. With the introduction of hyperviscosity (Fornberg and Lehto,

2011; Bollig et al., 2012), it is now possible to stabilize the method and solve problems in higher

dimensions.

Here, we will explore the performance of the RBF-FD method on the tangent-plane projection

of the wave action balance equation (see Section 3.3.4). This requires adapting RBF-FD to work

in a coupled spatial-spectral domain. It is hoped that the new method will permit a scaled model

with fewer unknowns but similar accuracy. Since this is a higher dimensional problem, this could

drastically reduce computational costs and allow the model to run at a higher resolution. To the

author’s knowledge, this is the first time a meshless method has been used to model a 3D wave

action balance equation.

81

4.2 Overview of the numerical method

Here a brief overview of the global RBF and local RBF-FD methods are given. For a compre-

hensive review of the methods applied to geophysical problems on a sphere, the reader is referred

to Flyer and Wright (2007) and Flyer et al. (2012). In this chapter, the bold vector notation (↵)

is replaced with the arrow vector notation (~↵) to distinguish from numerical arrays, which are

denoted a = ai and a = aij for column vectors and rectangular matrices respectively (see notation

in preamble). In addition, all vector norms are Euclidian. Unless otherwise specified, the sequence

norm `2 is used to analyze relative error.

4.2.1 Global RBF methodology

The global RBF method linearly combines translates of a single radial basis function to

interpolate the data. Analytical di↵erentiation of the interpolant is then used to find derivatives

at the node locations. Let W = W(~↵, t) be a continuous scalar function for ~↵ 2 Rd. Also let

� = �" : R⇤
+ ! R⇤

+ represent any general RBF for the shape-parameter " 2 R⇤
+. Then for an N

finite set of ~↵i points, W can be decomposed for some fixed time tf as

W(~↵, tf) =
N
X

i=1

wi �(k~↵� ~↵ik) =

�(k~↵� ~↵1k) · · · �(k~↵� ~↵Nk)
�

w. (4.1)

This is the continuous RBF decomposition and with an additional constraint, the weights wi are

uniquely determined by the position and number of points ~↵i (Flyer and Wright, 2007).

For notational simplicity, let �ji = �(k~↵j � ~↵ik) and Wj = W(~↵j , tf) for any sampled ~↵j .

Then if ~↵j and ~↵i belong to the same set, a discrete decomposition can be written as

W =

2

6

6

6

6

6

4

W(~↵1, tf)

...

W(~↵N , tf)

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

�11 · · · �1N
...

. . .
...

�N1 · · · �NN

3

7

7

7

7

7

5

2

6

6

6

6

6

4

w1

...

wN

3

7

7

7

7

7

5

= � w.

Due to properties of RBFs, the interpolation matrix, A = �, is nonsingular and can be inverted to

82

determine the set of interpolation weights w (Bochner et al., 1959; Micchelli, 1986) as

w = A�1W. (4.2)

Now, consider the following linear first-order PDE:

@tW(~↵, t) + LW(~↵, t) = 0. (4.3)

From Eq. (4.3), it follows

LW(~↵, tf) =
N
X

i=1

wi L�(k~↵� ~↵ik) =

L�(k~↵� ~↵1k) · · · L�(k~↵� ~↵Nk)
�

w. (4.4)

In discrete form this can be rewritten as

(LW) =

2

6

6

6

6

6

4

LW(~↵, tf)|~↵=~↵1

...

LW(~↵, tf)|~↵=~↵
N

3

7

7

7

7

7

5

=

2

6

6

6

6

6

4

(L�)11 · · · (L�)1N
...

. . .
...

(L�)N1 · · · (L�)NN

3

7

7

7

7

7

5

2

6

6

6

6

6

4

w1

...

wN

3

7

7

7

7

7

5

= (L�) w,

with (L�)ji = L�(k~↵ � ~↵ik)|~↵=~↵
j

. Let B = (L�). Remembering w = A�1W, the di↵erentiation

matrix can be defined as D = BA�1 and the linear PDE can be solved explicitly as

@tW = �DW. (4.5)

4.2.2 Local RBF-FD methodology

As previously mentioned, RBF-FD is a local method for solving PDEs and is very similar

in implementation to the global RBF method. For each node in the global set ⌦G = {~↵1, . . . ~↵N},

let the subset ⌦s contain n�1 selected neighbors2 to the node ~↵s. Then for each ⌦s, the RBF-FD

method creates a set of FD weights that are exact at ~↵s for the RBF centered at each node in the

subset. To improve accuracy, the n+1 weights are calculated indirectly as
2

6

6

6

6

6

6

6

6

4

�(k~↵1 � ~↵1k) · · · �(k~↵1 � ~↵nk) 1

...
. . .

...
...

�(k~↵n � ~↵1k) · · · �(k~↵n � ~↵nk) 1

1 · · · 1 0

3

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

4

w1

...

wn

wn+1

3

7

7

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

6

6

4

L�(k~↵� ~↵1k)
�

�

~↵=~↵
s

...

L�(k~↵� ~↵nk)
�

�

~↵=~↵
s

L1|~↵=~↵
s

3

7

7

7

7

7

7

7

7

5

,

2 As it will be shown, the neighbors need not be the closest in the Euclidean norm. This is important for coupled
domains where the node densities or group velocities may vary between them.

83

and the last weight is discarded (Fornberg et al., 2013). Let A represent the interpolation matrix

with an extra row and column and bsi = L�(k~↵� ~↵ik)|~↵=~↵
s

. Then the di↵erentiation weights can

be written more compactly as

ws =
�

A�1 bs
�⇤

, (4.6)

where (·)⇤ denotes that the last entry is dropped. Let Ws 2 {W(~↵, tf) | ~↵ 2 ⌦s}. Then the local

solution at each stencil becomes

LW(~↵, tf)|~↵=~↵
s

=

Ws(~↵1, tf) . . . Ws(~↵n, tf)

�

ws = wsTWs. (4.7)

For e�ciency, the locally computed weights are combined into one di↵erentiation matrix ⇤ with

Eq. (4.6) forming one row of the matrix for each ~↵s. The approximated linear di↵erential operator

becomes

(LW) ⇡ ⇤W. (4.8)

And finally to stabilize the RBF-FD method, a hyperviscosity filter of the form H = ��p is applied

to the linear di↵erential operator as

@tW = �⇤W +HW. (4.9)

For full details on hyperviscosity, see Fornberg and Lehto (2011), Flyer et al. (2012), and Bollig

et al. (2012).

4.3 Problem formulation

To explore performance of the meshless spectral wave model, simplified versions of the wave

action balance equation are solved numerically on several di↵erent geometries. The key goals

here are twofold. The first is to measure and compare the meshless model’s performance on the

kinematic part of the wave action balance equation (i.e., no source terms). This largely involves

studying the spatial and directional evolution of wave action, W = Sf✓/�, on a sphere. A study

of frequency evolution will be postponed until the future since it is influenced by a conjunction of

84

source terms and bathymetry. The second main goal here is to test the suitability of the RBF-FD

method applied to both a non-radially-symmetric and higher-dimensional geometry. Care is needed

to generate a stencil in the coupled spatial-spectral domain and ensure that it is not too large to

implement.

In this section, the wave action balance equations formulated for the ring-point, ring-line, and

sphere-ring geometries in Section 3.3 are discretized for implementation. In addition, the method

of stencil selection and treatment of boundary conditions are discussed. For simplification, all test

cases are conducted on aquaplanets3 without background currents.

4.3.1 RBF-FD linear operator discretization

To simplify later calculations, the RBF-FD linear operator is discretized here generically.

Following Flyer et al. (2012), Gaussian RBFs are used for all RBF-FD calculations; the RBF is

defined as

�(k~↵� ~↵ik) = exp
h

�"2 k~↵� ~↵ik2
i

, (4.10)

where " 2 R⇤
+ is the shape parameter. For ~↵ = (↵1, . . . ,↵d), the ↵�-th partial derivative can be

generalized as

@↵� k~↵� ~↵ik = @↵�

�

↵1 � ↵1
i

�2
+ . . .

⇣

↵d � ↵d
i

⌘2
�1/2

=
(↵� � ↵�

i)

k~↵� ~↵ik
,

@↵��(k~↵� ~↵ik) = �2"2 (↵� � ↵�
i)�(k~↵� ~↵ik) .

Let L = @↵� . Then the transpose of bs from Eq. (4.6) can be written as

bsT =

@↵��(k~↵� ~↵1k)|~↵=~↵
s

. . . @↵��(k~↵� ~↵nk)|~↵=~↵
s

0

�

= �2"2

(↵�
s � ↵�

1)�s1 · · · (↵�
s � ↵�

n)�sn 0

�

.

This implies

wsT =
⇣

�

A�1 bs
�⇤
⌘T

=

✓

�2"2

(↵�
s � ↵�

1)�s1 · · · (↵�
s � ↵�

n)�sn 0

�

A�1

◆⇤
, (4.11)

3 This includes the use of ice caps which stabilize the singular equations.

85

and the local di↵erential operator for each stencil becomes

@↵�W(~↵, tf)|~↵=~↵
s

= (@↵�W)s = wsTWs. (4.12)

4.3.2 Equation discretizations

To illustrate concretely what role the coupled domains may or may not play in the test cases,

the wave action balance equations are discretized here for reference.4 To simplify, the extra entries

(that were added to reduce the condition number of matrix A) are implied in the single underline

notation.

4.3.2.1 Ring-line discretization

Let ~↵ = (~x, k) = (x, y, k) with k~xk = 1 and k 2 R. In addition, for an unspecified radius

R, assume deep-water conditions with cg(k) =
1
2

p

g/k. Then from Eq. (3.60), the discretized wave

action balance equation for the ring-line geometry is given by

(@tW)s = ⌥cg(ks)

R

⇥

�ys (@xW)s + xs (@yW)s
⇤

= ±2"2cg(ks)

R

⇢

h

�ys (xs � xi)�si + xs (ys � yi)�si
iT

A�1

�⇤
Ws

= ±2"2cg(ks)

R

⇢

h

(ysxi � xsyi)�si
iT

A�1

�⇤
Ws. (4.13)

4.3.2.2 Sphere-ring discretization

Assume deep-water conditions and let ~↵ =
�

~x,~k
�

= (x, y, z, k, l), R be the radius of Earth,

and kc be the fixed wavevector magnitude. In addition, the spatial and spectral coordinates are

rescaled by 1/R and 1/kc respectively such that k~xk = 1,
�

�

~k
�

� = 1, and cg
⇣

�

�

~k
�

�

⌘

= cg(kc) =
1
2R

q

g
k
c

.

Then from Eq. (3.63), the discretized wave action balance equation for the sphere-ring geometry is

4 The ring-point discretization was not included since it is a subset of the ring-line geometry.

86

given by

(@tW)s = ⌥ cg(kc)
p

x2s + y2s

h

(�ysks � xszsls)(@xW)s + (xsks � yszsls)(@yW)s

+ ls
�

x2s + y2s
�

(@zW)s + zsksls(@kW)s � zsk
2
s(@lW)s

i

= ± 2"2cg(kc)
p

x2s + y2s

⇢

h

(�ysks � xszsls) (xs � xj)�sj

+ (xsks � yszsls) (ys � yj)�sj + ls
�

x2s + y2s
�

(zs � zj)�sj

+ (zsksls) (ks � kj)�sj �
�

zsk
2
s

�

(ls � lj)�sj
iT

A�1

�⇤
Ws

= ± 2"2cg(kc)
p

x2s + y2s

⇢

h

(ysks + xszsls)xj�sj � (xsks � yszsls) yj�sj

�
�

x2s + y2s
�

lszj�sj � zskslskj�sj + zsk
2
s lj�sj

iT
A�1

�⇤
Ws. (4.14)

4.3.3 Node stencil construction for the sphere-ring geometry

Generation of the RBF-FD stencils plays a large role in the design of the meshless wave

model for the sphere-ring geometry. Since the spatial and spectral domains are coupled, care is

needed to ensure that evolution of wave action is appropriately resolved in each. Here, the method

in Flyer et al. (2012) (i.e., stencil construction for advection on a sphere) is adapted to account for

directional evolution of wave action.

In general, RBF-FD stencils are constructed as follows. For each node in a global set ⌦G,

a subset ⌦s of n�1 neighbors are selected for node ~↵s. Then for each ⌦s, a unique stencil (a set

of FD weights) is calculated beforehand that is exact at ~↵s for each RBF centered at ~↵ 2 ⌦s. In

practice, the largest di↵erentiation weights (absolute value) are at nodes closest to ~↵s. See Fig. 4.1

for a sample distribution of weights on a sphere.

The nodes in ⌦s do not necessarily need to be the nearest neighbors of ↵s however. This is

particularly true for problems with inherently di↵erent length scales in a single or coupled domain.

In the meshless wave model, several di↵erent types of node selection criteria were tested, ranging

from simple (all spectral nodes included) to sophisticated (use of the Mahalanobis distance).5 The

5 The norm is weighted to take into account skewness or anisotropy.

87

best approach tested was a separate selection process that first selected the spatial locations and

then selected nodes based on the desired spectral directions. This guaranteed a consistent number

of nodes in each domain and allowed separate tuning to control error convergence rates as needed.

An outline of the stencil construction is as follows. First, global nodes are generated separately

for each domain. Maximum determinant (MD) nodes (Sloan and Womersley, 2004) are used for

the surface of the sphere while the spectral ring is discretized uniformly. Second, a combined global

node set of size N~↵ = N~x ⇥ N~k
is formed. Third, the nearest n~x � 1 spatial locations are chosen

for each stencil using the k-D tree package in Matlab (Shechter, 2004). Fourth, the radially nearest

n~k � 1 neighbors in the spectral domain are selected. Fifth, the di↵erential weights for a stencil of

size n~↵ = n~x ⇥ n~k are then calculated. And finally, individual stencils are collected (as they are

generated) to form a sparse N~↵⇥N~↵ di↵erentiation matrix. It should be noted that the model can

be tuned by altering the sizes n~x and n~k while holding n~↵ constant.

4.3.4 Boundary attenuation for the sphere-ring geometry

The tangent-plane projection of the wave action balance equation (Eq. 3.63) requires polar

caps to prevent evolution of wave action near the singular regions. This is achieved here by atten-

uating the wave action inside a specified region at each time step. To minimize reflection at the

boundary, a smooth transition is used between the unattenuated and attenuated regions.

Since the singularity is due to a tangent-plane projection, it is natural to use geophysical

coordinates to define the attenuation. Let (�, µ, r) represent ~x with longitude � 2 (�⇡,⇡] and

latitude µ 2 [�⇡/2,⇡/2]. The boundary attenuation filter is applied globally after every time step

and is defined generically as

A(µ) =

8

>

<

>

:

1� 4
3B(µ), B(µ) 3

4

0, otherwise.
(4.15)

for B 2 [0, 1]. The 4/3 factor is arbitrarily chosen to ensure that a minimum number of nodes near

the poles are fully attenuated. Here a Gaussian bell with approximate diameter d is used to define

88

Figure 4.1: (a) Sample minimal energy node distribution (b) overlaid with RBF-FD di↵erentiation weights for a

selected node (boxed). The scaled blue and red solid circles correspond to negative and positive values respectively

and the green circles represent zero entries in the di↵erentiation matrix. Image is reproduced from Flyer et al. (2012).

Figure 4.2: A boundary attenuation filter is used to prevent evolution of wave action near the singular poles. The

ice lines are approximately at ±75�. See Eq. (4.15) for details.

89

B as6

B(µ) = exp

"

�
⇢

9

2d

h

µ� sgn⇤(µ)
⇡

2

i

�2
#

, µ 2 [�⇡/2,⇡/2], (4.16)

but any su�ciently smooth curve would su�ce. A standard value of d = ⇡/6 (i.e., ±75� ice line) is

used in most tests here. See Fig. 4.2 for an illustration.

4.4 Numerical test case studies

Several di↵erent numerical test cases are studied here. The first is a toy problem designed

to see how a meshless method might perform on the wave action balance equation and uses RBFs

on the ring-line geometry. All test cases afterwards use the RBF-FD method. The second and

third cases are primarily performed to guide stencil selection for the meshless wave model. A brief

fourth case examines boundary attenuation. The fifth case analyzes model performance for a simple

initial condition and a comparison is made with WAVEWATCH III in the final case. Compared to

previously mentioned studies, the stencil and global node set sizes are relatively small here and is

necessitated by the use of the coupled domain in the sphere-ring geometry.

4.4.1 Case 1: Toy problem

An initial test using RBFs was conducted to test the viability of a meshless wave model.

Eq. (4.13) was tested using a sparse 40~x ⇥ 20k node set (800 unknowns) in the ring-line geometry.

The nodes were staggered in the spectral domain both uniformly and logarithmically to account

for di↵erent group velocities. Interpolated solutions were generated using 100~x⇥100k Halton nodes

to test the practicality of generating output at various resolutions for model coupling (which did

not pose any problems). Sample interpolated solutions and error are displayed in Figs. 4.3 and

4.4. As expected, the solution appears to be uncoupled with little evidence of numerical dispersion

between the spatial and spectral domains.

6 The sign function is defined slightly di↵erent here: sgn⇤(0) = 1.

90

Figure 4.3: Sparse solution and error using 40
~x

⇥20
k

nodes with a staggered layout in k for logarithmically increasing

�k after (a) 1 time step and (b) 1/2 revolution of the fastest wave. The interpolated solution uses 100
~x

⇥100
k

Halton

nodes.

91

Figure 4.4: Sparse interpolated solution and error using 40
~x

⇥ 20
k

nodes with a staggered layout in k for fixed �k

after (a) 1 time step and (b) 1/2 revolution of the fastest wave. Interpolated solution uses 100
~x

⇥ 100
k

Halton nodes.

92

4.4.2 Case 2: Spectral stencil selection

In the second case, Eq. (4.13) with a constant wavenumber kc is used to test simple propa-

gation in the ring-point geometry. Results from these tests are later used to guide spectral node

selection in the sphere-ring geometry and tuning of the model. For convenience, ✓ = arctan2[y, x]

is used for discussion instead of ~x.

Three di↵erent initial conditions are tested here with varying degrees of smoothness (two in

C1 and one in C1) and are displayed in the first column of Fig. 4.5. In each, the diameter (or

approximate) of the humps is set by d2 = ⇡/2.

• Cosine squared: W0(✓) = cos2[⇡✓/d].

• Gaussian bell: W0(✓) = exp
h

� (9✓/2d)2
i

.

• Cosine bell: W0(✓) = cos2[⇡✓/d] for |✓| < d/2; 0 otherwise.

The latter two are standard initial conditions for advection on sphere (Flyer and Wright, 2007;

Fornberg and Piret, 2008). The Gaussian bell is of most interest here since empirically-derived

frequency spectra use exponential functions to fit observational data (see Webb and Fox-Kemper,

2011) and the model is designed to exploit these smooth expected solutions. For each initial

condition, optimal values are explored for the time step and shape parameter and node refinement

convergence rates are calculated for spectral stencil sizes n✓ = {3, 5, 7, 9, 11}.

In the second column of Fig. 4.5, the relative `2 errors (normalized by the `2 norm of the

analytic solution) are calculated for di↵erent time step sizes after 1/4 revolution. In all three

comparisons, " = 2 and N✓ = 60 are used. In addition, the time step is normalized by the

propagation speed around the unit circle such that �t = a�✓/cg = a 2⇡/N✓cg. In Fig. 4.5d, the

smooth Gaussian bell exhibits typical behavior. As �t is reduced, the relative error is reduced

until the stencil error dominates. This behavior is not as evident in Fig. 4.5b since the stencil

error dominates (mostly) for the larger time steps as well. In Fig. 4.5f, the relative error from

approximating the C1 function likely dominates and is mostly invariant to changes in �t.

93

Figure 4.5: Initial conditions (first column) for the ring-point 1D periodic tests with relative time step

error after 1/4 a revolution for N
✓

= 60 (second column): (a) cosine squared, W0(✓) = (cos 2✓)2; (c) Gaussian bell,

W0(✓) = exp[�(9✓/⇡)2]; (e) cosine bell, W0(✓) = (cos 2✓)2 for |✓| < ⇡/4 and 0 otherwise. The time step is normalized

by the propagation speed in (b), (d), and (f).

94

For each stencil size in each initial condition, the shape parameter is varied for di↵erent global

node sizes in Figs. 4.6a–e, 4.7a–e, and 4.8a–e. The dashed and solid lines indicate the relative `2

error after 1 time step and a 1/4 revolution respectively. In Figs. 4.6f, 4.7f, and 4.8f, the global

node refinement convergence rates are also displayed for N✓ 2 [24, 90] and " = 2. In all three initial

conditions, the ratio a = 0.2 is used to delineate errors from the choice of �t. It should be noted

that the error and convergence rates are highly dependent on the width d and these results are not

meant to be definitive but merely an intuitive guide for later tuning of the wave model.

In Figs. 4.7a–e, the behaviors of the di↵erent stencil sizes are similar; this is true not only

for d2 (displayed) but other values as well. In addition, a shape parameter of " = 2 seems to be

ideal for the spectral ring in the meshless wave model. Furthermore, the convergence rates exhibit

the same properties of spectrally-accurate RBFs for this initial condition; as N✓ is increased, the

convergence rates also increase. Here the rates are approximately 3rd, 7th, 11th, 13th and 15th

order for the di↵erent stencil sizes.

In Figs. 4.6a–e, the behavior is more complicated but still similar in all. There is a large

accuracy gain in moving from n✓ = 3 to n✓ = 5 and n✓ = 5 to n✓ = 7. This is also evident in the

convergence rates in Fig. 4.6f. The rates of the first four are approximately 4th, 7th, 16th, and 14th

order. For smaller values of d, Fig. 4.6f resembles Fig. 4.7f. Like Figs. 4.7a–e, the behavior of the

di↵erent stencil sizes in Figs. 4.8a–e are also similar for d2 and other values. Since the cosine bell is

not continuously di↵erentiable, the convergence rates are all approximately the same (as expected)

at 4th order for d2.

4.4.3 Case 3: Spatial stencil selection

In the third case, Eq. (4.14) is used to test propagation along the equator in the sphere-ring

geometry. Recall ~↵ =
�

~x,~k
�

with ~k = (k, l) and
�

�

~k
�

� = kc. For ~k0 = (±kc, 0) and an initial condition

W0(~↵0) 6= 0, propagation along the equator is largely invariant to the spectral discretization. As a

result, this is an ideal case to test spatial stencil selection and guide later model tuning.

Here, modified Gaussian and cosine bells from the previous numerical test case are used for

95

Figure 4.6: Ring-point test with initial condition W0(✓) = (cos 2✓)2. In (a)–(e), the relative `2 error after 1 time

step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter for di↵erent spatial nodes. A value of

a = 0.2 from Fig. 4.5b was used to determine the time step in each. In (f), the relative `2 error after 1/4 revolution

is plotted versus N
x

for di↵erent stencil sizes.

96

Figure 4.7: Ring-point test with initial condition W0(✓) = exp[�(9✓/⇡)2] (Gaussian bell). In (a)–(e), the relative

`2 error after 1 time step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter for di↵erent

spatial nodes. A value of a = 0.2 from Fig. 4.5d was used to determine the time step in each. In (f), the relative `2

error after 1/4 revolution is plotted versus N
x

for di↵erent stencil sizes.

97

Figure 4.8: Ring-point test with initial condition W0(✓) = (cos 2✓)2 for |✓| < ⇡/4 and 0 otherwise (cosine

bell). In (a)–(e), the relative `2 error after 1 time step (dashed) and 1/4 revolution (solid) are plotted versus shape

parameter for di↵erent spatial nodes. A value of a = 0.2 from Fig. 4.5f was used to determine the time step in each.

In (f), the relative `2 error after 1/4 revolution is plotted versus N
x

for di↵erent stencil sizes.

98

initial conditions (Flyer and Wright, 2007). For convenience, geophysical spherical coordinates7 are

used here to define the following initial radially-symmetric coordinate centered at longitude �0 and

latitude µ0:

⇠(�, µ;�0, µ0) = arccos[sin(µ0) sin(µ) + cos(µ0) cos(µ) cos (�� �0)] .

As previously, d specifies the initial bell diameter (or approximate) and is set here as d3 = ⇡/3.

• Gaussian bell: W0(⇠) = exp
h

� (9⇠/2d)2
i

.

• Cosine bell: W0(⇠) = cos2[⇡⇠/d] for |⇠| < d/2; 0 otherwise.

Sample initial conditions are displayed in Figs. 4.9a and 4.10a with the propagation path, bell

edge, and ice lines marked in red, blue and black respectively. Similar tests are performed as in

the last numerical test case for the following commonly used spatial stencil sizes: n~x = {17, 31, 50}.

Other stencil sizes were tested but the former performed best in this problem and did not need

hyperviscosity for stability.

In Figs. 4.9b and 4.10b, the relative `2 errors are calculated for di↵erent time step sizes after

a 1/4 revolution with " = 3 and N~x = 3600. The time step is normalized by the propagation speed

along the great circle path such that �t = a�~x/cg ⇡ a 2⇡/cg
p
N~x. In Fig. 4.9b, the Gaussian bell

initial condition again exhibits typical behavior for a / 0.7. The model is not expected to perform

well for a > 0.5 and it is no surprise that relative errors are large for ratios across this threshold.

In Fig. 4.10b, the cosine bell initial condition is largely invariant to time step size changes and this

is also not surprising. Here, the n~x = 50 stencil has a relative error comparable with n~x = 17 and

this is caused by the non-optimal shape parameter (for n~x = 50) used for the comparison.

For each stencil size in each initial condition, the shape parameter is varied again for di↵erent

global node sizes in Figs. 4.9c–e and 4.10c–e. The dashed and solid lines indicate the relative `2

error after 1 time step and a 1/4 revolution respectively. In Figs. 4.9f and 4.10f, the global node

refinement convergence rates are also displayed for N~x 2 [1225, 4900] and " = 3. In all comparisons,

the ratio a = 0.2 is used again to separate errors from the choice of �t.

99

Figure 4.9: Sphere-ring test along the equator with a Gaussian bell initial condition, W0(⇠) = exp[�(27⇠/2⇡)2].

In (a), sample node layout with the test path (red), (approximate) initial bell edge (blue), and ice cap edges

(black) are marked. Actual tests used a larger Gaussian bell and smaller ice caps than displayed. In (b), relative

errors (`2) after 1/4 revolution are plotted versus a relative time step for N
x

= 3600 and di↵erent stencil sizes. In

(c)–(e), relative errors (`2) after 1 time step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter

for di↵erent N
~x

with a = 0.2. And in (f), the spatial node convergence rates are plotted for di↵erent stencils

sizes.

100

Figure 4.10: Sphere-ring test along the equator with a cosine bell initial condition, W0(⇠) = (cos 3⇠)2 for |⇠ < ⇡/6

and 0 otherwise. In (a), sample node layout with the test path (red), initial bell edge (blue), and ice cap edges

(black) are marked. Actual tests used a larger Gaussian bell and smaller ice caps than displayed. In (b), relative

errors (`2) after 1/4 revolution are plotted versus a relative time step for N
x

= 3600 and di↵erent stencil sizes. In

(c)–(e), relative errors (`2) after 1 time step (dashed) and 1/4 revolution (solid) are plotted versus shape parameter

for di↵erent N
~x

with a = 0.2. And in (f), the spatial node convergence rates are plotted for di↵erent stencils

sizes.

101

The choice of " = 3 used in both the time step and node refinement comparisons is based on

results from Figs. 4.9c–e. In Figs. 4.10c–e, there does not appear to be an optimal " for all three

stencils examined. Moreover, the relative errors are similar between the di↵erent stencils with no

clear order of convergence. However in Figs. 4.9c–e, the relative error di↵erences are evident with

approximately 3rd, 5th, and 6th order convergence rates.

4.4.4 Case 4: Boundary attenuation

In the fourth case, the boundary attenuation filter (Section 4.3.4) is briefly tested to ensure

that wave action is properly attenuated before reaching the pole singularity in wavenumber space

(notice there are no pole singularities in physical space). Here, Eq. (4.14) is used to track wave

action with an initial condition W0(~↵0) 6= 0 and ~k0 = (0,±kc) as it traverses through the boundary

region. Similar to Case 3, propagation along a strictly northern or southern path is largely invariant

to spectral discretization. As such, a 50~x ⇥ 2k stencil is used here with 4000~x ⇥ 4k global nodes

(16,000 unknowns) and a ±70� ice line. Moreover, the C1 cosine bell with width d4 = ⇡/6 is used

as an initial condition to ensure the test is stringent (see Section 4.4.3).

Snapshots of the wave action (with direction ~k = (0, kc)) along the great circle path and

its associated error are shown for select time steps in the first and second columns respectively of

Fig. 4.11. To generate the images and calculate the error along the great circle path, the solution is

interpolated to a new grid using 10,000 Halton nodes. In addition, the beginning of the boundary

attenuation and the analytic solution are displayed in solid gray lines and curves for reference.

The first and last rows show the gridded wave action (and the associated error) before and after

(approximately) the wave action is attenuated with steps in between.

The test presented is meant to be illustrative and not comprehensive. Rigorous testing is still

needed to ensure that wave action never reaches the singular poles and that reflection is minimal

near the boundaries. So far neither are shown to be a problem during general use of the model.

7 See Sec. 4.3.4 for definition.

102

Figure 4.11: The Boundary attenuation filter is tested to ensure that wave action is properly attenuated before

reaching the singular pole. Here (a) the wave action and (b) corresponding error are shown at di↵erent time steps

along a great circle path. The ice line (or edge of the attenuation filter) is situated at ±70� and a cosine bell centered

at (� = 0, µ = 0) with width d4 = ⇡/6 and direction ~k = (0, k
c

) is used for the initial condition. The solution is

generated using a 4000
~x

⇥ 4
k

global node set with a 50
~x

⇥ 2
k

stencil. The displayed solution is interpolated to a

new grid using 10, 000 Halton nodes. In addition, the ice line and analytical solution are displayed in solid gray for

reference.

103

4.4.5 Case 5: Evolution in the coupled domains

In the fifth numerical test case, spatial and directional evolution of wave action is tested

in the meshless wave model8 using several di↵erent initial conditions and model parameters. To

simplify discussions, ✓ = arctan2(k, l) is used to describe the direction of wave action propagation.

Moreover, spatial initial conditions are held fixed for all tests while the spectral initial conditions are

varied to simplify testing of evolution in the coupled domains. Furthermore, directional spreading is

added to the spectral initial conditions to mimic natural conditions (see Section 2.5), add stability,

and improve convergence rates.

Here a Gaussian bell centered at (�0 = 0, µ0 = 0) and width d5 = ⇡/3 is used for the spatial

initial conditions (see Section 4.4.3). For simplicity, the same Gaussian bell curve is used for the

directional distribution with ⌅(✓, ✓0) = ⇠(✓, 0; ✓0, 0) and in general, the initial dominant direction

satisfies ✓0 6= m⇡/2 for m 2 Z. The primary model parameters used for all tests are itemized below.

• Global node size: 129,600~↵ = 3600~x ⇥ 36~k

• RBF-FD stencil size: 153~↵ = 17~x ⇥ 9~k

• Shape parameter: ✏ = 3

• Hyperviscosity type: �4

• Hyperviscosity coe�cient: � = �3.55⇥ 10�13

• Directional spread: ddir = ⇡/3

• Ice line: dice = ⇡/6 (i.e., ±75�)

• Time step ratio: a = 0.2

8 The meshless wave model refers to use of Eq. (4.14) in the sphere-ring geometry.

104

4.4.5.1 Coupled spatial-spectral evolution

In the absence of source terms, the transport of wave action in Eq. (3.63) will follow a

great circle path if the bathymetry is constant. This path can be determined analytically for any

given initial ~x0 and ✓0 and compared with the model. However the direction of the wave action

is not constant and will follow a sinusoidal pattern as it traverses the great circle path. Here,

the directional component of wave action is analyzed as it propagates. To remove the need for

interpolation, values are examined only at the directional nodes (multiples of ⇡/18 here).

In Figs. 4.12 through 4.15, snapshots of the wave action are displayed for select directions

over the entire spatial domain. In each figure, the left column (front) and right column (back) are

centered about (1, 0, 0) and (�1, 0, 0) respectively. In Fig. 4.12, the initial conditions are shown.

The initial wave action is distributed in a Gaussian bell with a ⇡/3 width and a dominant initial

direction of 3⇡/18. In Fig. 4.13, the wave action is shown after a 1/6 revolution. The new dominant

direction is 2⇡/18 and already, most of the wave action previously located at 4⇡/18 is now at other

locations. The same is evident in Fig. 4.14 as well with a new dominant direction of �2⇡/18.

And finally in Fig. 4.15, the dominant direction is �3⇡/18 after a 1/2 revolution. Notice that

W(↵, t1/2) = W(�↵, t0).

4.4.5.2 Initial direction error comparison

As a followup, the spatial-spectral evolution error is analyzed for several di↵erent initial

directions and presented in Fig. 4.16. Here the total directional `2 errors after 1/2 revolution

are calculated at each spatial location and then normalized by the analytic solution (by the same

method). This is a di�cult task for FD models to calculate accurately and we can see that the

meshless model does well with errors ranging from 2⇥ 10�4 to 2⇥ 10�2. To test initial directions

closer to ⇡/2, either a smaller initial bell width is needed – otherwise part of the wave action will

pass through the boundary region and will be attenuated – or the error along a particular track

needs to be analyzed instead.

105

Figure 4.12: The wave action is displayed for select directions at time = 0�t. The model uses a 3600
~x

⇥36
k

global

node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a Gaussian bell with width

⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3.

106

Figure 4.13: The wave action is displayed for select directions at time = 50�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a Gaussian bell with

width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3.

107

Figure 4.14: The wave action is displayed for select directions at time = 100�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a Gaussian bell with

width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3.

108

Figure 4.15: The wave action is displayed for select directions at time = 150�t. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial condition is a Gaussian bell with

width ⇡/3, direction 3⇡/18 (30�), and directional spread ⇡/3.

109

Figure 4.16: The total directional relative `2 errors after 1/2 revolution are displayed for select initial directions.

The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil and a time step ratio a = 0.2. The initial

condition is a Gaussian bell with width ⇡/3 and directional spread ⇡/3.

110

4.4.5.3 Model parameter error comparison

Several parameter and design decisions are based on both presented and omitted test cases

(e.g., hyperviscosity). A brief comparison is made here of several of those to explore their e↵ects on

the model. In Fig. 4.17, the total directional relative `2 errors after 1/2 revolution are displayed for

several di↵erent model settings and initial directions. The primary settings are in the first column.

In Figs. 4.17a and 4.17b, a comparison is made between di↵erent orders of hyperviscosity.

In the model, hyperviscosity is particularly important since it helps stabilize propagation near the

singular poles. As such, an initial direction of 6⇡/18 is chosen here for comparison. While it is

not significant, the higher Laplacian order does reduce error for this initial condition. In addition,

overall damping is less noticeable for the filter to be e↵ective.

For Figs. 4.17c–f, an initial direction of ⇡/6 is used. In Figs. 4.17c and 4.17d, a comparison

is made between di↵erent shape parameters. From previously, Cases 2 and 3 suggest " = 2 and

" = 3 are both ideal for the spectral and spatial stencils respectively. However, the relative errors

between the two values vary by a factor more than 3. More testing is still needed to determine if

" = 3 is also suitable for di↵erent initial conditions.

In the final Figs. 4.17e and 4.17f, a comparison is made between di↵erent time step ratios. In

all previous test cases presented, a ratio of a = 0.2 is su�cient to minimize time stepping errors for

larger stencils and this appears to hold for the meshless wave model. However, the relative error

quickly grows for a 0.25. This di↵ers from previously (a / 0.7) and needs to be explored further.

4.4.5.4 Global node and stencil comparison

In this model, the higher-ordered coupled stencils and node sets can be quite large and it is

important to balance accuracy and size to avoid inverting and storing large matrices. Here, several

di↵erent node set and stencil combinations are compared for this purpose. The total directional

relative `2 errors after 1/2 revolution are displayed in Fig. 4.18 for ✓0 = 3⇡/18. Many comparisons

are possible here and a few have been selected to illustrate two main points.

111

Figure 4.17: The total directional relative `2 errors after 1/2 revolution are displayed for select model settings.

The default settings are in the first column. The model uses a 3600
~x

⇥ 36
k

global node set with a 17
~x

⇥ 9
k

stencil.

The initial condition is a Gaussian bell with width ⇡/3, and directional spread ⇡/3. The initial direction is 6⇡/18 in

(a) and (b) and 3⇡/18 in (c) through (f).

112

The first is that there are global node size stability and accuracy thresholds in the RBF-

FD wave model. While not shown, a spatial resolution of approximately 7.2� or 2500~x nodes is

necessary for stability and will limit future spectral resolution in a sphere-cylinder geometry model.

For accuracy, there appears to be a directional threshold of N~k
= 36 or a 10� resolution. This is

evident in Figs. 4.18a and 4.18c or Figs. 4.18b and 4.17c, where the relative errors are more than

15 and 25 times greater respectively for a larger directional resolution. In addition, Figs. 4.18b and

4.18f show that these errors are not resolved by moving from an approximate 6� spatial resolution

to a higher spatial 5.1� one (i.e. 3600~x ⇥ 24~k to 4900~x ⇥ 24~k). On the contrary, Figs. 4.18b and

4.18e show that moving to a lower 7.2� spatial but higher 10� spectral resolution (i.e. 3600~x ⇥ 24~k

to 2500~x ⇥ 36~k) does close the error gap with di↵erences only 1.5 times greater.

The second key point is that a relatively higher-order stencil is needed to accurately resolve

directional versus spatial evolution. A comparison here with Figs. 4.17c, 4.18c, and 4.18d demon-

strate that the combined stencils 17~x ⇥ 7~k or 17~x ⇥ 9~k have lower relative errors than 31~x ⇥ 5~k by

approximately 1/3 and 1/5 respectively. For similar initial conditions in Cases 2 (not shown) and

3, the convergence rates of the directional stencils n~k = 7 and n~x = 9 are approximately 8th and

10th order respectively while the spatial stencil n~x = 17 is 3rd order. Results from these subfigures

and other tests indicate that the 17~x⇥7~k or 17~x⇥9~k stencils are adequate for use in the sphere-ring

RBF-FD wave model.

4.4.6 Case 6: Comparison with WAVEWATCH III

In the final numerical test case, a comparison with WAVEWATCH III is made to quantify the

RBF-FD model’s performance. For the RBF-FD model, a spatially coarser 2500~x⇥36~k global node

set (90,000 unknowns) with a 17~x⇥9~k stencil is used with the same shape parameter, hyperviscosity,

ice lines, and time-step ratio as in Case 5 (Section 4.4.5). Within WAVEWATCH III, two di↵erent

resolutions are used for the comparison: the standard 1�⇥1.25� (N
x

=4320) global latitude-longitude

grid and the coarsened 3.2�⇥4� (N
x

=44, 064) climate grid used in the coupled wave component. The

number of spatial WAVEWATCH III grid cells are di↵erent here since comparisons are conducted on

113

Figure 4.18: The total directional relative `2 errors after 1/2 revolution are displayed for select global node and

stencil sizes. The model uses a time step ratio a = 0.2 and a Gaussian bell initial condition with width ⇡/3,

direction 3⇡/18 (30�), and directional spread ⇡/3.

114

an aqua planet with the same ice lines as the RBF-FD model. In addition, the number of directional

bins in WAVEWATCH III have been increased from 24 to 36 to compare similar directional-

frequency resolutions.

To simplify testing, optional WAVEWATCH III initial conditions are modified to resemble

previous tests as closely as possible.9 A Gaussian bell centered at (�0 = 0, µ0 = 0) and width

d6 = 0.31797⇡ is used for the spatial initial conditions (see Section 4.4.3). To create a spectrum

with a single frequency, a sharply peaked Gaussian about fp = 0.099 Hz is used with a cosine power

directional spread defined as

Sf✓(f, ✓; ⇠, t0) =

8

>

<

>

:

A(⇠, t0) �(f � fp) cos20[✓ � ✓0] , |✓ � ✓0| ⇡/2

0, otherwise.
(4.17)

Here, a high 20 cosine power is used approximate a spectral directional bell of width d = 64⇡/180.

In addition, the spectrum is normalized such that the maximum significant wave height, Hm0, at

the center of the spatial Gaussian bell is 2.5 m. From Section 2.4.2, this implies the zeroth-moment

satisfies

m0 =

Z 1

0

Z ⇡

�⇡
Sf✓(f, ✓; ⇠=0, t0) d✓ df =

✓

Hm0

4

◆2

=
25

64
. (4.18)

And finally as in the previous subsection, an initial dominant direction ✓0 = ⇡/3 is chosen for the

comparisons.

In Fig. 4.19, the relative `2 errors after 1/2 revolution for the new dominant direction

✓ = �⇡/3 are computed and displayed for each spatial location in both models. The exact and

numerical wave action solutions are displayed in the first and second columns respectively and are

not interpolated for clarity. For both WAVEWATCH III resolutions (first and second rows), there

is extensive di↵usion and skewing after 1/2 revolution. In the RBF-FD model (third row), neither

are present and there are little visible di↵erences from the exact and numerical solutions aside from

trace amounts of wave action west of the final packet.

9 In WAVEWATCH III, the following settings are used in ww3 strt (initial conditions program): ITYPE=1 with
0.099 0.0005 240. 20. 0. 9. 0. 9. 2.5 (Tolman, 2009).

115

Figure 4.19: Exact (first column) and numerical (second column) wave action for dominant direction ✓ = �⇡/6

after 1/2 revolution. Both WAVEWATCH III (first and second rows) and the RBF-FD model (third row) are

initialized with a spatial Gaussian bell with width 0.31797⇡ and a cosine-20-power directional spread (⇡ 64⇡/180). In

addition, the initial wave action are scaled such that the maximum significant wave height is 2.5m. Spatial resolutions

are indicated in subfigures.

116

In Fig. 4.20, the relative `2 errors after 1/2 revolution for each directional component are

summed and displayed for each spatial location in both models. Since initial conditions are slightly

di↵erent here, error for an RBF-FD model with a 3600~x⇥36~k global node set and 17~x⇥9~k stencil is

also displayed for comparison with previous tests. In WAVEWATCH III (first row), the maximum

relative errors for the 3.2�⇥4� (N
x

=4320) and 1�⇥1.25� (N
x

=44, 064) resolutions are 3.9726⇥10�1

and 2.1021 ⇥ 10�1 respectively. Likewise in the RBF-FD model, the maximum relative errors

for N
x

=2500 and N
x

=3600 are 3.0778 ⇥ 10�3 and 1.8921 ⇥ 10�3 respectively. Here in this test

case, the spatially coarser RBF-FD model is approximately 130 to 70 times more accurate than

WAVEWATCH III. In addition, the number of unknowns is reduced by a factor more than 17 in

the highest resolution WAVEWATCH III run. For N
x

=3600, the RBF-FD model is approximately

210 to 110 times more accurate and reduces the number of unknowns by more than a factor of 12

in the highest resolution run. Comparing results with previous tests, we see that errors are similar

for these initial conditions.

117

Figure 4.20: The total directional relative `2 errors after 1/2 revolution are displayed for WAVEWATCH III

(first row) and the RBF-FD model (second row) using di↵erent resolutions. The models are initialized with a

spatial Gaussian bell with width 64⇡/180 and a cosine-20-power directional spread (⇡ 64⇡/180). In addition, the

initial wave action are scaled such that the maximum significant wave height is 2.5m. Spatial resolutions are indicated

in subfigures.

Chapter 5

Summary and conclusions

This dissertation has been motivated by a desire to estimate the e↵ects of LM in global

climate models. Preliminary findings from Webb et al. (2013) demonstrates that inclusion of such

mixing has the potential to reduce shallow mixed-layer biases found in many GCMs (in the high-

latitude northern and southern oceans during their respective winters). Development of a new

parameterization is closer to completion and much work has been done to ensure its analytical

and numerical robustness. This dissertation is loosely organized around this work and includes

an in-depth analysis of SD, optimization of a new global climate model wave component, and

development of a meshless RBF-FD wave prototype.

In Chapter 2, a hierarchy of SD approximations are investigated and derived. These approx-

imations can be classified by data type and in increasing order of accuracy, are based on spectral

moments, 1D frequency spectra, and 2D directional-frequency spectra. The approximations derived

remove systematic biases and are the most sophisticated and accurate in use.

In the first half of Chapter 2, lower-order approximations are derived using spectral moments

and common wave properties (such as significant wave height and period) and are used in Webb

and Fox-Kemper (2011) to calculate and compare global estimates of SD magnitudes. It is shown

that the a3-spectral-moment-SD approximation is equivalent to the unidirectional 1Dh-SD approxi-

mation at the surface and the a2-spectral-moment-SD approximation roughly agrees to within 10%

(of the unidirectional 1Dh-SD) away from coastlines. However, a comparison of global estimates

shows that SD magnitudes vary significantly between the di↵erent (but reliable) data sources. It

119

is hoped that the analysis presented in Webb and Fox-Kemper (2011) will guide future wave data

collection and aid in the determination of a global SD climatology and variability.

In the second half of Chapter 2, the e↵ects of directional spreading and multidirectional waves

on SD are explored in the higher-order approximations. Since the unidirectional 1Dh-SD ignores

these features, a new 1Dh-DHH-SD approximation is defined to incorporate the systematic e↵ects

of wave spreading. This approximation is based on observational studies of Donelan et al. (1985)

and uses a Padé approximate to simplify the solution. Both 1D frequency approximations are

compared with the 2Dh-SD approximation using formulated (empirically-derived), observational,

and model generated wave spectra and it is shown that the improved 1Dh-DHH-SD reduces error.

In addition, the e↵ects of directional spreading and multidirectional waves are largely uncorrelated

and a↵ect both the magnitude and direction of Stokes drift in a nonlinear fashion that is sensitive

with depth.

In the first half of Chapter 3, the operational forecast wave model WAVEWATCH III (version

3.14) is benchmarked and optimized for inclusion in a global climate model. The WAVE component,

the coupled version of WAVEWATCH III in the NCAR CESM, will serve as the backbone of the

new parameterization and will calculate SD and other variables needed to estimate the vertical

mixing. Furthermore, the prognostic wave field will be useful for improving air-sea fluxes and sea

ice formation in the GCM. Additional tests in Chapter 3 indicate that the WAVE component is

coupled properly and development of the mixing scheme is ready to proceed.

In the second half of Chapter 3, the governing equation of a third-generation spectral wave

model is explored in detail. Eq. (3.22), the wave action balance equation, is similar to the Boltzmann

transport equation and is di�cult to numerically model due to its high-dimensionality (i.e., uses

a coupled spatial-spectral domain) and nonlinear source terms. Derivation of this equation is

reviewed and an alternative form for 1D periodic propagation is derived using the WKB method.

Di↵erent asymptotic limits of the latter yield a balance equation on a unit circle with linear shallow

or deep-water group velocities. In addition, several variations of the general wave action balance

equation are formulated to test the new meshless spectral wave prototype on di↵erent problem

120

geometries.

In Chapter 4, construction of the meshless RBF-FD wave prototype in di↵erent geometries is

reviewed and several numerical test cases are conducted to guide further development and measure

performance. In Case 5.1 (Section 4.4.5.1), evolution in the coupled domains is illustrated for a

spatial and spectral Gaussian bell initial condition with width ⇡/3 and dominant direction ⇡/6.

In Case 5.2 (Section 4.4.5.2), the total directional relative `2 errors after a 1/2 revolution are

calculated for similar initial conditions (di↵erent directions) and all errors are within 2%. This is a

stringent test and the monochromatic RBF-FD prototype performs well with limited computation.

To highlight its performance, a full kinematic comparison is made with WAVEWATCH III in Case 6

(Section 4.4.6). Using similar initial conditions, a coarser RBF-FD model is approximately 70 times

more accurate while using less than 17 times the number of unknowns.

Further work is planned in the short term. The first is to continue testing of the prototype to

determine robustness to changes in hyperviscosity, initial conditions, etc. The second is to replace

the current attenuation filter approach with actual physical boundaries. This could potentially

improve accuracy and would remove the need to include nodes within continents. These two

combined will give an idea of the viability and benefit of building a parallel RBF-FD wave model

for use with GCMs.

Moving further ahead, it will be necessary to determine the proper stencil selection in the

spherical-cylinder geometry. It will be useful to resolve both spectral direction and frequency

and the stencils will need to balance size versus accuracy. For frequency evolution to occur, this

will require a non-constant bathymetry and use of source terms. As a result, a similar study to

Cases 2 and 3 in the ring-line geometry will be useful. As an intermediate step, a model without

frequency evolution might be useful since this process is commonly turned o↵ in WAVEWATCH

III simulations. This intermediate model would be straightforward to build since the frequency

components are uncoupled and a monochromatic version could be run in parallel with limited

communication.

Bibliography

Ablowitz, M.J., 2011. Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. Cambridge
University Press, Cambridge, UK.

Ardhuin, F., Marié, L., Rascle, N., Forget, P., Roland, A., 2009. Observation and estimation of
Lagrangian, Stokes, and Eulerian currents induced by wind and waves at the sea surface. Journal
of Physical Oceanography 39, 2820–2838.

Axell, L.B., 2002. Wind-driven internal waves and Langmuir circulations in a numerical ocean
model of the southern Baltic Sea. Journal of Geophysical Research: Oceans 107, 25–1–25–20.

Banner, M.L., 1990. Equilibrium spectra of wind-waves. Journal of Physical Oceanography 20,
966–984.

Batchelor, G.K., 1967. An Introduction to Fluid Dynamics. Cambridge University Press, New
York, NY.

Belcher, S.E., Grant, A.L.M., Hanley, K.E., Fox-Kemper, B., Van Roekel, L.P., Sullivan, P.P.,
Large, W.G., Brown, A., Hines, A., Calvert, D., Rutgersson, A., Pettersson, H., Bidlot, J.R.,
Janssen, P.A.E.M., Polton, J.A., 2012. A global perspective on Langmuir turbulence in the ocean
surface boundary layer. Geophysical Research Letters 39, 1–9.

Bender, C.M., Orszag, S.A., 1978. Advanced Mathematical Methods for Scientists and Engineers
I: Asymptotic Methods and Perturbation Theory. McGraw-Hill, New York, NY.

Bochner, S., Tenenbaum, M., Pollard, H., 1959. Lectures on Fourier integrals: with an author’s sup-
plement on monotonic functions, Stieltjes integrals, and harmonic analysis. Princeton University
Press, Princeton, NJ.

Bollig, E.F., Flyer, N., Erlebacher, G., 2012. Solution to PDEs using radial basis function finite-
di↵erences (RBF-FD) on multiple GPUs. Journal of Computational Physics 231, 7133–7151.

Bouws, E. (Ed.), 1998. Guide to Wave Analysis and Forecasting. Number 702 in WMO, World
Meteorological Organization, Geneva. 2nd edition.

Bretherton, F.P., Garrett, C.J.R., 1968. Wavetrains in inhomogeneous moving media. Proceedings
of the Royal Society of London. Series A. Mathematical and Physical Sciences 302, 529–554.

Childress, S., 2009. An Introduction to Theoretical Fluid Mechanics. American Mathematical
Society, Providence, RI.

122

Chini, G.P., 2008. Strongly nonlinear Langmuir circulation and Rayleigh–Bénard convection. Jour-
nal of Fluid Mechanics 614, 39–65.

Chini, G.P., Julien, K., Knobloch, E., 2009. An asymptotically reduced model of turbulent Lang-
muir circulation. Geophysical and Astrophysical Fluid Dynamics 103, 179–197.

Comiso, J., 1999. Bootstrap sea ice concentrations for NIMBUS-7 SMMR and DMSP SSM/I.
Technical Report 2. National Snow and Ice Data Center. Boulder, CO. Updated 2008.

Craik, A.D.D., 2005. George Gabriel Stokes on water wave theory. Annu. Rev. Fluid Mech. 37,
23–42.

Craik, A.D.D., Leibovich, S., 1976. Rational model for Langmuir circulations. Journal of Fluid
Mechanics 73, 401–426.

Currie, I.G., 2003. Fundamental Mechanics of Fluids. CRC Press, Boca Raton, FL. 3rd edition.

D’Asaro, E.A., 2001. Turbulent vertical kinetic energy in the ocean mixed layer. Journal of Physical
Oceanography 31, 3530–3537.

DigitalGlobe, 2010. Gulf of mexico oil slick. QuickBird Satellite Image.

Donelan, M.A., Hamilton, J., Hui, W.H., 1985. Directional spectra of wind-generated waves.
Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and
Engineering Sciences 315, 509–562.

Ewans, K.C., 1998. Observations of the directional spectrum of fetch-limited waves. Journal of
Physical Oceanography 28, 495–512.

Flyer, N., Lehto, E., Blaise, S., Wright, G.B., St-Cyr, A., 2012. A guide to RBF-generated finite
di↵erences for nonlinear transport: shallow water simulations on a sphere. Journal of Computa-
tional Physics 231, 4078–4095.

Flyer, N., Wright, G.B., 2007. Transport schemes on a sphere using radial basis functions. Journal
of Computational Physics 226, 1059–1084.

Flyer, N., Wright, G.B., 2009. A radial basis function method for the shallow water equations on
a sphere. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science
465, 1949–1976.

Fornberg, B., 1998a. Classroom note: Calculation of weights in finite di↵erence formulas. SIAM
Review 40, 685–691.

Fornberg, B., 1998b. A Practical Guide to Pseudospectral Methods. Cambridge University Press,
Cambridge, UK.

Fornberg, B., Flyer, N., Russell, J.M., 2010. Comparisons between pseudospectral and radial basis
function derivative approximations. IMA journal of numerical analysis 30, 149–172.

Fornberg, B., Lehto, E., 2011. Stabilization of RBF-generated finite di↵erence methods for convec-
tive PDEs. Journal of Computational Physics 230, 2270–2285.

123

Fornberg, B., Lehto, E., Powell, C., 2013. Stable calculation of Gaussian-based RBF-FD stencils.
Computers & Mathematics with Applications 65, 627–637.

Fornberg, B., Merrill, D., 1997. Comparison of finite di↵erence-and pseudospectral methods for
convective flow over a sphere. Geophysical Research Letters 24, 3245–3248.

Fornberg, B., Piret, C., 2008. On choosing a radial basis function and a shape parameter when
solving a convective PDE on a sphere. Journal of Computational Physics 227, 2758–2780.

Fox-Kemper, B., Danabasoglu, G., Ferrari, R., Gri�es, S.M., Hallberg, R.W., Holland, M.M.,
Maltrud, M.E., Peacock, S., Samuels, B.L., 2011. Parameterization of mixed layer eddies. III:
Implementation and impact in global ocean climate simulations. Ocean Modelling 39, 61–78.

Gommenginger, C.P., Srokosz, M.A., Challenor, P.G., Cotton, P.D., 2003. Measuring ocean wave
period with satellite altimeters: A simple empirical model. Geophysical Research Letters 30.

Grant, A.L.M., Belcher, S.E., 2009. Characteristics of Langmuir turbulence in the ocean mixed
layer. Journal of Physical Oceanography 39, 1871–1887.

Groves, G.W., 1966. Geometric wave propagation through curved media. Journal of Geophysical
Research 71, 5271–5274.

Groves, G.W., Melcer, J., 1961. On the propagation of ocean waves on a sphere. Geofisica Inter-
nacional 8, 77–93.

Hackett, B., Breivik, Ø., Wettre, C., 2006. Forecasting the drift of objects and substances in the
ocean, in: Ocean weather forecasting. Springer, pp. 507–523.

Harcourt, R.R., 2012. A second-moment closure model of Langmuir turbulence. Journal of Physical
Oceanography 43, 673–697.

Harcourt, R.R., D’Asaro, E.A., 2008. Large-eddy simulation of Langmuir turbulence in pure wind
seas. Journal of Physical Oceanography 38, 1542–1562.

Hasselmann, K., 1971. On the mass and momentum transfer between short gravity waves and
larger-scale motions. J. Fluid Mech 50, 189–205.

Hasselmann, K., Barnett, T., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A.,
Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter,
K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during
the Joint North Sea Wave Project (JONSWAP). Erganzung zur Deutschen Hydrographischen
Zeitschrift, Reihe A (8) 12, 1–95.

Haza, A.C., Özgökmen, T.M., Gri↵a, A., Garra↵o, Z.D., Piterbarg, L., 2012. Parameterization
of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale
models. Ocean Modelling 42, 31–49.

Hendershott, M.C., Chapman, D.C., Malanotte-Rizzoli, P., 1989. Wave Motions in the Ocean.
Unpublished collection of lecture notes by M. Hendershott at Scripps Institution of Oceanography.

Holm, D.D., 1996. The ideal Craik-Leibovich equations. Physica D 98, 415–441.

124

Holthuijsen, L.H., 2007. Waves in Oceanic and Coastal Waters. Cambridge University Press, New
York, NY.

Hong, S.M., Pham, A.T., Jungermann, C., 2011. Deterministic Solvers for the Boltzmann Transport
Equation. Springer Wein New York, New York, NY.

Huang, N.E., 1971. Derivation of Stokes drift for a deep-water random gravity wave field, in: Deep
Sea Research and Oceanographic Abstracts, Elsevier. pp. 255–259.

Iserles, A., 2009. A First Course in the Numerical Analysis of Di↵erential Equations. Cambridge
University Press, Cambridge, UK.

Jansons, K.M., Lythe, G., 1998. Stochastic Stokes drift. Physical review letters 81, 3136–3139.

Janssen, P.A., 2008. Progress in ocean wave forecasting. Journal of Computational Physics 227,
3572–3594.

Janssen, P.A.E.M., 2004. The Interaction of Ocean Waves and Wind. Cambridge University Press,
Cambridge, UK.

Kantha, L.H., Clayson, C.A., 2004. On the e↵ect of surface gravity waves on mixing in the oceanic
mixed layer. Ocean Modelling 6, 101–124.

Kenyon, K.E., 1969. Stokes drift for random gravity waves. Journal of Geophysical Research 74,
6991–6994.

Kenyon, K.E., 1970. Stokes transport. Journal of Geophysical Research 75, 1133–1135.

Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E.M., 1994.
Dynamics and Modeling of Ocean Waves. Cambridge University Press, Cambridge, UK.

Kump, L.R., Kasting, J.F., Crane, R.G., 2004. The Earth System. Pearson Education, Inc., Upper
Saddle River, NJ. 2nd edition.

Kundu, P.K., Cohen, I.M., 2008. Fluid Mechanics. Academic Press, Burlington, MA. 4th edition.

Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: A review and a model
with a nonlocal boundary layer parameterization. Reviews of Geophysics 32, 363–403.

Large, W.G., Yeager, S.G., 2008. The global climatology of an interannually varying air-sea flux
data set. Climate Dynamics 33, 341–364.

Li, J.G., 2012. Propagation of ocean surface waves on a spherical multiple-cell grid. Journal of
Computational Physics 231, 8262–8277.

Longuet-Higgins, M.S., 1969. On the transport of mass by time-varying ocean currents. Deep Sea
Research and Oceanographic Abstracts 16, 431–447.

Luke, Y.L., 1969. The Special Functions and Their Approximations. Academic Press, New York,
NY.

Martin, W., Flandrin, P., 1985. Wigner-Ville spectral analysis of nonstationary processes. Acous-
tics, Speech and Signal Processing, IEEE Transactions on 33, 1461–1470.

125

Massel, S.R., 1996. Ocean Surface Waves: Their Physics and Prediction. World Scientific Publishing
Co. Pte. Ltd., Singapore.

McWilliams, J.C., Fox-Kemper, B., 2013. Oceanic wave-balanced surface fronts and filaments.
Journal of Fluid Mechanics. Submitted.

McWilliams, J.C., Restrepo, J.M., 1999. The wave-driven ocean circulation. Journal of Physical
Oceanography 29, 2523–2540.

McWilliams, J.C., Restrepo, J.M., Lane, E.M., 2004. An asymptotic theory for the interaction of
waves and currents in coastal waters. Journal of Fluid Mechanics 511, 135–178.

McWilliams, J.C., Sullivan, P.P., 2000. Vertical mixing by Langmuir circulations. Spill & Science
Technology Bulletin 6, 225–237.

McWilliams, J.C., Sullivan, P.P., 2001. Surface-wave e↵ects on winds and currents in marine
boundary layers, in: Lumley, J.L. (Ed.), Fluid Mechanics and the Environment: Dynamical
Approaches. Springer Berlin Heidelberg, pp. 201–224.

McWilliams, J.C., Sullivan, P.P., Moeng, C.H., 1997. Langmuir turbulence in the ocean. Journal
of Fluid Mechanics 334, 1–30.

Mei, C.C., Stiassnie, M., Yue, D.K.P., 2005. Theory and Applications of Ocean Surface Waves,
Part 1: Linear Aspects. World Scientific Publishing Co. Pte. Ltd., Singapore.

Mellor, G., 2011. Wave radiation stress. Ocean Dynamics 61, 563–568.

Mellor, G.L., Donelan, M.A., Oey, L.Y., 2008. A surface wave model for coupling with numerical
ocean circulation models. Journal of Atmospheric and Oceanic Technology 25, 1785–1807.

Micchelli, C.A., 1986. Interpolation of scattered data: Distance matrix and conditionally positive
definite functions. Constr. Approx. 2, 11–22.

Ochi, M.K., 1998. Ocean Waves: The Stochastic Approach. Cambridge University Press, Cam-
bridge, UK.

O’Reilly, W.C., Herbers, T.H.C., Seymour, R.J., Guza, R.T., 1996. A comparison of directional
buoy and fixed platform measurements of Pacific swell. Journal of Atmospheric and Oceanic
Technology 13, 231–238.

Phillips, O.M., 1966. The Dynamics of the Upper Ocean. Cambridge University Press, Cambridge,
UK.

Pierson, Jr., W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind seas
based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research 69,
5181–5190.

Pinkus, A., Zafrany, S., 1997. Fourier Series and Integral Transforms. Cambridge University Press,
Cambridge, UK.

Rascle, N., Ardhuin, F., Que↵eulou, P., Croize-Fillon, D., 2008. A global wave parameter database
for geophysical applications. part 1: Wave-current-turbulence interaction parameters for the open
ocean based on traditional parameterizations. Ocean Modelling 25, 154–171.

126

Rayner, N.A., Brohan, P., Parker, D.E., Folland, C.K., Kennedy, J.J., Vanicek, M., Ansell, T.J.,
Tett, S.F.B., 2006. Improved analyses of changes and uncertainties in sea surface temperature
measured in situ since the mid-nineteenth century: The HadSST2 dataset. Journal of Climate
19, 446–469.

Sallee, J.B., Shuckburgh, E., Bruneau, N., Meijers, A.J.S., Bracegirdle, T.J., Wang, Z., 2013.
Assessment of Southern Ocean mixed layer depths in CMIP5 models: Historical bias and forcing
response. Journal of Geophysical Research: Oceans 118, 1–18.

Segar, D.A., 2007. Introduction to Ocean Sciences. W. W. Norton & Company, Inc., New York,
NY.

Shechter, G., 2004. k-D tree package: MathWorks MATLAB Central File Exchange. http://http:
//www.mathworks.com/matlabcentral/fileexchange/4586-k-d-tree.

Sloan, I.H., Womersley, R.S., 2004. Extremal systems of points and numerical integration on the
sphere. Advances in Computational Mathematics 21, 107–125.

Smith, J.A., 2001. Observations and theories of Langmuir circulation: A story of mixing, in:
Lumley, J. (Ed.), Fluid Mechanics and the Environment: Dynamical Approaches. Springer, pp.
295–314.

Smith, J.A., 2006. Observed variability of ocean wave Stokes drift, and the Eulerian response to
passing groups. Journal of Physical Oceanography 36, 1381–1402.

Smyth, W.D., Skyllingstad, E.D., Crawford, G.B., Wijesekera, H., 2002. Nonlocal fluxes and Stokes
drift e↵ects in the K-profile parameterization. Ocean Dynamics 52, 104–115.

Squire, V., 2007. Of ocean waves and sea-ice revisited. Cold Regions Science and Technology 49,
110–133.

Stewart, R.H., 2008. Introduction to Physical Oceanography. http://oceanworld.tamu.edu/

resources/ocng_textbook/contents.html.

Sullivan, P.P., McWilliams, J.C., 2010. Dynamics of winds and currents coupled to surface waves.
Annual Review of Fluid Mechanics 42, 19–42.

Tolman, H.L., 2009. User manual and system documentation of WAVEWATCH-III version 3.14.
Technical Report 286. NOAA / NWS / NCEP / MMAB.

Tolstov, G.P., 1976. Fourier Series. Dover Publications, Inc., New York, NY.

Tseng, R.S., D’Asaro, E.A., 2004. Measurements of turbulent vertical kinetic energy in the ocean
mixed layer from Lagrangian floats. Journal of Physical Oceanography 34, 1984–1990.

Van Roekel, L.P., Fox-Kemper, B., Sullivan, P.P., Hamlington, P.E., Haney, S.R., 2012. The
form and orientation of Langmuir cells for misaligned winds and waves. Journal of Geophysical
Research: Oceans 117, 1–22.

WAMDI Group, 1988. The WAM model—A third generation ocean wave prediction model. Journal
of Physical Oceanography 18, 1775–1810.

127

Wang, D., McWilliams, J.C., Large, W.G., 1998. Large-eddy simulation of the diurnal cycle of
deep equatorial turbulence. Journal of Physical Oceanography 28, 129–148.

Webb, A., Fox-Kemper, B., 2009. Global model sensitivity to parameterizing Langmuir circula-
tion. Poster session presented at: CIRES Scientific Rendezvous, Boulder, CO. http://cires.

colorado.edu/science/groups/foxkemper/people/pdfs/WebbFoxKemper09cires.pdf.

Webb, A., Fox-Kemper, B., 2011. Wave spectral moments and Stokes drift estimation. Ocean
Modelling 40, 273–288.

Webb, A., Fox-Kemper, B., Baldwin-Stevens, E., Danabasoglu, G., Hamlington, B., Large, W.G.,
Hemer, M.A., 2013. Global climate model sensitivity to estimated Langmuir mixing. Ocean
Modelling. In preparation.

Webb, A., Fox-Kemper, B., Large, W.G., Peacock, S., 2010. Demonstrated sensitivity to Lang-
muir mixing in a global climate model (CCSM). Oral session presented at: AGU 2010 Ocean
Sciences Meeting, Portland, OR. http://cires.colorado.edu/science/groups/foxkemper/

pubs/pdfs/WebbFox-Kemper10.pdf.

Whitham, G.B., 1974. Linear and Nonlinear Waves. John Wiley & Sons, Inc., New York, NY.

Willebrand, J., 1975. Energy transport in a nonlinear and inhomogeneous random gravity wave
field. J. Fluid Mech 70, 113–126.

Appendix A

Definitions and derivations

A.1 Craik-Leibovich equations

The Craik-Leibovich (CL) equations are a surface wave filtered version of the Navier-Stokes

equations (Chini et al., 2009). When wind and waves are aligned (and in absence of density

stratification and Coriolis e↵ects), the non-dimensional CL equations can be written as

Dtu = �rp+
1

La2t
(ûs ⇥ !) +

1

R⇤r
2u, (A.1)

r · u = 0. (A.2)

Here, u is the wave-filtered Eulerian velocity, ûs is the normalized Stokes drift velocity (by the

magnitude of its surface value), and R⇤ is the Reynolds number based on the surface friction velocity

u⇤ (due to wind).

A.2 Spectral moments

It is common to summarize 1D wave spectra at a point by their moments. The moments are

defined by (Bouws, 1998) as

mn =

Z 1

0
fnSf (f) df, (A.3)

129

where the frequency spectral density,1 Sf , is normalized to capture the variance of the surface

height displacement, ⌘, for some time scale T such that2

lim
T!1

h⌘(t)2iT =

Z 1

0
Sf (f) df. (A.4)

Similarly, multidirectional or two-dimensional wave spectra can be summarized as

cmn =

Z 1

0

Z ⇡

�⇡
fnSf✓(f, ✓) d✓df, (A.5)

where the directional-frequency spectral density, Sf✓, is normalized as

lim
T,L!1

h⌘(xh, t)
2iT,L

h

=

Z 1

0

Z ⇡

�⇡
Sf✓(f, ✓) d✓df, (A.6)

for some horizontal length scale Lh = (L,L).3 By definition,

Z ⇡

�⇡
Sf✓(f, ✓) d✓ ⌘ Sf (f). (A.7)

In practice, spectral moments are usually calculated statistically using expected values for a par-

ticular frequency or deterministically as the limit of a finite sum over a limited area. Since wave

amplitude decays exponentially with depth, the 1D and 2D wave moments are expected to decay

in z as:

lim
T,L!1

h⌘z̄(xh, t)
2iT,L

h

= lim
T,L!1

1

TL2

Z t+T/2

t�T/2

Z

x

h

+L

h

/2

x

h

�L

h

/2
⌘z̄(x

0, t0)2 dx0dt0 (A.8)

=

Z 1

0

Z ⇡

�⇡
Sf✓(f, ✓)e

8⇡2
f

2

g

z d✓df (A.9)

=

Z 1

0
Sf (f)e

8⇡2
f

2

g

zdf. (A.10)

The decay with depth depends on wavenumber k or real frequency f , here related by the dispersion

relation for linear deep-water waves (4⇡2f2 = gk), where g is the gravitational acceleration.

1 f is ordinary (not angular) wave frequency.
2 Angle brackets denote spatial or temporal averaging as indicated by the subscripts.
3 The h subscript denotes horizontal components.

130

A.3 Mean Wave Direction

It is convenient to define a mean wave direction, ✓w, for discussions of SD direction.

Following Tolman (2009), it is defined here as

✓w = atan2[b, a] , (A.11)

where

(a, b) =

Z 1

0

Z ⇡

�⇡
(cos ✓, sin ✓)Sf,✓(f, ✓) d✓ df. (A.12)

Notice that Eq. (A.12) is similar to the zeroth-moment but with a directional component.

A.4 The DHH-B directional-SD-component

Based on observations, Banner (1990) concluded the DHH spreading function was not con-

stant for f/fp � 1.6 and proposed the following modification (Ewans, 1998):

�B(r) = 10�0.4 exp
⇥

0.8393 ln[10.00] r�1.134
⇤

, r � 1.6. (A.13)

Following Section 2.5.3.2, a directional-SD-component was approximated (using a Padé approxi-

mate of order [2/2]) for the Banner-modified directional distribution (termed DHH-B here) as

HDFF-B(f ; fp, ✓̄) =
�

cos ✓̄, sin ✓̄, 0
� 0.5f2

p

+0.22f
p

f+0.19f2

f2
p

�0.81f
p

f+0.79f2 , f/fp � 1.6. (A.14)

The new directional-SD-component approximation has a maximum relative error of 7⇥10�5. How-

ever, it was not used for testing of the improved 1Dh-SD estimate since the ratio of cuto↵ frequency

to peak frequency was often under 1.6 in the observational and model data. To test the accuracy

of a 1Dh-DHH-B-SD approximation, higher cuto↵ frequencies are needed.

A.5 SD spectral tail calculations

It is necessary to estimate contributions to SD for high frequencies that are outside the model

domain. Here, a spectral tail parameterization with cuto↵ frequency fc is used to estimate the SD

131

tail. For some positive p and fc, let the spectral tail be governed by

Sf✓(f, ✓) =

✓

fc
f

◆p

Sf✓(fc, ✓), f � fc. (A.15)

Then the tail contribution to the 2Dh-SD is

uS
2D,tail =

16⇡3

g
fp
c

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓)

⇢

Z 1

f
c

f3�p exp

�8⇡2 |z|
g

f2

�

df

�

d✓. (A.16)

A.5.1 Subsurface SD tail

Note that for ↵, fc > 0 (↵ 2 R),

I =

Z 1

f
c

f3�p exp
⇥

�↵f2
⇤

df =
↵

p

2�2

2

Z 1

↵f2
c

t2�
p

2 exp [�t] dt =
↵

p

2�2

2
�
h

2� p

2
,↵f2

c

i

,

where � [s, x] is the upper incomplete gamma function. Then for ↵ = 8⇡2 |z| /g,

uS
2D,tail

�

�

z 6=0
=

8⇡3

g
↵

p

2�2 fp
c �

h

2� p

2
,↵f2

c

i

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓. (A.17)

Three common values of p are 4, 4.5, and 5. These reduce to

uS
2D,tail,p=4

�

�

z 6=0
=

8⇡3

g
f4
c �

⇥

0,↵f2
c

⇤

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓, (A.18)

uS
2D,tail,p=4.5

�

�

z 6=0
=

8⇡3

g
↵

1
4 f

9
2
c �

�1

4
,↵f2

c

�

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓, (A.19)

uS
2D,tail,p=5

�

�

z 6=0
=

8⇡3

g
↵

1
2 f5

c �

�1

2
,↵f2

c

�

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓

=
16⇡3

g
f4
c

h

exp
⇥

�↵f2
c

⇤

�
p

⇡↵f2
c

⇣

1� erf
h

p

↵f2
c

i⌘i

⇥
Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓, (A.20)

where the error function (erf : R⇤
+ ! [0, 1]) is defined as

erf(x) =
2p
⇡

Z x

0
exp

⇥

�t2
⇤

dt. (A.21)

A.5.2 Surface SD tail

If z = 0, then the SD tail is restricted to p > 4 and simplifies to

uS
2D,tail,p>4

�

�

z=0
=

16⇡3f4
c

g (p� 4)

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓. (A.22)

132

A.5.3 1D spectra simplification

For 1D frequency spectra, Sf✓(fc, ✓) = D(fc, ✓)S(fc) and the integrand in the tail simplifies

to

Z ⇡

�⇡
(cos ✓, sin ✓, 0)Sf✓(fc, ✓) d✓ = H(fc)Sf (fc), (A.23)

where H is the directional-SD-component based on the directional distribution D.

A.6 Del in polar coordinates

Here, various del operations for use in Section 3.2.3 are defined and derived for polar coordi-

nates using an abbreviated cylindrical del notation. It is assumed all cylindrical z-components are

null and these del operations are denoted rp for clarity.

Let r 2 R+ and � 2 (�⇡,⇡]. Then for any scalar and vector function, f = f(r,�) and

A = Arer +A�e� = (Ar, A�) respectively, the del operations are defined as

rpf =

✓

@r,
1

r
@�

◆

f, (A.24)

rp · (Ar, A�) =
1

r
[@r (rAr) + @�A�]

=
1

r
Ar + @rAr +

1

r
@�A�, (A.25)

r2
p f = rp ·rpf

=
1

r
@rf + @rrf +

1

r2
@��f. (A.26)

In addition, for u = (ur(r,�, t), u�(r,�, t)), define the velocity potential � = �(r,�, t) such

that u = rp�. Then the material derivative on a scalar function in polar coordinates (denoted as

Dp) can be rewritten as

Dpf = @tf + u ·rpf

= @tf + @r� @rf +
1

r2
@�� @�f. (A.27)

133

Recall that for a vector valued function (Ar, A�), the material derivative will have extra terms since

@�er = e� and @�e� = �er. Calculating each component of the vector separately, we find

Dp (Arer) = @t (Arer) + u ·rp (Arer)

= er

✓

@tAr + @r� @rAr +
1

r2
@�� @�Ar

◆

+ e�

✓

1

r2
Ar @��

◆

, (A.28)

and

Dp (A�e�) = @t (A�e�) + u ·rp (A�e�)

= e�

✓

@tA� + @r� @rA� +
1

r2
@�� @�A�

◆

� er

✓

1

r2
A� @��

◆

. (A.29)

Collecting, we find

Dp

2

6

4

Ar

A�

3

7

5

=

2

6

4

@tAr + @r� @rAr +
1
r2

(@�� @�Ar �A� @��)

@tA� + @r� @rA� + 1
r2

(@�� @�A� +Ar @��)

3

7

5

. (A.30)

A.7 Miscellaneous formulations

A.7.1 Normalizing an interval for use with a unit circle

Consider any generic interval (L1, L2] with finite length L. Define

✓(l) =
2⇡

L
(l � L1)� ⇡. (A.31)

Then ✓ maps any point l in the generic interval to (�⇡,⇡].

A.7.2 Mapping 1D functions from an interval to a unit circle

Let a(✓) = (cos ✓, sin ✓). Then for the domains ⇥ = {✓ : ✓ 2 (�⇡,⇡]} and X = {(x, y) : x, y 2

[�1, 1] and x2+ y2 = 1}, the mapping a : ⇥ ! X is bijective. For simplicity, consider a continuous

periodic function f : ⇥ ! R. A new function f̃ can be defined as the mapping of f to the unit

circle in Cartesian coordinates as

f̃ (x, y) = f
�

a�1(x, y)
�

= f (atan2(y, x)) . (A.32)

134

A.7.3 Projection onto a sphere

Let x = (x1, x2, x3) such that x lies on a sphere with radius R. Then for any vector ⌫ =

(⌫1, ⌫2, ⌫3), the tangential projection on the sphere at point x satisfies (Flyer and Wright, 2009)

P
x

⌫ = ⌫ � n̂ (n̂ · ⌫) = ⌫ � 1

R2
x (x · ⌫) =

✓

I3 �
1

R2
xxT

◆

⌫. (A.33)

Likewise, the projected gradient follows similarly:

P
x

rf = rf � n̂ (n̂ ·rf) =

✓

I3 �
1

R2
xxT

◆

rf. (A.34)

Note that if a vector is already tangential to the surface at x, then this implies x · ⌫ = 0 and

P
x

⌫ = ⌫.

A.7.4 Propagation on a Sphere

Waves travel in a great circle on a sphere. If the path of the great circle (given by the

intersection of the plane a · x = 0) and the initial velocity vector, v0, for a point, x0, on the circle

is known, then the velocity at any point on the circle is given by

vi = (x0 ⇥ v0)⇥ xi. (A.35)

A.7.5 Rotation on a Sphere

Let r and ✓ be the unit axis and counter-clockwise angle of rotation respectively. Then any

point x0 can be decomposed as x0 = pk + (x0 · r) r where pk is the projection of x0 onto the

great circle with radius |r ⇥ x0 ⇥ r| and orientation r. It then follows that p? = r ⇥ x0 is the

perpendicular projection on the same great circle and a new point x1 rotated counter-clockwise ✓

on the circle can be defined as

x1 = cos ✓ pk + sin ✓ p? + (r · x0) r

= cos ✓ (x0 � (r · x0) r) + sin ✓ (r ⇥ x0) + (r · x0) r

= cos ✓x0 + sin ✓ (r ⇥ x0) + (1� cos ✓)(r · x0) r

=
h

cos ✓ I + sin ✓ r⇥ + (1� cos ✓)r ⌦ r
i

x0. (A.36)

Appendix B

Numerical wave modeling

B.1 NOAA WAVEWATCH III details

NOAA WAVEWATCH III (Tolman, 2009) is an operational third–generation wave model

that calculates and uses 2D wave spectra to forecast the ocean wave state. Two versions of the

model are used here: version 2.22 for spectral moment and SD analysis and version 3.14 for GCM

coupling. In version 2.22, operational forecast settings were used to generate 1D wave spectra every

six hours for the years 1994�2001 and 2D wave spectra every three hours for the year 2000. Some

of the operational settings include 25 frequency and 24 directional bins (with an initial and cuto↵

frequency of 0.0418 and 0.411 respectively), f�5 tail, third order propagation scheme, and Tolman

and Chalikov source terms1

All WAVEWATCH III simulations are forced with CORE2 (Large and Yeager, 2008) winds2

with appropriate sea surface temperatures (Hadley SST: Rayner et al., 2006) and sea ice concen-

trations (Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I, v2: Comiso,

1999) on a 1� ⇥ 1.25� latitude-longitude grid of (�78 : 78) ⇥ (0 : 358.75) respectively. In addition,

a 50% sea ice threshold for grid point inclusion is typically used for all temporal means (denoted

h·iT) and an area-weighted global mean (denoted h·iG) is used to account for spreading meridians

with latitude.

In version 3.14, a new source term package developed and tested by Rascle et al. (2008) is used

1 For full details, see http://polar.ncep.noaa.gov/waves/implementations.shtml.
2 Available from http://data1.gfdl.noaa.gov/nomads/forms/mom4/COREv2.html.

136

with the appropriate recommended settings. The modified coupled version uses a coarser 3.2� ⇥ 4�

latitude-longitude grid of (�75.2 : 75.2) ⇥ (0 : 356) respectively and a 30 min time step delayed 1

step from the CESM coupler. Coupled inputs include surface interface temperatures, surface wind

velocities, ocean currents, sea ice grid cell concentrations, and mixed layer depths. At the moment,

output is limited but will eventually include SD, skin friction velocities, and a new nondimensional

LM number (sensitive to wind-wave alignment) to be used for the LM parametrization.

B.2 Numerical SD calculations

Discretization of SD for model calculation is outlined here. All spectral tail and subsurface

calculations use p = 5 and ↵ = 8⇡2 |z| /g respectively. The Matlab functions used for calculating

SD are printed in Appendix F.2.

B.2.1 2Dh-SD

The subsurface and surface 2Dh-SD numerical approximations are

uS
2D ⇡ 2⇡↵

|z|

N
✓

X

j=1

�✓j (cos ✓j , sin ✓j , 0)

8

<

:

2

4

N
f

X

i=1

�fi f
3
i exp

⇥

�↵f2
i

⇤

Sf✓(fi, ✓j)

3

5

+ f4
c

h

exp
⇥

�↵f2
c

⇤

�
p

⇡↵f2
c

⇣

1� erf
h

p

↵f2
c

i⌘i

Sf✓(fc, ✓j)
o

, (B.1)

uS
2D

�

�

z=0
⇡ 16⇡3

g

N
✓

X

j=1

�✓j (cos ✓j , sin ✓j , 0)

8

<

:

2

4

N
f

X

i=1

�fi f
3
i Sf✓(fi, ✓j)

3

5+ f4
c Sf✓(fc, ✓j)

9

=

;

. (B.2)

B.2.2 Directional 1Dh-SD

Recall that for a generic kHk`2 6= 1, the directional 1Dh-SD is given by

uS
1D-dir =

16⇡3

g

Z 1

0
H(f)f3Sf (f) exp

8⇡2f2

g
z

�

df. (B.3)

137

The resultant subsurface and surface directional 1Dh-SD numerical approximations are

uS
1D-dir ⇡

2⇡↵

|z|

8

<

:

2

4

N
f

X

i=1

�fiH(fi) f
3
i exp

⇥

�↵f2
i

⇤

Sf (fi)

3

5

+ f4
c

h

exp
⇥

�↵f2
c

⇤

�
p

⇡↵f2
c

⇣

1� erf
h

p

↵f2
c

i⌘i

H(fc)Sf (fc)
o

, (B.4)

uS
1D-dir

�

�

z=0
⇡ 16⇡3

g

8

<

:

2

4

N
f

X

i=1

�fiH(fi) f
3
i Sf (fi)

3

5+ f4
cH(fc)Sf (fc)

9

=

;

. (B.5)

B.2.3 Unidirectional 1Dh-SD

For unidirectional approximations, kHk`2 = 1 and the subsurface and surface unidirec-

tional 1Dh-SD numerical approximations simplify to

uS
1D-uni ⇡

2⇡↵

|z|

8

<

:

2

4

N
f

X

i=1

�fi f
3
i exp

⇥

�↵f2
i

⇤

Sf (fi)

3

5

+ f4
c

h

exp
⇥

�↵f2
c

⇤

�
p

⇡↵f2
c

⇣

1� erf
h

p

↵f2
c

i⌘i

Sf (fc)
o

, (B.6)

uS
1D-uni

�

�

z=0
⇡ 16⇡3

g

8

<

:

2

4

N
f

X

i=1

�fi f
3
i Sf (fi)

3

5+ f4
c Sf (fc)

9

=

;

. (B.7)

Appendix C

Formal SD truncation error

C.1 Nonlinear assumption for convergence

For f : Rd ! R, assume the d+ 1 partial derivatives of f are continuous within a closed ball

centered about a and radius kx� ak. It can be shown that the remainder to a series approximation

of a multivariate function satisfies

f(x) = f(a) +
k
X

|↵|=1

1

↵!
(x� a)↵D↵f(x)|

x=a

+
X

|↵|=k+1

k + 1

↵!
(x� a)↵

Z 1

0
(1� ⌧)k D↵f(x0)

�

�

x

0=a+⌧(x�a)
d⌧,

where ↵ = (↵1,↵2, . . . ,↵n) is a multi-index notation such that

↵! = ↵1! . . .↵n!,

(x� a)↵ = (x1 � a1)
↵1 . . . (xn � an)

↵
n ,

D↵f(x) = (@x1)
↵1 . . . (@x

n

)↵n f(x).

The zeroth and first-order approximations yield

f(x) = f(a) + F0(x;a), (C.1)

f(x) = f(a) + (x� a) · rf(x)|
x=a

+ F1(x;a), (C.2)

139

with

F0(x;a) = (x� a) ·
✓

Z 1

0
rf(x0(⌧))

�

�

x

0(⌧)=a+⌧(x�a)
d⌧

◆

, (C.3)

F1(x;a) =
X

|↵|=2

2

↵!
(x� a)↵ ·

✓

Z 1

0
(1� ⌧) D↵f(x0(⌧))

�

�

x

0(⌧)=a+⌧(x�a)
d⌧

◆

. (C.4)

Assume the derivatives can be bounded as

�

�(@x1)
↵1 . . . (@x

n

)↵n f(x0)
�

�

L1 Mf
↵

= Mf
(↵1,...,↵n

), x0 2 Bkx�ak[a].

Then in three dimensions with a = (a, b, c),

kF0(x;a)kL1
n

|x� a|Mf
(1,0,0) + |y � b|Mf

(0,1,0) + |z � c|Mf
(0,0,1)

o

 {|x� a|+ |y � b|+ |z � c|}max
|↵|=1

Mf
↵

= kx� ak`1 max
|↵|=1

Mf
↵

,

kF1(x;a)kL1 1

2

n

|x� a|2Mf
(2,0,0) + |y � b|2Mf

(0,2,0) + |z � c|2Mf
(0,0,2)

+ 2 |x� a| |y � b|Mf
(1,1,0) + 2 |x� a| |z � c|Mf

(1,0,1) + 2 |y � b| |z � c|Mf
(0,1,1)

o

 1

2

�

|x� a|2 + |y � b|2 + |z � c|2 + 2 |x� a| |y � b|+ 2 |x� a| |z � c|

+ 2 |y � b| |z � c|

max
|↵|=2

Mf
↵

=
1

2
kx� ak2`1 max

|↵|=2
Mf

↵

.

Here, we would like to bound the truncation error used in the leading order approximation of SD.

Let Rj = (Rj,x, Rj,y, Rj,z). Then the components of each remainder vector are

R0,i(xp(s
0);xp(t0)) =

�

xp(s
0)� xp(t0)

�

·
✓

Z 1

0
ruEi (x

0(⌧), s0)
�

�

x

0(⌧)=x

p

(t0)+⌧(x
p

(s0)�x

p

(t0))
d⌧

◆

, (C.5)

R1,i(xp(t);xp(t0)) =
X

|↵|=2

2

↵!
(xp(t)� xp(t0))

↵

·
✓

Z 1

0
(1� ⌧) D↵uEi (x

0(⌧), t)
�

�

x

0(⌧)=x

p

(t0)+⌧(x
p

(t)�x

p

(t0))
d⌧

◆

. (C.6)

140

For ↵ = (↵x,↵y,↵z) and some neighborhood of s, assume again the derivatives can be bounded as

�

�(@x)
↵
x (@y)

↵
y (@z)

↵
z uEi (x

0, s)
�

�

L1 M
uE

i

↵

= M
uE

i

(↵
x

,↵
y

,↵
z

), x0 2 Bkx
p

(s)�x

p

(t0)k[xp(t0)].

Then for s0 and t in the neighborhood of s,

�

�R0,i(xp(s
0);xp(t0)

�

�

1
�

�xp(s
0)� xp(t0)

�

�

`1
max
|↵|=1

M
uE

i

↵

, Bkx
p

(s0)�x

p

(t0)k[xp(t0)], (C.7)

kR1,i(xp(t);xp(t0)k1 1

2
kxp(t)� xp(t0)k2`1 max

|↵|=2
M

uE

i

↵

, Bkx
p

(t)�x

p

(t0)k[xp(t0)]. (C.8)

Re-examining the first component of the velocity di↵erences, we find that

uLx (xp(t0), t)� uEx (xp(t0), t)

=

✓

Z t

t0

uE(xp(t0), s
0) +R0

�

xp(s
0);xp(t0)

�

ds0
◆

·ruEx (xp(t0), t) +R1,x(xp(t);xp(t0)) ,

and

�

�uLx (xp(t0), t)� uEx (xp(t0), t)
�

�

L1

�

�

�

�

✓

Z t

t0

uE(xp(t0), s
0)ds0

◆

·ruEx (xp(t0), t)

�

�

�

�

L1

+

�

�

�

�

✓

Z t

t0

R0

�

xp(s
0);xp(t0)

�

ds0
◆

·ruEx (xp(t0), t)

�

�

�

�

L1
+ kR1,x(xp(t);xp(t0))kL1

�

�

�

�

✓

Z t

t0

uE(xp(t0), s
0)ds0

◆

·ruEx (xp(t0), t)

�

�

�

�

L1

+ d |t� t0|max
i,s0

�

�R0,i(xp(s
0);xp(t0))

�

�

L1 max
|↵|=1

MuE

x

↵

+ kR1,x(xp(t);xp(t0))kL1

�

�

�

�

✓

Z t

t0

uE(xp(t0), s
0)ds0

◆

·ruEx (xp(t0), t)

�

�

�

�

L1

+
d |t� t0|

2
max
s0

�

�xp(s
0)� xp(t0)

�

�

`1
max
i,|↵|=1

M
uE

i

↵

max
|↵|=1

MuE

x

↵

+
1

2
kxp(t)� xp(t0)k2`1 max

|↵|=2
MuE

x

↵

. (C.9)

If L = max{Xh, Yh} and kxp(s)� xp(t0)k`1 dL, the truncation error for the first vector compo-

nent of the leading SD estimate can be bounded in the L1 norm by

�

�

�

uSx (x, t;Xh, T)�
⌦

uLx (x, t)� uEx (x, t)
↵

T,X
h

�

�

�

1

 d2TL

2
max
i,|↵|=1

M
uE

i

↵

max
|↵|=1

MuE

x

↵

+
d2L2

2
max
|↵|=2

MuE

x

↵

. (C.10)

141

For ✏ > 0, max|↵|=1M
uE

i

↵

p

✏
d2TL

, and max|↵|=2M
uE

i

↵

 ✏
d2L2 , then

�

�

�

uSi (x, t;Xh, T)�
⌦

uLi (x, t)� uEi (x, t)
↵

T,X
h

�

�

�

1
 ✏. (C.11)

Appendix D

Analytic solutions to wave action balance equations

D.1 Problem 1

Let the wave action balance W on a plane (minus the origin) be governed by

@tW � cg
p

x2 + y2
(�y, x) ·r

x

W = 0, (D.1)

for cg 2 R⇤ (|cg| 6= 0) and some continuous initial condition W(x0, y0, t = 0) = F (x0, y0) such that

p

x20 + y20 = R
x

> 0. Applying the method of characteristics, define the characteristic curve as

(x(s), y(s), t(s),W(s)), where W(s) = W(x(s), y(s), t(s)). Then the following system of ODEs is

satisfied:

dW
ds

= 0

dt

ds
= 1

dx

ds
=

cg y
p

x2 + y2

dy

ds
=

�cg x
p

x2 + y2
.

For x(0) = x0, y(0) = y0, and t(0) = 0, this implies t(s) = s. We would like to find two functions,

a(x, y, t) = x0 and b(x, y, t) = y0, so that our solution becomes

W(x, y, t) = F (x0, y0) = F (a(x, y, t), b(x, y, t)) .

To simplify the two coupled ODEs, note that (ignoring the case x = y = 0)

dy/ds

dx/ds
=

�x

y
) y dy = �x dx)

p

x2 + y2 = R
x

> 0.

143

Our new set of ODEs becomes

dx

ds
=

cg
R

x

y,
dy

ds
=

�cg
R

x

x,

which implies that

d2x

ds2
=

�c2g
R2

x

x,
d2y

ds2
=

�c2g
R2

x

y.

The following solution satisfies the decoupled ODEs:

x(s) = A cos(c
g

R
x

s+ �), y(s) = �A sin(c
g

R
x

s+ �).

Solving for constants, we find

A > 0, x(s)2 + y(s)2 = A2) A = R
x

,

x0 6= 0) y0
x0

= � tan(�),

� = � arctan

✓

y0
x0

◆

,

x0 = 0) � =
⇡(2n+ 1)

2
, n = 0,±1,±2,

Relating the non-parametrized (x, y, t), we find

y0
x0

= tan
h

arctan2(y, x)� c
g

R
x

t
i

,

x20 + y20 = x20

⇢

1 + tan
h

arctan2(y, x)� c
g

R
x

t
i2
�

= x20 sec
h

arctan2(y, x)� c
g

R
x

t
i2

= R2
x

.

Then

a(x, y, t) = x0 = R
x

cos[arctan2(y, x) + c
g

R
x

t],

b(x, y, t) = y0 = R
x

sin[arctan2(y, x) + c
g

R
x

t],

and

W(x, y, t) = F (R
x

cos[arctan2(y, x) + c
g

R
x

t], R
x

sin[arctan2(y, x) + c
g

R
x

t]). (D.2)

This is a solution for any initial (x0, y0) on the circle with radius R
x

centered at the origin.

144

D.2 Problem 2

Let the wave action balance W on a plane (minus the origin) be governed by

@tW � cg
p

x2 + y2
(�y, x) · P

x

r
x

W = 0, (D.3)

for cg 2 R⇤ and some continuous initial conditionW(x0, y0, t = 0) = F (x0, y0) such that
p

x20 + y20 =

R
x

> 0. Here, P
x

is the projection onto the unit circle as defined in Eq. (A.34), which simplifies to

P
x

rf =
1

x2 + y2

2

6

4

y2 �xy

�xy x2

3

7

5

2

6

4

@xf

@yf

3

7

5

.

The wave action balance equation can then be rewritten as

@tW � cg
(x2 + y2)3/2

�y x

�

2

6

4

y2 �xy

�xy x2

3

7

5

2

6

4

@xW

@yW

3

7

5

=

@tW � cg
(x2 + y2)3/2

�y(x2 + y2) x(x2 + y2)

�

2

6

4

@xW

@yW

3

7

5

=

@tW � cg
(x2 + y2)1/2

�y x

�

2

6

4

@xW

@yW

3

7

5

= 0.

This is equivalent to the PDE in Problem 1. This is also evident since P (Pu) = Pu and Pu · v =

u · Pv, giving

Pu · Pv = P (Pu) · v = Pu · v.

D.3 Problem 3

We would like to consider flow in a coupled spatial and spectral domain. Here, the transport

velocity vector, ⌫ = ⌫(x,k), is dependent on both x and k and is not necessarily tangent to the unit

circle at point x̂. To possibly resolve this, consider the following additional constraint: x̂·r
x

W = 0

Let ⌫ 2 R2,⇤, then ⌫ can be decomposed into normal (⌫k) and tangent (⌫?) components for some

(x̂, ŷ) on a unit circle. Previously, we solved

@tW � ⌫?(x) ·rx

W = 0.

145

Let the transport velocity be governed by the dispersion relation such that

⌫(x,k) = r
k

⌦(x,k) =

p
g

2(k2 + l2)3/4

2

6

4

k

l

3

7

5

. (D.4)

Then

⌫? = P
x

r
k

⌦(x,k) =

p
g

2(k2 + l2)3/4(x2 + y2)

2

6

4

y2 �xy

�xy x2

3

7

5

2

6

4

k

l

3

7

5

=

p
g(lx� ky)

2(k2 + l2)3/4(x2 + y2)

2

6

4

�y

x

3

7

5

,

⌫k =
1

x2 + y2
xxTr

k

⌦(x,k) =

p
g

2(k2 + l2)3/4(x2 + y2)

2

6

4

x2 xy

xy y2

3

7

5

2

6

4

k

l

3

7

5

=

p
g (kx+ ly)

2(k2 + l2)3/4(x2 + y2)

2

6

4

x

y

3

7

5

.

Now consider the following variants.

D.3.1 Variant 1

Let � 2 R⇤. Consider

@tW � ⌫? ·r
x

W � � (x̂ ·r
x

W) = 0. (D.5)

Our problem becomes

@tW �
p
g

2(k2 + l2)3/4(x2 + y2)
(lx� ky)

�y x

�

2

6

4

@xW

@yW

3

7

5

� �

(x2 + y2)1/2

x y

�

2

6

4

@xW

@yW

3

7

5

= @tW �

@xW @yW
�

2

6

4

�p
gy(lx�ky)

2(k2+l2)3/4(x2+y2)
+ �x

(x2+y2)1/2

p
gx(lx�ky)

2(k2+l2)3/4(x2+y2)
+ �y

(x2+y2)1/2

3

7

5

= 0. (D.6)

D.3.2 Variant 2

Let � = 0; then

@tW � ⌫? ·r
x

W = @tW � P
x

⌫ ·r
x

W = @tW � ⌫ · P
x

r
x

W = 0.

146

As a side note, also notice that

@tW � ⌫ · P
x

r
x

W = @tW �
�

⌫? + ⌫k
�

· (r
x

W � x̂ (x̂ ·r
x

W))

= @tW � ⌫ ·r
x

W � |⌫k| (x̂ ·r
x

W) .

From here, a solution will be derived. Note that

@tW �r
k

⌦ · P
x

r
x

W =

@tW �r
k

⌦ · (r
x

W � x̂ (x̂ ·r
x

W)) =

@tW �
p
g

2(k2 + l2)3/4(x2 + y2)

k l

�

2

6

4

y2 �xy

�xy x2

3

7

5

2

6

4

@xW

@yW

3

7

5

=

@tW �
p
g(lx� ky)

2(k2 + l2)3/4(x2 + y2)

�y x

�

2

6

4

@xW

@yW

3

7

5

= 0. (D.7)

As in Problem 1, we find

dW
ds

=
dk

ds
=

dl

ds
= 0,

dt

ds
= 1,

dx

ds
=

p
g (lx� ky)y

2(k2 + l2)3/4(x2 + y2)
,

dy

ds
=

�p
g (lx� ky)x

2(k2 + l2)3/4(x2 + y2)
.

The following initial conditions are used: (x(0), y(0), k(0), l(0), t(0)) = (x0, y0, k0, l0, 0),
p

x20 + y20 =

R
x

> 0, and
p

k20 + l20 = R
k

> 0. Solving for t, k, and l, we find

t(s) = s, k(s) = k0, l(s) = l0.

We would like to find two functions, a(x, y, k, l, t) = x0 and b(x, y, k, l, t) = y0, such that our solution

becomes

W (x, y, k, l, t) = F (x0, y0, k0, l0) = Fkl(a(x, y, k, l, t), b(x, y, k, l, t)).

147

First note that the relation l0x� k0y = 0 yields a constant solution.

l0x� k0y = 0) dx

ds
=

dy

ds
= 0) (x, y) = (x0, y0) 6= (0, 0),

) (x0, y0) = (k0, l0)
R

x

R
k

,) x k k, W(x,k, t) = c0 2 R.

To simplify the last two coupled ODEs, note that (ignoring x = y = 0)

dy/ds

dx/ds
=

�x

y
) y dy = �x dx) x2 + y2 = R2

x

.

Let cg = 1
2

q

g
R

k

. Then our new set of ODEs becomes

dx

ds
=

p
g (l0x� k0y)y

2R2
x

(k20 + l20)
3/4

=

p
g (l0x� k0y)y

2R3/2
k

R2
x

=
cg (l0x� k0y)y

R
k

R2
x

,

dy

ds
=

�p
g (l0x� k0y)x

2R2
x

(k20 + l20)
3/4

=
�p

g (l0x� k0y)x

2R3/2
k

R2
x

=
�cg (l0x� k0y)x

R
k

R2
x

.

In order to decouple, define two new variables, u = k0x+ l0y and v = l0x� k0y. Then

du

ds
= k0

dx

ds
+ l0

dy

ds
=

�cg
R

k

R2
x

(l0x� k0y)
2 =

�cg
R

k

R2
x

v2,

dv

ds
= l0

dx

ds
� k0

dy

ds
=

cg
R

k

R2
x

(l0x� k0y) (k0x+ l0y) =
cg

R
k

R2
x

uv.

First note that

u2 + v2 = (k0x+ l0y)
2 + (l0x� k0y)

2 = (k20 + l20)x
2 + (k20 + l20)y

2 = R2
k

R2
x

.

Then as previously, we see that

du/ds

dv/ds
=

�v

u
) u du = �v dv) u2 + v2 = R2

x

R2
k

.

For simplification, define R
u

= R
k

R
x

and let ĉg = cgR
k

. Then the first new ODE can be rewritten

and solved as

du

ds
=

�ĉg
R2

u

�

R2
u

� u2
�

,

du

R2
u

� u2
=

�ĉg
R2

u

ds,

du

1� u2

R2
u

= �ĉgds,

148

R
u

arctanh

✓

u

R
u

◆

= �ĉgs+ c1,

u(s) = R
u

tanh

✓

�ĉg
R

u

s+ c2

◆

.

It then follows

dv

ds
=

ĉg
R

u

tanh

✓

�ĉg
R

u

s+ c2

◆

v,

v 6= 0,
dv

v
=

ĉg
R

u

tanh

✓

�ĉg
R

u

s+ c2

◆

ds,

v 6= 0, log(v) = � log

✓

cosh

✓

�ĉg
R

u

s+ c2

◆◆

+ c3,

v 6= 0, v(s) = c4 sech

✓

�ĉg
R

u

s+ c2

◆

, c4 > 0.

Solving we find:

c4 > 0, u2 + v2 = R2
u

) c4 = R
u

,

u(0)

v(0)
=

u0
v0

= sinh(c2) ,) c2 = arcsinh

✓

u0
v0

◆

,

u0 = k0x0 + l0y0

v0 = l0x0 � k0y0

)
x0 =

1
R2

k

(k0u0 + l0v0)

y0 =
1
R2

k

(l0u0 � k0v0)
,

u(s)

v(s)
= sinh

�ĉg
R

u

s+ arcsinh

✓

u0
v0

◆�

,

u0
v0

= sinh

arcsinh

✓

u(s)

v(s)

◆

+
ĉg
R

u

s

�

,

u20 + v20 =

(

sinh

arcsinh

✓

u(s)

v(s)

◆

+
ĉg
R

u

s

�2

+ 1

)

v20 = cosh

arcsinh

✓

u(s)

v(s)

◆

+
ĉg
R

u

s

�2

v20 = R2
u

,

) v0 = R
u

sech

arcsinh
⇣u

v

⌘

+
ĉg
R

u

t

�

, u0 = R
u

tanh

arcsinh
⇣u

v

⌘

+
ĉg
R

u

t

�

,

x0 =
R

u

R2
k

⇢

k0 tanh

arcsinh

✓

k0x+ l0y

l0x� k0y

◆

+
ĉg
R

u

t

�

+ l0 sech

arcsinh

✓

k0x+ l0y

l0x� k0y

◆

+
ĉg
R

u

t

��

,

y0 =
R

u

R2
k

⇢

l0 tanh

arcsinh

✓

k0x+ l0y

l0x� k0y

◆

+
ĉg
R

u

t

�

� k0 sech

arcsinh

✓

k0x+ l0y

l0x� k0y

◆

+
ĉg
R

u

t

��

,

149

a(x, y, k, l, t) =
R

x

R
k

⇢

k tanh

arcsinh

✓

kx+ ly

lx� ky

◆

+
cg
R

x

t

�

+ l sech

arcsinh

✓

kx+ ly

lx� ky

◆

+
cg
R

x

t

��

,

b(x, y, k, l, t) =
R

x

R
k

⇢

l tanh

arcsinh

✓

kx+ ly

lx� ky

◆

+
cg
R

x

t

�

� k sech

arcsinh

✓

kx+ ly

lx� ky

◆

+
cg
R

x

t

��

,

The final solution becomes

W(x, y, k, l, t) =

8

>

<

>

:

c0, x k k

Fkl(a(x, y, k, l, t), b(x, y, k, l, t), k, l) , otherwise
. (D.8)

In addition, the asymptotic behavior can be described as

t ! ±1, a ! ±R
x

R
k

k, b ! ±R
x

R
k

l.

Checking the solution shows that as expected, the equation

@tW � P
x

r
k

⌦ ·r
x

W = 0,

automatically satisfies the condition x̂ ·r
x

W = 0 since

x̂ ·r
x

Fkl(a, b) = x (@aF @xa+ @bF @xb) + y (@aF @ya+ @bF @yb) = 0.

D.3.3 Variant 3

Instead of holding � fixed, let it be variable. A convenient choice is

@tW � ⌫? ·r
x

W � |⌫k| (x̂ ·r
x

W) = 0.

Here

|⌫k| =
p
g(kx+ ly)

2(k2 + l2)3/4(x2 + y2)1/2
,

150

and our final problem becomes

@tW �
p
g

2(k2 + l2)3/4(x2 + y2)

8

>

<

>

:

(lx� ky)

�y x

�

2

6

4

@xW

@yW

3

7

5

+ (kx+ ly)

x y

�

2

6

4

@xW

@yW

3

7

5

9

>

=

>

;

=

@tW �
p
g

2(k2 + l2)3/4(x2 + y2)

@xW @yW
�

2

6

4

�y(lx� ky) + x(kx+ ly)

x(lx� ky) + y(kx+ ly)

3

7

5

=

@tW �
p
g

2(k2 + l2)3/4

k l

�

2

6

4

@xW

@yW

3

7

5

= 0.

(D.9)

Turning the crank, we find

dW
ds

=
dk

ds
=

dl

ds
= 0,

dt

ds
= 1,

dx

ds
=

�p
g k

2(k2 + l2)3/4
,

dy

ds
=

�p
g l

2(k2 + l2)3/4
.

Using the same initial conditions, we find t(s) = s, k(s) = k0, l(s) = l0. Again, we would like to

find two functions such that a(x, y, k, l, t) = x0 and b(x, y, k, l, t) = y0. Let cg = 1
2

q

g
R

k

. Then the

solution to our new set of ODEs is

dx

ds
=

�cgk0
R

k

) x(s) =
�cgk0
R

k

s+ x0,

dy

ds
=

�cgl0
R

k

) y(s) =
�cgl0
R

k

s+ y0.

Solving, we find

W (x, y, k, l, t) = F (x+
cgk

R
k

t, y +
cgl

R
k

t, k, l) = Fkl(x+
cgk

R
k

t, y +
cgl

R
k

t). (D.10)

For each k, an initial circle of radius R
x

centered at the origin at time t = 0, propagates in the ±k̂

direction on the Fkl plane with speed cg.

Appendix E

Peer reviewed articles

E.1 Webb & Fox-Kemper, 2011

Appendix F

Numerical code

F.1 Matlab SD functions

1 function [stokesDepthArray] = fnc stokes uni magnitude (...

2 spec1dArray, freqVector, deltaFreqVector, depthVector)

3

4 %% CALCULATE 1DH�UNI�SD MAGNITUDE:

5 % This function uses 1D wave spectra with the unidirectional assumption to

6 % approximate the Stokes drift (SD) magnitude at some specified depth for

7 % an arbitrary number of spatial and temporal dimensions.

8 % Created by Adrean Webb.

9 %

10 % Requires: nothing.

11 %

12 % function [stokesDepthArray] = fnc stokes uni magnitude (...

13 % spec1dArray, freqVector, deltaFreqVector, depthVector)

14 %

15 % In: 'spec1dArray' 1D spectra with dimensions [nFreq].

16 % 'freqVector' Frequency bin values (centered except for end).

17 % 'deltaFreqVector' Bandwidth of each frequency bin.

18 % 'depthVector' Depth is defined as ABS(z).

19 %

20 % Out: 'stokesDepthArray' 1Dh�Uni�SD values with dimensions

169

21 % [nDepth].

22 %

23 % Version: 1.1 [2012/11/5] � Expanded capability to handle an arbitrary

24 % number of spatial and temporal dimensions.

25 % The script columnizes the extra dimensions in

26 % the 1D spectra and reshapes output to match.

27 % 1.2 [2012/11/5] � Changed script to run on older versions of

28 % Matlab less than 2011b.

29

30

31 %% 1. CHECK AND CONVERT INPUT IF NECESSARY.

32

33 if verLessThan('matlab','7.13')

34 nargchk(4,4,nargin);

35 else

36 narginchk(4,4);

37 end

38

39 subfnc check column vector(freqVector,deltaFreqVector,depthVector);

40

41 subfnc check freq cutoff(freqVector,deltaFreqVector);

42

43 nFreq = length(freqVector);

44 [flgSpec1d, nDimension] = subfnc check array(spec1dArray,nFreq);

45

46 [spec1dMatrix,rebuildVector] = subfnc reduce dimension(...

47 spec1dArray,2,nDimension,flgSpec1d);

48

49

50 %% 2. PRELIMINARY INITIALIZATION AND CALCULATIONS.

51

52 G = 9.81;

53

170

54 nDepth = size(depthVector,1); nPoint = size(spec1dMatrix,2);

55

56 stokesSumStaticMatrix = subfnc SD sum static(freqVector, ...

57 deltaFreqVector, depthVector, G);

58 stokesTailStaticVector = subfnc SD tail static(freqVector(end,1), ...

59 depthVector, G);

60

61

62 %% 3. CALCULATE DEPTH�DEPENDENT 1DH�UNI�SD.

63

64 stokesDepthMatrix = zeros(nDepth,nPoint);

65 for indPoint=1:nPoint

66 for indDepth=1:nDepth

67 stokesDepthMatrix(indDepth,indPoint) = sum(...

68 stokesSumStaticMatrix(:,indDepth) .* ...

69 spec1dMatrix(:,indPoint)) + ...

70 stokesTailStaticVector(indDepth) * spec1dMatrix(end,indPoint);

71 end

72 end

73

74 stokesDepthArray = subfnc expand dimension(stokesDepthMatrix,2,...

75 nDimension,rebuildVector,flgSpec1d);

76

77 %%%%% END MAIN FUNCTION %%%

78

79

80

81 %%%%% START SUBFUNCTION %%%

82

83 function subfnc check column vector(varargin)

84

85 %% CHECK COLUMN VECTOR (SPECIFIC):

86 %

171

87 % In: 'varargin' Accepts any number of arguments in. Did not use

88 % the iscolumn command since it is not supported in

89 % older versions.

90

91

92 %% 1. VARIFY COLUMN VECTOR INPUT.

93

94 for ind=1:nargin

95 if (isvector(varargin{ind}) ˜= 1) | | ...

96 (size(varargin{ind},1) < length(varargin{ind}))

97 error(['Check input. Function requires vectors to be in ' ...

98 'column form.'])

99 end

100 end

101

102 %%%%% END SUBFUNCTION %%%

103

104

105

106 %%%%% START SUBFUNCTION %%%

107

108 function subfnc check freq cutoff(freqVector, deltaFreqVector)

109

110 %% CHECK DELTA FREQUENCY CUTOFF (SPECIFIC):

111 %

112 % In: 'freqVector' Frequency bin values.

113 % 'deltaFreqVector' Bandwidth of each frequency bin.

114

115

116 %% 1. ENSURE FINAL FREQUENCY VALUE FALLS ON RIGHT EDGE.

117

118 freqLength1 = freqVector(end) � freqVector(end�1);

119 freqLength2 = deltaFreqVector(end) + deltaFreqVector(end�1)/2;

172

120 if (freqLength2 � freqLength1)/freqLength1 > 0.05

121 error(['The cutoff frequency bin value should fall on the right ' ...

122 'edge. Check the final delta frequency value to ensure it is ' ...

123 'not centered.'])

124 end

125

126 %%%%% END SUBFUNCTION %%%

127

128

129

130 %%%%% START SUBFUNCTION %%%

131

132 function [flgReshape, nDimension] = subfnc check array(spec1dArray, ...

133 nFreq)

134

135 %% CHECK 1D SPECTRUM INPUT (SPECIFIC):

136 %

137 % In: 'spec1dArray' 1D spectral array with frequency as the first

138 % dimension (the rest are location or time).

139 % 'nFreq' Size of frequency bin.

140 % Out: 'flgReshape' Flag indicates whether input array needs to be

141 % reshaped (1) or not (0).

142 % 'nDimension' Number of dimensions in 1D spectral array.

143

144

145 %% 1. CHECK DIMENSIONS AND ASSIGN FLAG.

146

147 nDimension = ndims(spec1dArray); flgReshape = 0;

148 if nDimension == 1

149 error('The frequency spectrum has a singleton dimension.')

150 elseif nDimension > 2

151 flgReshape = 1;

152 end

173

153

154

155 %% 2. VERIFY ORIENTATION OF ARRAY.

156

157 if size(spec1dArray,1) ˜= nFreq

158 error(['The frequency spectrum must be the first dimension in ' ...

159 'the 1D spectral input.'])

160 end

161

162 for indDimension=2:nDimension

163 if size(spec1dArray,1) == size(spec1dArray,indDimension)

164 disp(['Warning: Cannot determine if the matrix for the 1D ' ...

165 'frequency spectrum is orientated correctly. Ensure the ' ...

166 'dimensions are [frequency, location].'])

167 pause

168 end

169 end

170

171 %%%%% END SUBFUNCTION %%%

172

173

174

175 %%%%% START SUBFUNCTION %%%

176

177 function [outputArray, reshapeVector] = ...

178 subfnc reduce dimension(inputArray, indMin, indMax, flgReshape)

179

180 %% REDUCE ARRAY DIMENSION (GENERAL):

181 %

182 % In: 'inputArray' The array to be reshaped.

183 % 'indMin', 'indMax' The dimension delimiters for reshaping.

184 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

185 %

174

186 % Out: 'outputArray' The reshaped array (for flag == 1).

187 % 'shapeVector' Information containing old array dimensions.

188

189

190 %% 1. REDUCE DIMENSION OF ARRAY IF NECESSARY.

191

192 reshapeVector = [];

193

194 if flgReshape == 0

195 outputArray = inputArray;

196 elseif flgReshape == 1

197 nDimension = ndims(inputArray);

198 if (indMin < 1) | | (indMax > nDimension) | | (indMax <= indMin) | | ...

199 (indMin == 1 && indMax == nDimension)

200 error('Check dimension delimiters.')

201 end

202 for ind=1:nDimension

203 inputLength{ind} = size(inputArray, ind);

204 end

205 indReshape = [];

206 if indMin > 1

207 for ind=1:indMin�1;

208 indReshape = [indReshape inputLength{ind}];

209 end

210 end

211 nPoint = 1;

212 for ind=indMin:indMax

213 nPoint = nPoint * inputLength{ind};

214 reshapeVector = [reshapeVector inputLength{ind}];

215 end

216 indReshape = [indReshape nPoint];

217 if indMax < nDimension

218 for ind=indMax+1:nDimension

175

219 indReshape = [indReshape inputLength{ind}];

220 end

221 end

222 outputArray = reshape(inputArray, indReshape);

223 else

224 error('Flag incorrectly assigned.');

225 end

226

227 %%%%% END SUBFUNCTION %%%

228

229

230

231 %%%%% START SUBFUNCTION %%%

232

233 function [outputArray] = subfnc expand dimension(inputArray, indMin, ...

234 indMax, reshapeVector, flgReshape)

235

236 %% EXPAND ARRAY DIMENSION (GENERAL):

237 %

238 % In: 'inputArray' The array to be reshaped.

239 % 'indMin', 'indMax' The dimension delimiters for reshaping.

240 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

241 % 'reshapeVector' Vector containing sizes of the new dimensions.

242 %

243 % Out: 'outputArray' The reshaped array (for flag == 1).

244

245

246 %% 1. EXPAND DIMENSION OF ARRAY IF NECESSARY.

247

248 if flgReshape == 0

249 outputArray = inputArray;

250 elseif flgReshape == 1

251 nReshapeVector = length(reshapeVector);

176

252 nDimensionInput = ndims(inputArray);

253 nDimensionOutput = nDimensionInput + nReshapeVector � 1;

254

255 if (indMin < 1) | | (indMax <= indMin) | | ...

256 (nReshapeVector ˜= indMax�indMin+1)

257 error('Check dimension delimiters.')

258 elseif (size(inputArray,indMin) ˜= prod(reshapeVector))

259 error('Number of elements in new array are not the same.')

260 end

261

262 for ind=1:nDimensionInput

263 inputLength(ind) = size(inputArray, ind);

264 end

265

266 expandVector = [];

267 if indMin > 1

268 for ind=1:indMin�1;

269 expandVector = [expandVector size(inputArray,ind)];

270 end

271 end

272 for ind=1:(indMax�indMin+1)

273 expandVector = [expandVector reshapeVector(ind)];

274 end

275 if indMax < nDimensionOutput

276 for ind=1:nDimensionOutput�indMax

277 expandVector = [expandVector inputLength(ind+indMin)];

278 end

279 end

280 outputArray = reshape(inputArray, expandVector);

281 else

282 error('Flag incorrectly assigned.');

283 end

284

177

285 %%%%% END SUBFUNCTION %%%

286

287

288

289 %%%%% START SUBFUNCTION %%%

290

291 function [sumStaticMatrix] = subfnc SD sum static(freqVector, ...

292 deltaFreqVector, depthVector, G)

293

294 %% SD STATIC SUM COMPONENTS (SPECIFIC):

295 %

296 % In: 'freqVector' Frequency bin values (centered except for end).

297 % 'deltaFreqVector' Bandwidth of each frequency bin.

298 % 'depthVector' Depth is defined as ABS(z).

299 % 'G' Gravity constant.

300 %

301 % Out: 'sumStaticMatrix' The static components of the 1Dh�Uni�SD sum.

302 % Dimensions are [sumStaticComponents,depth].

303

304

305 %% 1. CALCULATE STATIC SUM COMPONENTS.

306

307 INTEGRAND CONSTANT = 16 * piˆ3 / G;

308 nDepth = size(depthVector,1);

309 nFreq = size(freqVector,1);

310

311 betaMatrix = zeros(nFreq,nDepth);

312 for indDepth=1:nDepth

313 betaMatrix(:,indDepth) = 8 * piˆ2 / G * depthVector(indDepth) * ...

314 freqVector.ˆ2;

315 end

316

317 sumStaticMatrix = zeros(nFreq,nDepth);

178

318 for indDepth=1:nDepth

319 sumStaticMatrix(:,indDepth) = INTEGRAND CONSTANT * ...

320 deltaFreqVector .* freqVector.ˆ3 .* exp(�betaMatrix(:,indDepth));

321 end

322

323 %%%%% END SUBFUNCTION %%%

324

325

326

327 %%%%% START SUBFUNCTION %%%

328

329 function [tailStaticVector] = subfnc SD tail static(freqCutoff, ...

330 depthVector, G)

331

332 %% SD STATIC TAIL COMPONENT (SPECIFIC):

333 %

334 % In: 'freqCutoff' The frequency cutoff is the last frequency value.

335 % 'depthVector' Depth is defined as ABS(z).

336 % 'G' Gravity constant.

337 %

338 % Out: 'tailStaticVector' Static component of the SD tail calculation.

339

340

341 %% 1. CALCULATE STATIC TAIL COMPONENT.

342

343 INTEGRAND CONSTANT = 16 * piˆ3 / G ;

344

345 alphaVector = 8 * piˆ2 * depthVector / G ;

346 betaVector = alphaVector * freqCutoffˆ2 ;

347 erfcVector = 1 � erf(sqrt(betaVector)) ;

348

349 tailStaticVector = INTEGRAND CONSTANT * freqCutoffˆ4 * ...

350 (exp(�betaVector) � sqrt(pi * betaVector) .* erfcVector) ;

179

351

352 %%%%% END SUBFUNCTION %%%

1 function [stokesDepthArray] = fnc stokes dhh magnitude (...

2 spec1dArray, freqVector, deltaFreqVector, depthVector)

3

4 %% CALCULATE 1DH�DHH�SD MAGNITUDE:

5 % This function uses 1D wave spectra with the DHH directional�SD�component

6 % to approximate the Stokes drift (SD) magnitude at some specified depth

7 % for an arbitrary number of spatial and temporal dimensions.

8 % Created by Adrean Webb.

9 %

10 % Requires: nothing.

11 %

12 % function [stokesDepthArray] = fnc stokes dhh magnitude (...

13 % spec1dArray, freqVector, deltaFreqVector, depthVector)

14 %

15 % In: 'spec1dArray' 1D spectra with dimensions [nFreq].

16 % 'freqVector' Frequency bin values (centered except for end).

17 % 'deltaFreqVector' Bandwidth of each frequency bin.

18 % 'depthVector' Depth is defined as ABS(z).

19 %

20 % Out: 'stokesDepthArray' 1Dh�DHH�SD values with dimensions

21 % [nDepth].

22 %

23 % Version: 1.1 [2012/11/5] � Expanded capability to handle an arbitrary

24 % number of spatial and temporal dimensions.

25 % The script columnizes the extra dimensions in

26 % the 1D spectra and reshapes output to match.

27 % 1.2 [2012/11/5] � Changed script to run on older versions of

28 % Matlab less than 2011b.

180

29

30

31 %% 1. CHECK AND CONVERT INPUT IF NECESSARY.

32

33 if verLessThan('matlab','7.13')

34 nargchk(4,4,nargin);

35 else

36 narginchk(4,4);

37 end

38

39 subfnc check column vector(freqVector,deltaFreqVector,depthVector);

40

41 subfnc check freq cutoff(freqVector,deltaFreqVector);

42

43 nFreq = length(freqVector);

44 [flgSpec1d, nDimension] = subfnc check array(spec1dArray,nFreq);

45

46 [spec1dMatrix,rebuildVector] = subfnc reduce dimension(...

47 spec1dArray,2,nDimension,flgSpec1d);

48

49

50 %% 2. PRELIMINARY INITIALIZATION AND CALCULATIONS.

51

52 G = 9.81;

53

54 nDepth = size(depthVector,1); nPoint = size(spec1dMatrix,2);

55

56 stokesSumStaticMatrix = subfnc SD sum static(freqVector, ...

57 deltaFreqVector, depthVector, G);

58 stokesTailStaticVector = subfnc SD tail static(freqVector(end,1), ...

59 depthVector, G);

60

61

181

62 %% 3. CALCULATE THE DHH DIRECTIONAL�SD�COMPONENT.

63

64 hMatrix = zeros(nFreq,nPoint);

65 for indPoint=1:nPoint

66 [specPeak,indSpecPeak] = max(spec1dMatrix(:,indPoint));

67 if (isnan(specPeak) ˜= 1)

68 rVector = freqVector / freqVector(indSpecPeak);

69 hMatrix(:,indPoint) = subfnc SD directional component DHH(rVector);

70 else

71 hMatrix(:,indPoint) = NaN;

72 end

73 end

74

75

76 %% 4. CALCULATE DEPTH�DEPENDENT 1DH�DHH�SD.

77

78 stokesSumDynamicMatrix = hMatrix .* spec1dMatrix;

79

80 stokesDepthMatrix = zeros(nDepth,nPoint);

81 for indPoint=1:nPoint

82 stokesTailVector = stokesTailStaticVector * ...

83 stokesSumDynamicMatrix(end,indPoint);

84 for indDepth=1:nDepth

85 stokesDepthMatrix(indDepth,indPoint) = sum(...

86 stokesSumStaticMatrix(:,indDepth) .* ...

87 stokesSumDynamicMatrix(:,indPoint)) + ...

88 stokesTailVector(indDepth);

89 end

90 end

91

92 stokesDepthArray = subfnc expand dimension(stokesDepthMatrix,2,...

93 nDimension,rebuildVector,flgSpec1d);

94

182

95 %%%%% END MAIN FUNCTION %%%

96

97

98

99 %%%%% START SUBFUNCTION %%%

100

101 function subfnc check column vector(varargin)

102

103 %% CHECK COLUMN VECTOR (SPECIFIC):

104 %

105 % In: 'varargin' Accepts any number of arguments in. Did not use

106 % the iscolumn command since it is not supported in

107 % older versions.

108

109

110 %% 1. VARIFY COLUMN VECTOR INPUT.

111

112 for ind=1:nargin

113 if (isvector(varargin{ind}) ˜= 1) | | ...

114 (size(varargin{ind},1) < length(varargin{ind}))

115 error(['Check input. Function requires vectors to be in ' ...

116 'column form.'])

117 end

118 end

119

120 %%%%% END SUBFUNCTION %%%

121

122

123

124 %%%%% START SUBFUNCTION %%%

125

126 function subfnc check freq cutoff(freqVector, deltaFreqVector)

127

183

128 %% CHECK DELTA FREQUENCY CUTOFF (SPECIFIC):

129 %

130 % In: 'freqVector' Frequency bin values.

131 % 'deltaFreqVector' Bandwidth of each frequency bin.

132

133

134 %% 1. ENSURE FINAL FREQUENCY VALUE FALLS ON RIGHT EDGE.

135

136 freqLength1 = freqVector(end) � freqVector(end�1);

137 freqLength2 = deltaFreqVector(end) + deltaFreqVector(end�1)/2;

138 if (freqLength2 � freqLength1)/freqLength1 > 0.05

139 error(['The cutoff frequency bin value should fall on the right ' ...

140 'edge. Check the final delta frequency value to ensure it is ' ...

141 'not centered.'])

142 end

143

144 %%%%% END SUBFUNCTION %%%

145

146

147

148 %%%%% START SUBFUNCTION %%%

149

150 function [flgReshape, nDimension] = subfnc check array(spec1dArray, ...

151 nFreq)

152

153 %% CHECK 1D SPECTRUM INPUT (SPECIFIC):

154 %

155 % In: 'spec1dArray' 1D spectral array with frequency as the first

156 % dimension (the rest are location or time).

157 % 'nFreq' Size of frequency bin.

158 % Out: 'flgReshape' Flag indicates whether input array needs to be

159 % reshaped (1) or not (0).

160 % 'nDimension' Number of dimensions in 1D spectral array.

184

161

162

163 %% 1. CHECK DIMENSIONS AND ASSIGN FLAG.

164

165 nDimension = ndims(spec1dArray); flgReshape = 0;

166 if nDimension == 1

167 error('The frequency spectrum has a singleton dimension.')

168 elseif nDimension > 2

169 flgReshape = 1;

170 end

171

172

173 %% 2. VERIFY ORIENTATION OF ARRAY.

174

175 if size(spec1dArray,1) ˜= nFreq

176 error(['The frequency spectrum must be the first dimension in ' ...

177 'the 1D spectral input.'])

178 end

179

180 for indDimension=2:nDimension

181 if size(spec1dArray,1) == size(spec1dArray,indDimension)

182 disp(['Warning: Cannot determine if the matrix for the 1D ' ...

183 'frequency spectrum is orientated correctly. Ensure the ' ...

184 'dimensions are [frequency, location].'])

185 pause

186 end

187 end

188

189 %%%%% END SUBFUNCTION %%%

190

191

192

193 %%%%% START SUBFUNCTION %%%

185

194

195 function [outputArray, reshapeVector] = ...

196 subfnc reduce dimension(inputArray, indMin, indMax, flgReshape)

197

198 %% REDUCE ARRAY DIMENSION (GENERAL):

199 %

200 % In: 'inputArray' The array to be reshaped.

201 % 'indMin', 'indMax' The dimension delimiters for reshaping.

202 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

203 %

204 % Out: 'outputArray' The reshaped array (for flag == 1).

205 % 'shapeVector' Information containing old array dimensions.

206

207

208 %% 1. REDUCE DIMENSION OF ARRAY IF NECESSARY.

209

210 reshapeVector = [];

211

212 if flgReshape == 0

213 outputArray = inputArray;

214 elseif flgReshape == 1

215 nDimension = ndims(inputArray);

216 if (indMin < 1) | | (indMax > nDimension) | | (indMax <= indMin) | | ...

217 (indMin == 1 && indMax == nDimension)

218 error('Check dimension delimiters.')

219 end

220 for ind=1:nDimension

221 inputLength{ind} = size(inputArray, ind);

222 end

223 indReshape = [];

224 if indMin > 1

225 for ind=1:indMin�1;

226 indReshape = [indReshape inputLength{ind}];

186

227 end

228 end

229 nPoint = 1;

230 for ind=indMin:indMax

231 nPoint = nPoint * inputLength{ind};

232 reshapeVector = [reshapeVector inputLength{ind}];

233 end

234 indReshape = [indReshape nPoint];

235 if indMax < nDimension

236 for ind=indMax+1:nDimension

237 indReshape = [indReshape inputLength{ind}];

238 end

239 end

240 outputArray = reshape(inputArray, indReshape);

241 else

242 error('Flag incorrectly assigned.');

243 end

244

245 %%%%% END SUBFUNCTION %%%

246

247

248

249 %%%%% START SUBFUNCTION %%%

250

251 function [outputArray] = subfnc expand dimension(inputArray, indMin, ...

252 indMax, reshapeVector, flgReshape)

253

254 %% EXPAND ARRAY DIMENSION (GENERAL):

255 %

256 % In: 'inputArray' The array to be reshaped.

257 % 'indMin', 'indMax' The dimension delimiters for reshaping.

258 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

259 % 'reshapeVector' Vector containing sizes of the new dimensions.

187

260 %

261 % Out: 'outputArray' The reshaped array (for flag == 1).

262

263

264 %% 1. EXPAND DIMENSION OF ARRAY IF NECESSARY.

265

266 if flgReshape == 0

267 outputArray = inputArray;

268 elseif flgReshape == 1

269 nReshapeVector = length(reshapeVector);

270 nDimensionInput = ndims(inputArray);

271 nDimensionOutput = nDimensionInput + nReshapeVector � 1;

272

273 if (indMin < 1) | | (indMax <= indMin) | | ...

274 (nReshapeVector ˜= indMax�indMin+1)

275 error('Check dimension delimiters.')

276 elseif (size(inputArray,indMin) ˜= prod(reshapeVector))

277 error('Number of elements in new array are not the same.')

278 end

279

280 for ind=1:nDimensionInput

281 inputLength(ind) = size(inputArray, ind);

282 end

283

284 expandVector = [];

285 if indMin > 1

286 for ind=1:indMin�1;

287 expandVector = [expandVector size(inputArray,ind)];

288 end

289 end

290 for ind=1:(indMax�indMin+1)

291 expandVector = [expandVector reshapeVector(ind)];

292 end

188

293 if indMax < nDimensionOutput

294 for ind=1:nDimensionOutput�indMax

295 expandVector = [expandVector inputLength(ind+indMin)];

296 end

297 end

298 outputArray = reshape(inputArray, expandVector);

299 else

300 error('Flag incorrectly assigned.');

301 end

302

303 %%%%% END SUBFUNCTION %%%

304

305

306

307 %%%%% START SUBFUNCTION %%%

308

309 function [hVector] = subfnc SD directional component DHH(rVector)

310

311 %% DHH DIRECTIONAL�SD�COMPONENT (SPECIFIC):

312 %

313 % In: 'rVector' 'r' is defined as r = f/f peak.

314 %

315 % Out: 'hVector' 'h' is the piecewise continuous DHH directional�SD�

316 % component.

317

318

319 %% 1. CREATE PIECEWISE CONTINUOUS H FUNCTION.

320

321 nR = size(rVector,1);

322

323 hVector = zeros(nR,1);

324 for ind=1:nR

325 if (rVector(ind) <= 0.56)

189

326 hVector(ind) = 0.777;

327 end

328 if (rVector(ind) > 0.56) && (rVector(ind) <= 0.95)

329 hVector(ind) = ...

330 (0.52 � 3.3 * rVector(ind) + 8.9 * rVector(ind)ˆ2) / ...

331 (1 � 3.4 * rVector(ind) + 8.9 * rVector(ind)ˆ2);

332 end

333 if (rVector(ind) > 0.95) && (rVector(ind) < 1.6)

334 hVector(ind) = ...

335 (0.98 � 0.19 * rVector(ind) + 0.0058 * rVector(ind)ˆ2) / ...

336 (1 � 0.26 * rVector(ind) + 0.12 * rVector(ind)ˆ2);

337 end

338 if (rVector(ind) >= 1.6)

339 hVector(ind) = 0.777;

340 end

341 end

342

343 %%%%% END SUBFUNCTION %%%

344

345

346

347 %%%%% START SUBFUNCTION %%%

348

349 function [sumStaticMatrix] = subfnc SD sum static(freqVector, ...

350 deltaFreqVector, depthVector, G)

351

352 %% SD STATIC SUM COMPONENTS (SPECIFIC):

353 %

354 % In: 'freqVector' Frequency bin values (centered except for end).

355 % 'deltaFreqVector' Bandwidth of each frequency bin.

356 % 'depthVector' Depth is defined as ABS(z).

357 % 'G' Gravity constant.

358 %

190

359 % Out: 'sumStaticMatrix' The static components of the 1Dh�DHH�SD sum.

360 % Dimensions are [sumStaticComponents,depth].

361

362

363 %% 1. CALCULATE STATIC SUM COMPONENTS.

364

365 INTEGRAND CONSTANT = 16 * piˆ3 / G;

366 nDepth = size(depthVector,1);

367 nFreq = size(freqVector,1);

368

369 betaMatrix = zeros(nFreq,nDepth);

370 for indDepth=1:nDepth

371 betaMatrix(:,indDepth) = 8 * piˆ2 / G * depthVector(indDepth) * ...

372 freqVector.ˆ2;

373 end

374

375 sumStaticMatrix = zeros(nFreq,nDepth);

376 for indDepth=1:nDepth

377 sumStaticMatrix(:,indDepth) = INTEGRAND CONSTANT * ...

378 deltaFreqVector .* freqVector.ˆ3 .* exp(�betaMatrix(:,indDepth));

379 end

380

381 %%%%% END SUBFUNCTION %%%

382

383

384

385 %%%%% START SUBFUNCTION %%%

386

387 function [tailStaticVector] = subfnc SD tail static(freqCutoff, ...

388 depthVector, G)

389

390 %% SD STATIC TAIL COMPONENT (SPECIFIC):

391 %

191

392 % In: 'freqCutoff' The frequency cutoff is the last frequency value.

393 % 'depthVector' Depth is defined as ABS(z).

394 % 'G' Gravity constant.

395 %

396 % Out: 'tailStaticVector' Static component of the SD tail calculation.

397

398

399 %% 1. CALCULATE STATIC TAIL COMPONENT.

400

401 INTEGRAND CONSTANT = 16 * piˆ3 / G ;

402

403 alphaVector = 8 * piˆ2 * depthVector / G ;

404 betaVector = alphaVector * freqCutoffˆ2 ;

405 erfcVector = 1 � erf(sqrt(betaVector)) ;

406

407 tailStaticVector = INTEGRAND CONSTANT * freqCutoffˆ4 * ...

408 (exp(�betaVector) � sqrt(pi * betaVector) .* erfcVector) ;

409

410 %%%%% END SUBFUNCTION %%%

1 function [stokesMagnitudeArray,stokesDirectionArray] = ...

2 fnc stokes full components (spec2dArrayNd, freqVector, ...

3 deltaFreqVector, thetaVector, deltaThetaValue, depthVector)

4

5 %% CALCULATE 2DH�SD MAGNITUDE AND DIRECTION:

6 % This function uses 2D wave spectra to calculate the Stokes drift (SD)

7 % magnitude and direction at some specified depth for an arbitrary number

8 % of spatial and temporal dimensions. Created by Adrean Webb.

9 %

10 % Requires: nothing.

11 %

192

12 % function [stokesMagnitudeArray, stokesDirectionArray] = ...

13 % fnc stokes full components(spec2dArrayNd, freqVector, ...

14 % deltaFreqVector, thetaVector, deltaThetaValue, depthVector)

15 %

16 % In: 'spec2dArrayNd' 2D directional�frequency spectra with

17 % dimensions [nFreq nTheta].

18 % 'freqVector' Frequency bin values (centered except for end).

19 % 'deltaFreqVector' Bandwidth of each frequency bin.

20 % 'thetaVector' Periodic theta bin vector in radians (centered).

21 % [theta1:deltaTheta:theta1+2pi�deltaTheta]

22 % 'deltaThetaValue' Delta theta value in radians (constant).

23 % 'depthVector' Depth is defined as ABS(z).

24 %

25 % Out: 'stokesMagnitudeArray' 2Dh�SD magnitude with dimensions

26 % [nDepth].

27 % 'stokesDirectionArray' 2Dh�SD direction with dimensions

28 % [nDepth].

29 %

30 % Version: 1.1 [2012/11/6] � Expanded capability to handle an arbitrary

31 % number of spatial and temporal dimensions.

32 % The script columnizes the extra dimensions in

33 % the 1D spectra and reshapes output to match.

34 % 1.2 [2012/11/6] � Changed script to run on older versions of

35 % Matlab less than 2011b.

36

37

38 %% 1. CHECK AND CONVERT INPUT IF NECESSARY.

39

40 if verLessThan('matlab','7.13')

41 nargchk(6,6,nargin);

42 else

43 narginchk(6,6);

44 end

193

45

46 subfnc check column vector(freqVector,deltaFreqVector,thetaVector,...

47 depthVector);

48

49 subfnc check freq cutoff(freqVector,deltaFreqVector);

50

51 nFreq = length(freqVector); nTheta = length(thetaVector);

52

53 [flgSpec2d,nDimension] = subfnc check orientation(spec2dArrayNd,nFreq,...

54 nTheta);

55

56 [spec2dArray3d,rebuildVector] = subfnc reduce dimension(...

57 spec2dArrayNd,3,nDimension,flgSpec2d);

58

59

60 %% 2. PRELIMINARY INITIALIZATION AND CALCULATIONS.

61

62 G = 9.81;

63

64 nDepth = size(depthVector,1); nPoint = size(spec2dArray3d,3);

65

66 stokesSumStaticMatrix = subfnc SD sum static(freqVector, ...

67 deltaFreqVector, depthVector, G);

68 stokesTailStaticVector = subfnc SD tail static(freqVector(end,1), ...

69 depthVector, G);

70

71

72 %% 3. INTEGRATE FREQUENCY COMPONENT.

73

74 stokesStepArray = zeros(nTheta,nDepth,nPoint);

75 for indPoint=1:nPoint

76 for indDepth=1:nDepth

77 for indTheta=1:nTheta

194

78 stokesStepArray(indTheta,indDepth,indPoint) = ...

79 sum(stokesSumStaticMatrix(:,indDepth) .* ...

80 spec2dArray3d(:,indTheta,indPoint)) + ...

81 stokesTailStaticVector(indDepth) * ...

82 spec2dArray3d(end,indTheta,indPoint);

83 end

84 end

85 end

86

87

88 %% 4. INTEGRATE THETA COMPONENT.

89

90 stokesDepthXMatrix = zeros(nDepth,nPoint);

91 stokesDepthYMatrix = zeros(nDepth,nPoint);

92 for indPoint=1:nPoint

93 for indDepth=1:nDepth

94 stokesDepthXMatrix(indDepth,indPoint) = deltaThetaValue * ...

95 sum(cos(thetaVector) .* stokesStepArray(:,indDepth,indPoint));

96 stokesDepthYMatrix(indDepth,indPoint) = deltaThetaValue * ...

97 sum(sin(thetaVector) .* stokesStepArray(:,indDepth,indPoint));

98 end

99 end

100 stokesMagnitudeMatrix = sqrt(stokesDepthXMatrix.ˆ2 + ...

101 stokesDepthYMatrix.ˆ2);

102 stokesDirectionMatrix = atan2(stokesDepthYMatrix, stokesDepthXMatrix);

103

104 stokesMagnitudeArray = subfnc expand dimension(stokesMagnitudeMatrix,2,...

105 nDimension�1,rebuildVector,flgSpec2d);

106 stokesDirectionArray = subfnc expand dimension(stokesDirectionMatrix,2,...

107 nDimension�1,rebuildVector,flgSpec2d);

108

109

110 %%%%% END MAIN FUNCTION %%%

195

111

112

113

114 %%%%% START SUBFUNCTION %%%

115

116 function subfnc check column vector(varargin)

117

118 %% CHECK COLUMN VECTOR (SPECIFIC):

119 %

120 % In: 'varargin' Accepts any number of arguments in. Did not use

121 % the iscolumn command since it is not supported in

122 % older versions.

123

124

125 %% 1. VARIFY COLUMN VECTOR INPUT.

126

127 for ind=1:nargin

128 if (isvector(varargin{ind}) ˜= 1) | | ...

129 (size(varargin{ind},1) < length(varargin{ind}))

130 error(['Check input. Function requires vectors to be in ' ...

131 'column form.'])

132 end

133 end

134

135 %%%%% END SUBFUNCTION %%%

136

137

138

139 %%%%% START SUBFUNCTION %%%

140

141 function subfnc check freq cutoff(freqVector, deltaFreqVector)

142

143 %% CHECK DELTA FREQUENCY CUTOFF (SPECIFIC):

196

144 %

145 % In: 'freqVector' Frequency bin values.

146 % 'deltaFreqVector' Bandwidth of each frequency bin.

147

148

149 %% 1. ENSURE FINAL FREQUENCY VALUE FALLS ON RIGHT EDGE.

150

151 freqLength1 = freqVector(end) � freqVector(end�1);

152 freqLength2 = deltaFreqVector(end) + deltaFreqVector(end�1)/2;

153 if (freqLength2 � freqLength1)/freqLength1 > 0.05

154 error(['The cutoff frequency bin value should fall on the right ' ...

155 'edge. Check the final delta frequency value to ensure it is ' ...

156 'not centered.'])

157 end

158

159 %%%%% END SUBFUNCTION %%%

160

161

162

163 %%%%% START SUBFUNCTION %%%

164

165 function [flgReshape,nDimension] = subfnc check orientation(...

166 spec2dArrayNd, nFreq, nTheta)

167

168 %% CHECK ARRAY ORIENATION OF 2D DIRECTIONAL�FREQUENCY SPECTRA (SPECIFIC):

169 %

170 % In: 'spec2dArrayNd' 2D directional�frequency wave spectra with

171 % dimensions [nFreq nTheta].

172 % 'nFreq' Size of frequency bin.

173 % 'nTheta' Size of theta bin.

174 %

175 % Out: 'flgReshape' Flag indicates whether input array needs to be

176 % reshaped (1) or not (0).

197

177 % 'nDimension' Number of dimensions in 1D spectral array.

178

179

180 %% 1. CHECK DIMENSIONS AND ASSIGN FLAG.

181

182 nDimension = ndims(spec2dArrayNd); flgReshape = 0;

183

184 if nDimension == 1

185 error('The frequency�directional spectrum has a singleton dimension.')

186 elseif (nDimension == 2) && (min(size(spec2dArrayNd)) == 1)

187 error(['The frequency or directional component has a singleton ' ...

188 'dimension.'])

189 elseif nDimension > 2

190 flgReshape = 1;

191 end

192

193

194 %% 2. VERIFY ORIENTATION OF ARRAY.

195

196 if size(spec2dArrayNd,1) ˜= nFreq

197 error(['The frequency spectrum must be the first dimension in ' ...

198 'the 2D spectral input array.'])

199 elseif size(spec2dArrayNd,2) ˜= nTheta

200 error(['The directional spectrum must be the second dimension in ' ...

201 'the 2D spectral input array.'])

202 end

203

204 for indDimension=2:nDimension

205 if size(spec2dArrayNd,1) == size(spec2dArrayNd,indDimension)

206 disp(['Warning: Cannot determine if the array for the 2D ' ...

207 'directional�frequency spectrum is orientated correctly. ' ...

208 'Ensure the dimensions are [frequency, direction].'])

209 pause

198

210 end

211 end

212

213 if nDimension >=3

214 for indDimension=3:nDimension

215 if size(spec2dArrayNd,2) == size(spec2dArrayNd,indDimension)

216 disp(['Warning: Cannot determine if the array for the 2D ' ...

217 'directional�frequency spectrum is orientated ' ...

218 'correctly. Ensure the dimensions are [frequency, ' ...

219 'direction].'])

220 pause

221 end

222 end

223 end

224

225 %%%%% END SUBFUNCTION %%%

226

227

228

229 %%%%% START SUBFUNCTION %%%

230

231 function [outputArray, reshapeVector] = ...

232 subfnc reduce dimension(inputArray, indMin, indMax, flgReshape)

233

234 %% REDUCE ARRAY DIMENSION (GENERAL):

235 %

236 % In: 'inputArray' The array to be reshaped.

237 % 'indMin', 'indMax' The dimension delimiters for reshaping.

238 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

239 %

240 % Out: 'outputArray' The reshaped array (for flag == 1).

241 % 'shapeVector' Information containing old array dimensions.

242

199

243

244 %% 1. REDUCE DIMENSION OF ARRAY IF NECESSARY.

245

246 reshapeVector = [];

247

248 if flgReshape == 0

249 outputArray = inputArray;

250 elseif flgReshape == 1

251 nDimension = ndims(inputArray);

252 if (indMin < 1) | | (indMax > nDimension) | | (indMax <= indMin) | | ...

253 (indMin == 1 && indMax == nDimension)

254 error('Check dimension delimiters.')

255 end

256 for ind=1:nDimension

257 inputLength{ind} = size(inputArray, ind);

258 end

259 indReshape = [];

260 if indMin > 1

261 for ind=1:indMin�1;

262 indReshape = [indReshape inputLength{ind}];

263 end

264 end

265 nPoint = 1;

266 for ind=indMin:indMax

267 nPoint = nPoint * inputLength{ind};

268 reshapeVector = [reshapeVector inputLength{ind}];

269 end

270 indReshape = [indReshape nPoint];

271 if indMax < nDimension

272 for ind=indMax+1:nDimension

273 indReshape = [indReshape inputLength{ind}];

274 end

275 end

200

276 outputArray = reshape(inputArray, indReshape);

277 else

278 error('Flag incorrectly assigned.');

279 end

280

281 %%%%% END SUBFUNCTION %%%

282

283

284

285 %%%%% START SUBFUNCTION %%%

286

287 function [outputArray] = subfnc expand dimension(inputArray, indMin, ...

288 indMax, reshapeVector, flgReshape)

289

290 %% EXPAND ARRAY DIMENSION (GENERAL):

291 %

292 % In: 'inputArray' The array to be reshaped.

293 % 'indMin', 'indMax' The dimension delimiters for reshaping.

294 % 'flgReshape' Flag == 0 / 1 indicates no action / action.

295 % 'reshapeVector' Vector containing sizes of the new dimensions.

296 %

297 % Out: 'outputArray' The reshaped array (for flag == 1).

298

299

300 %% 1. EXPAND DIMENSION OF ARRAY IF NECESSARY.

301

302 if flgReshape == 0

303 outputArray = inputArray;

304 elseif flgReshape == 1

305 nReshapeVector = length(reshapeVector);

306 nDimensionInput = ndims(inputArray);

307 nDimensionOutput = nDimensionInput + nReshapeVector � 1;

308

201

309 if (indMin < 1) | | (indMax <= indMin) | | ...

310 (nReshapeVector ˜= indMax�indMin+1)

311 error('Check dimension delimiters.')

312 elseif (size(inputArray,indMin) ˜= prod(reshapeVector))

313 error('Number of elements in new array are not the same.')

314 end

315

316 for ind=1:nDimensionInput

317 inputLength(ind) = size(inputArray, ind);

318 end

319

320 expandVector = [];

321 if indMin > 1

322 for ind=1:indMin�1;

323 expandVector = [expandVector size(inputArray,ind)];

324 end

325 end

326 for ind=1:(indMax�indMin+1)

327 expandVector = [expandVector reshapeVector(ind)];

328 end

329 if indMax < nDimensionOutput

330 for ind=1:nDimensionOutput�indMax

331 expandVector = [expandVector inputLength(ind+indMin)];

332 end

333 end

334 outputArray = reshape(inputArray, expandVector);

335 else

336 error('Flag incorrectly assigned.');

337 end

338

339 %%%%% END SUBFUNCTION %%%

340

341

202

342

343 %%%%% START SUBFUNCTION %%%

344

345 function [sumStaticMatrix] = subfnc SD sum static(freqVector, ...

346 deltaFreqVector, depthVector, G)

347

348 %% SD STATIC SUM COMPONENTS (SPECIFIC):

349 %

350 % In: 'freqVector' Frequency bin values (centered except for end).

351 % 'deltaFreqVector' Bandwidth of each frequency bin.

352 % 'depthVector' Depth is defined as ABS(z).

353 % 'G' Gravity constant.

354 %

355 % Out: 'sumStaticMatrix' The static components of the 2Dh�SD sum.

356 % Dimensions are [sumStaticComponents,depth].

357

358

359 %% 1. CALCULATE STATIC SUM COMPONENTS.

360

361 INTEGRAND CONSTANT = 16 * piˆ3 / G;

362 nDepth = size(depthVector,1);

363 nFreq = size(freqVector,1);

364

365 betaMatrix = zeros(nFreq,nDepth);

366 for indDepth=1:nDepth

367 betaMatrix(:,indDepth) = 8 * piˆ2 / G * depthVector(indDepth) * ...

368 freqVector.ˆ2;

369 end

370

371 sumStaticMatrix = zeros(nFreq,nDepth);

372 for indDepth=1:nDepth

373 sumStaticMatrix(:,indDepth) = INTEGRAND CONSTANT * ...

374 deltaFreqVector .* freqVector.ˆ3 .* exp(�betaMatrix(:,indDepth));

203

375 end

376

377 %%%%% END SUBFUNCTION %%%

378

379

380

381 %%%%% START SUBFUNCTION %%%

382

383 function [tailStaticVector] = subfnc SD tail static(freqCutoff, ...

384 depthVector, G)

385

386 %% SD STATIC TAIL COMPONENT (SPECIFIC):

387 %

388 % In: 'freqCutoff' The frequency cutoff is the last frequency value.

389 % 'depthVector' Depth is defined as ABS(z).

390 % 'G' Gravity constant.

391 %

392 % Out: 'tailStaticVector' Static component of the SD tail calculation.

393

394

395 %% 1. CALCULATE STATIC TAIL COMPONENT.

396

397 INTEGRAND CONSTANT = 16 * piˆ3 / G ;

398

399 alphaVector = 8 * piˆ2 * depthVector / G ;

400 betaVector = alphaVector * freqCutoffˆ2 ;

401 erfcVector = 1 � erf(sqrt(betaVector)) ;

402

403 tailStaticVector = INTEGRAND CONSTANT * freqCutoffˆ4 * ...

404 (exp(�betaVector) � sqrt(pi * betaVector) .* erfcVector) ;

405

406 %%%%% END SUBFUNCTION %%%

204

F.2 Matlab RBF-FD model scripts and functions

1 %% STENCIL GENERATOR FOR THE RBF�FD WAVE MODEL: core generate stencil.m

2 % This program generates a stencil for the RBF�FD wave model on the sphere�ring

3 % geometry. Created by Adrean Webb.

4 %

5 % Requires: 'kdtree' package in addition to model files and MD node data.

6

7

8 %% 1. INTIALIZE MODEL WITH NON�VARIABLE SETTINGS.

9

10 close all; clear all; tic

11 model settings initialize;

12

13

14 %% 2. VARIABLE SETTINGS.

15

16 nXApprox = 3600; % APPROXIMATE NUMBER OF SPATIAL NODES.

17 nDir = 36 % NUMBER OF DIRECTIONS PER SPATIAL NODE.

18

19 epsilon0D = 3; % SHAPE PARAMETER

20 nXLocal = 17; nKLocal = 9; laplacianOrder0D = 4; laplacianDimension0D = 4;

21

22 % FINITE DIFFERENCE SETTINGS.

23 stencilSettings1D = [epsilon0D; nXLocal; nKLocal; laplacianOrder0D; ...

24 laplacianDimension0D];

25

26

27 %% 3. CREATE STRING NAME FOR STENCIL FILE.

28

29 FID SAVE = [PATH.STENCIL 'rbffd ' num2str(nXApprox) 'x' num2str(nXLocal) ...

205

30 ' ' fnc integer to string(nDir,2) 'd' num2str(nKLocal) ...

31 ' h' num2str(laplacianOrder0D) ' e' num2str(epsilon0D�mod(epsilon0D,1)) ...

32 'pt' num2str(10*mod(epsilon0D,1))]

33

34

35 %% 4. CREATE NORMALIZED SPATIAL NODES ON A SPHERE.

36

37 [xVector2D, nX] = fnc generate node spherical(nXApprox); nX

38 xVector2D = [xVector2D(:,3), xVector2D(:,1), xVector2D(:,2)];

39

40 xVectorSort2D = zeros(nX,4); xVectorSort2D(:,1:3) = xVector2D;

41 for ii=1:nX

42 xVectorSort2D(ii,4) = fnc norm great circle(xVectorSort2D(1,1:3), ...

43 xVectorSort2D(ii,1:3));

44 end

45

46 distanceFromReferenceNode = sortrows(xVectorSort2D,4);

47 deltaXApprox = distanceFromReferenceNode(2,4);

48

49

50 %% 5. CREATE NORMALIZED SPECTRAL NODES ON A RING.

51

52 deltaDir = 2*pi / nDir; % periodic

53 dirVector1D = [0:deltaDir:2*pi�deltaDir]';

54

55 nK = nDir; % REDUNDANT BUT WILL BE IMPORTANT FOR POLYCHROMATIC MODEL

56 kVector2D = [cos(dirVector1D) sin(dirVector1D)]; % UNIT VECTOR

57

58

59 %% 6. CREATE ALPHA VECTOR.

60

61 nAlpha = nX* nK;

62 alphaVector2D = zeros(nAlpha,5);

206

63

64 for indX=1:nX

65 indColumn = (nK * (indX � 1) + 1):(nK * indX)';

66 alphaVector2D(indColumn,:) = [xVector2D(indX,1) * ones(nK,1) ...

67 xVector2D(indX,2) * ones(nK,1) xVector2D(indX,3) * ones(nK,1) ...

68 kVector2D(:,1) kVector2D(:,2)];

69 end

70

71

72 %% 7. CREATE RBF DIFFERENTIAL MATRIX.

73

74 sparseStencil = fnc rbffd sphere ring(xVector2D, kVector2D, ...

75 alphaVector2D, stencilSettings1D);

76 toc

77

78 nodeSettings.nXApprox = nXApprox; nodeSettings.nX = nX;

79 nodeSettings.nDir = nDir; nodeSettings.nK = nK; nodeSettings.nAlpha = nAlpha;

80 nodeSettings.deltaXApprox = deltaXApprox; nodeSettings.deltaDir = deltaDir;

81

82 save(FID SAVE, 'xVector2D', 'dirVector1D', 'kVector2D', 'alphaVector2D', ...

83 'nodeSettings', 'stencilSettings1D', 'sparseStencil', '�v7.3')

1 %% RUN RBF�FD WAVE MODEL: core run gaussian half revolution.m

2 % This program runs the RBF�FD wave model on the sphere�ring geometry using a

3 % previously generated stencil. Created by Adrean Webb.

4

5

6 %% 1. INTIALIZE MODEL WITH NON�VARIABLE SETTINGS.

7

8 close all; clear all; tic

9 model settings initialize;

207

10

11

12 %% 2. VARIABLE SETTINGS FOR LOADING STENCILS.

13

14 nXApprox = 3600; % APPROXIMATE NUMBER OF SPATIAL NODES.

15 nDir = 36 % NUMBER OF DIRECTIONS PER SPATIAL NODE.

16 epsilon0D = 3; % SHAPE PARAMETER

17 nXLocal = 17; nKLocal = 9; laplacianOrder0D = 4; laplacianDimension0D = 4;

18

19

20 %% 3. VARIABLE SETTINGS FOR RUNNING.

21

22 gamma0D = �1e8; strGamma0D = 'n1p8'

23 timeScale0D = 0.2;

24 initialWidth0D = pi/3; boundaryWidth0D = pi/6;

25 initialLongitude0D = 0; initialLatitude0D = 0;

26 initialSpread0D = pi/3; initialDirection0D = 3*pi/18

27

28 % DETERMINE GROUP VELOCITY.

29 % kRingNorm0D = 4e�2 ; % (M/S) TYPICAL SWELL WITH PERIOD OF 10 SECONDS.

30 % groupVelocity0D = 0.5* sqrt(G / kRingNorm0D) ; % APPROXIMATELY 28 KM/HR.

31 % groupVelocity0D = groupVelocity0D / RADIUS EARTH

32 groupVelocity0D = 1 % TO SPEED UP TESTING; NTIME IS AUTOMATICALLY ADJUSTED.

33

34

35 %% 4. LOAD STENCIL DATA.

36

37 FID STENCIL = [PATH.STENCIL 'rbffd ' num2str(nXApprox) 'x' num2str(nXLocal) ...

38 ' ' fnc integer to string(nDir,2) 'd' num2str(nKLocal) ' h' num2str(laplacianOrder0D) ...

39 ' e' num2str(epsilon0D�mod(epsilon0D,1)) 'pt' num2str(10*mod(epsilon0D,1)) 'b']

40

41 load(FID STENCIL)

42

208

43 nX = nodeSettings.nX; nK = nodeSettings.nK; nAlpha = nodeSettings.nAlpha;

44 deltaXApprox = nodeSettings.deltaXApprox; deltaDir = nodeSettings.deltaDir;

45

46

47 %% 5. CREATE RBF�FD SPARSE MATRICES.

48

49 dXMatrix2D = sparseStencil.dX1 + sparseStencil.dX2 + sparseStencil.dX3 ...

50 + sparseStencil.dK1 + sparseStencil.dK2 ;

51 dXMatrix2D = groupVelocity0D * dXMatrix2D;

52

53 damping0D = gamma0D * (nAlpha)ˆ(�laplacianOrder0D);

54 dissipation2D = damping0D * sparseStencil.dissipation;

55 toc

56

57

58 %% 6. DISCRETIZE TIME.

59

60 deltaTime = timeScale0D * 2*pi/sqrt(nXApprox) / groupVelocity0D;

61 nTime = ceil(sqrt(nXApprox) / 2 / timeScale0D / groupVelocity0D + 1)

62

63

64 %% 7. CREATE INITIAL CONDITIONS.

65

66 initialWaveAction1D = fnc initial conditions gaussian(alphaVector2D, nDir, ...

67 initialWidth0D, initialLongitude0D, initialLatitude0D, ...

68 initialDirection0D, initialSpread0D);

69

70 % % % CHECK INITIAL CONDITIONS

71 % % figure; plot3k(xVector2D,'ColorData',initialWaveAction1D(indDirection1D), ...

72 % % 'ColorRange',[�.1 1.1],'Marker',{'o',10}); axis equal;

73 % % view([cos(initialLongitude0D) sin(initialLongitude0D) sin(initialLatitude0D)])

74 % % title('Initial conditions'); xlabel('x'); ylabel('y'); zlabel('z'); pause

75

209

76

77 %% 8. CREATE POLAR BOUNDARIES.

78

79 boundary1D = fnc boundary attenuation gaussian(alphaVector2D,boundaryWidth0D);

80

81 % % % CHECK BOUNDARY ATTENUATION

82 % % figure; plot3(atan2(alphaVector2D(indDirection1D,2), ...

83 % % 180/pi* alphaVector2D(indDirection1D,1)), ...

84 % % 180/pi* asin(alphaVector2D(indDirection1D,3)), ...

85 % % boundary1D(indDirection1D),'.'); title('Boundary attenuation');

86 % % xlabel('longitude'); ylabel('latitude'); zlabel('attenuation'); view([1 0 0]);

87 % % figure; plot3k(xVector2D, 'ColorData', boundary1D(indDirection1D), ...

88 % % 'ColorRange', [�.1 1.1], 'Marker', {'o',10}); title('Boundary attenuation');

89 % % xlabel('x'); ylabel('y'); zlabel('x'); pause

90

91

92 %% 9. TIME STEP USING EXPLICIT RK4.

93

94 rhsOperator = @(currentSolution2D) (dXMatrix2D * currentSolution2D + ...

95 dissipation2D * currentSolution2D);

96

97 waveAction2D = zeros(nAlpha,nTime); waveAction2D(:,1) = initialWaveAction1D;

98 waveAction2D(:,1) = boundary1D .* waveAction2D(:,1);

99

100 for indTime=2:nTime

101 stage1 = deltaTime * rhsOperator(waveAction2D(:,indTime�1));

102 stage2 = deltaTime * rhsOperator(waveAction2D(:,indTime�1) + 0.5*stage1);

103 stage3 = deltaTime * rhsOperator(waveAction2D(:,indTime�1) + 0.5*stage2);

104 stage4 = deltaTime * rhsOperator(waveAction2D(:,indTime�1) + stage3);

105

106 waveAction2D(:,indTime) = waveAction2D(:,indTime�1) + 1/6 * ...

107 (stage1 + 2*stage2 + 2*stage3 + stage4);

108 waveAction2D(:,indTime) = boundary1D .* waveAction2D(:,indTime);

210

109 end

110 toc

111

112

113 %% 10. SAVE OUTPUT.

114

115 runSettings = struct('initialWidth0D', initialWidth0D, ...

116 'boundaryWidth0D', boundaryWidth0D, ...

117 'initialLongitude0D', initialLongitude0D, ...

118 'initialLatitude0D', initialLatitude0D, ...

119 'initialDirection0D', initialDirection0D, ...

120 'initialSpread0D', initialSpread0D, ...

121 'groupVelocity0D', groupVelocity0D, 'gamma0D', gamma0D, ...

122 'damping0D', damping0D, 'deltaTime', deltaTime, 'nTime', nTime);

123

124 FID SAVE = [PATH.WORK 'waveAction2D B Half Exp ' num2str(nXApprox) 'x' ...

125 num2str(nXLocal) ' ' fnc integer to string(nDir,2) 'd' num2str(nKLocal) ...

126 ' h' num2str(laplacianOrder0D) strGamma0D ' e' num2str(epsilon0D�mod(epsilon0D,1)) ...

127 'pt' num2str(10*mod(epsilon0D,1)) ...

128 ' i' fnc integer to string(int8(initialDirection0D*180/pi),3) ...

129 ' s' num2str(round(initialSpread0D*180/pi)) ' a' num2str(round(timeScale0D*10)) ...

130 ' b' num2str(ceil(boundaryWidth0D/pi*180))]

131

132 save(FID SAVE, 'xVector2D', 'dirVector1D', 'kVector2D', 'alphaVector2D', ...

133 'nodeSettings', 'stencilSettings1D', 'runSettings', 'waveAction2D')

134

135 totalMinutes = toc/60

1 function attenuation1D = fnc boundary attenuation gaussian(alphaVector2D, ...

2 width0D)

3

211

4 %% CREATE POLAR BOUNDARIES:

5 % This function generates an attenuation filter for the polar boundaries in the

6 % sphere�ring geometry. Created by Adrean Webb.

7 %

8 % Requires: Nothing.

9

10

11 %% 1. INITIALIZE.

12

13 nAlpha = length(alphaVector2D);

14 attenuation1D = zeros(nAlpha,1);

15

16

17 %% 2. CONVERT TO GEOPHYSICAL COORDINATES.

18

19 lambdaVector1D = atan2(alphaVector2D(:,2),alphaVector2D(:,1));

20 phiVector1D = asin(alphaVector2D(:,3));

21

22

23 %% 3. CREATE RHO VECTORS.

24

25 northRhoVector1D = acos(sin(phiVector1D));

26 southRhoVector1D = acos(� sin(phiVector1D));

27

28

29 %% 4. CREATE GAUSSIAN BELL WITH SPECIFIED WIDTH.

30

31 northExponentialTerm1D = 9/2/ width0D* northRhoVector1D;

32 southExponentialTerm1D = 9/2/ width0D* southRhoVector1D;

33

34 northGaussianBell1D = exp(� northExponentialTerm1D.ˆ2);

35 southGaussianBell1D = exp(� southExponentialTerm1D.ˆ2);

36

212

37

38 %% 5. CREATE ATTENUATION VECTOR.

39

40 northNorm0D = max(northGaussianBell1D(alphaVector2D(:,3) > 0));

41 southNorm0D = max(southGaussianBell1D(alphaVector2D(:,3) < 0));

42

43 attenuation1D(alphaVector2D(:,3)>0) = ...

44 northGaussianBell1D(alphaVector2D(:,3)>0) / northNorm0D * 4/3;

45 attenuation1D(alphaVector2D(:,3)<0) = ...

46 southGaussianBell1D(alphaVector2D(:,3)<0) / southNorm0D * 4/3;

47

48 attenuation1D = 1 � attenuation1D;

49 attenuation1D(attenuation1D<0) = 0;

50

51

52 %%%%% END OF FUNCTION %%%

1 function [nodeMatrix, nNode] = fnc node generate spherical(nApproxNode, radius)

2

3 %% SPHERICAL NODE GENERATOR:

4 % Creates maximal determinant (MD) nodes (on a sphere) with a specifed radius in

5 % Cartesian coordinates based on the approximate number of nodes needed.

6 %

7 % Requires: 'kdtree' package, MD node data, and 'model settings.mat' file.

8 %

9 % function [NODEMATRIX, NNODE] = node generate spherical md(NAPPROXNODE, RADIUS)

10 %

11 % IN: 'NAPPROXNODE' Approximate number of nodes to use.

12 % 'RADIUS' Radius of the sphere. Default is '1'.

13 %

14 % OUT: 'NODEMATRIX' Nodes returned in Cartesian coordinate form as

213

15 % [x1Vector x2Vector x3Vector].

16 % 'NNODE' Number of actual nodes used (optional)

17 %

18 % NOTES: Path to MD node data directory is set in file

19 % 'model settings initialize.m'.

20

21

22 %% 1. CHECK INPUT.

23

24 if exist('radius') ˜= 1; radius = 1; end

25

26

27 %% 2. DETERMINE CORRECT FILE TO LOAD.

28

29 % POLYNOMIAL DEGREE USED TO SOLVE THE MAXIMUM DETERMINANT

30 polyDegree = ceil(sqrt(nApproxNode)) � 1;

31 polyDegreeString = sprintf('%03d',polyDegree);

32

33 nNode = (polyDegree + 1)ˆ2;

34 nNodeString = sprintf('%05d', nNode);

35

36

37 %% 3. LOAD DATA.

38

39 load('model settings', 'PATH')

40 fileDataString = [PATH.DATA MD 'md' polyDegreeString '.' nNodeString]

41 fidData = fopen(fileDataString,'r');

42

43 textBody = textscan(fidData,'%f %f %f %f',nNode);

44

45 x1Vector = textBody{1}; x2Vector = textBody{2}; x3Vector = textBody{3};

46 xMatrix = [x1Vector x2Vector x3Vector];

47

214

48 fclose(fidData);

49

50

51 %% 4. DEFINE OUTPUT.

52

53 nodeMatrix = radius * xMatrix;

54

55

56 %%%%% END OF FUNCTION %%%

1 function initialConditions1D = fnc initial conditions gaussian(...

2 alphaVector2D, nDir, width0D, centerLongitude0D, centerLatitude0D, ...

3 initialDirection0D, initialSpread0D)

4

5 %% CREATE INITIAL CONDITIONS:

6 % This function generates spatial and spectral Gaussian bell initial conditions

7 % for the sphere�ring geometry. Created by Adrean Webb.

8 %

9 % Requires: Nothing.

10

11

12 %% 1. INITIALIZE.

13

14 nAlpha = length(alphaVector2D); nX = nAlpha / nDir;

15 initialConditions1D = zeros(nAlpha,1);

16 deltaDir = 2*pi / nDir; dirVector1D = [0:deltaDir:2*pi�deltaDir]';

17

18 % CONVERT TO GEOPHYSICAL COORDINATES.

19 lambdaVector1D = atan2(alphaVector2D(:,2),alphaVector2D(:,1));

20 phiVector1D = asin(alphaVector2D(:,3));

21

215

22 % CREATE RHO VECTOR.

23 rhoVector1D = acos(sin(centerLatitude0D) * sin(phiVector1D) + ...

24 cos(centerLatitude0D) * cos(phiVector1D) .* ...

25 cos(lambdaVector1D � centerLongitude0D * ones(nAlpha,1))) ;

26

27

28 %% 2. CREATE GAUSSIAN BELL WITH SPECIFIED CENTER AND WIDTH.

29

30 exponentialTermAmplitude1D = 9/2/ width0D * rhoVector1D ;

31 gaussianBellAmplitude1D = exp(� exponentialTermAmplitude1D.ˆ2);

32

33

34 %% 3. CREATE GAUSSIAN BELL IN SPECTRAL DOMAIN.

35

36 spreadVector1D = dirVector1D � initialDirection0D * ones(nDir,1);

37 spreadVector1D(spreadVector1D < �pi) = ...

38 spreadVector1D(spreadVector1D < �pi) + 2*pi;

39 spreadVector1D(spreadVector1D > pi) = ...

40 spreadVector1D(spreadVector1D > pi) � 2*pi;

41

42 exponentialTermSpread1D = 9/2/ initialSpread0D * spreadVector1D ;

43 gaussianBellSpread1D = exp(� exponentialTermSpread1D.ˆ2);

44

45 %% 4. COMBINE GAUSSIAN BELLS.

46

47 for ind=1:nX

48 indSpread = ((nDir*(ind�1)+1):nDir*ind)';

49 initialConditions1D(indSpread,1) = ...

50 gaussianBellAmplitude1D(indSpread,1) .* gaussianBellSpread1D;

51 end

52

53

54 %%%%% END OF FUNCTION %%%

216

1 function [distance] = fnc norm great circle(node1, node2)

2

3 %% GREAT�CIRCLE DISTANCE:

4 % Calculates the shortest distance on a sphere between any two nodes. Nodes are

5 % in Cartesian [x y z] form.

6 %

7 % Requires: nothing.

8 %

9 % function [DISTANCE] = norm great circle(NODE1, NODE2)

10 %

11 % IN: 'NODE*' A matrix of Cartesian points with size(NODE*) = (N,3).

12 %

13 % OUT: 'DISTANCE' The shortest great�circle distance between two Cartesian

14 % node matrices with size(DISTANCE) = (N,1).

15

16

17 %% 1. CALCULATE DISTANCE.

18

19 crossProduct = cross(node1,node2);

20 crossProductMagnitude = sqrt(sum(crossProduct.ˆ2,2));

21 dotProduct = sum(node1.*node2,2);

22

23 distance = atan2(crossProductMagnitude,dotProduct);

24

25

26 %%%%% END OF FUNCTION %%%

1 function [strPad] = fnc integer to string(integerValue, nChar)

217

2

3 %% CONVERT INTEGER TO PADDED STRING:

4 % This function saves the hassle of remembering the necessary format for

5 % converting an integer into a padded string for file loading and saving.

6 % Created by Adrean Webb.

7 %

8 % Requires: Nothing.

9 %

10 % function [strPad] = fnc integer to string(integerValue, nChar)

11 %

12 % In: 'integerValue' Integer value to be checked/converted.

13 % 'nChar' Number of characters for final string.

14 %

15 % Out: 'strPad' Numeric string padded with zeros.

16

17

18 %% 1. CHECK INPUT ARGUMENTS.

19

20 if (mod(integerValue,1) ˜= 0)

21 error('Input must be an integer value.')

22 elseif (integerValue >= 10ˆnChar)

23 error('Input is larger than output.')

24 end

25

26

27 %% 2. CONVERT TO STRING AND PAD WITH ZEROS IF NECESSARY.

28

29 strFormat = ['%0' num2str(nChar) '.0f'];

30 strPad = num2str(integerValue,strFormat);

31

32

33 %%%%% END OF FUNCTION %%%

218

1 function sparse2D = fnc rbffd sphere ring(xVector2D, kVector2D, ...

2 alphaVector2D, stencilSettings1D)

3

4 %% CREATE RBF DIFFERENTIAL MATRIX FOR RING�POINT GEOMETRY.

5 % This function generates the differential matrix for the wave action balance

6 % equation on the ring�point geometry. Created by Adrean Webb.

7 %

8 % Requires: 'kD�tree' package.

9 %

10 % function [DXMATRIX2D, ACONDITION0D] = FNC RBF RING POINT(XVECTOR2D, ...

11 % RSQUARED2D, EPSILON, GROUPVELOCITY)

12 %

13 % IN: 'XVECTOR2D' 2D spatial nodes.

14 % Given as radius * [cos(theta) sin(theta)].

15 % 'EPSILON' The shape parameter value.

16 % 'GROUPVELOCITY' The group velocity for propagation.

17 %

18 % OUT: 'DXMATRIX2D' The combined dX and dY differential matrix.

19 % 'ACONDITION0D' The condition number of the 'A Matrix' to invert.

20

21

22 %% 1. CHECK INPUT AND DEFINE VARIABLES.

23

24 epsilon0D = stencilSettings1D(1); nXLocal = stencilSettings1D(2);

25 nKLocal = stencilSettings1D(3); laplacianOrder0D = stencilSettings1D(4);

26 laplacianDimension0D = stencilSettings1D(5);

27

28 nX = size(xVector2D,1); nK = size(kVector2D,1); nAlpha = size(alphaVector2D,1);

29 nAlphaLocal = nXLocal * nKLocal

30

31 if (nAlphaLocal > nAlpha)

32 error('Stencil size must be smaller than number of nodes.')

219

33 end

34

35

36 %% 2. DEFINE RBFS.

37

38 rbf = @(epsilon,rSquared) exp(�epsilonˆ2 * rSquared);

39 dRbfBase = @(epsilon,rSquared) �2*epsilonˆ2 * exp(�epsilonˆ2 *rSquared);

40

41

42 %% 3. INITIALIZE SPARSE ARRAYS.

43

44 aMatrix2D = ones(nAlphaLocal+1,nAlphaLocal+1); aMatrix2D(end,end) = 0;

45 bVectorRow1D = zeros(1,nAlphaLocal+1);

46

47 sparseColumn1D = zeros(nAlpha*nAlphaLocal,1);

48 sparseRow1D = zeros(nAlpha*nAlphaLocal,1);

49

50 dX1Vector1D = zeros(nAlpha*nAlphaLocal,1);

51 dX2Vector1D = zeros(nAlpha*nAlphaLocal,1);

52 dX3Vector1D = zeros(nAlpha*nAlphaLocal,1);

53 dK1Vector1D = zeros(nAlpha*nAlphaLocal,1);

54 dK2Vector1D = zeros(nAlpha*nAlphaLocal,1);

55 dissipation1D = zeros(nAlpha*nAlphaLocal,1);

56

57 aCondition1D = zeros(nAlpha,1);

58

59

60 %% 4. CREATE INDIVIDUAL STENCILS.

61

62 nearestKHalf = (nKLocal � 1)/2;

63 treeRoot = kdtree build(xVector2D);

64

65 for indX=1:nX

220

66

67 % FIND NEAREST NEIGHBORS.

68 nearestXIndex = kdtree k nearest neighbors(treeRoot, ...

69 xVector2D(indX,:)', nXLocal);

70 nearestXIndex = nearestXIndex(nXLocal:�1:1);

71

72 for indK=1:nK

73 nearestKIndex = (indK:(indK + nearestKHalf))';

74 nearestKIndex = [nearestKIndex;[(indK � nearestKHalf):(indK � 1)]'];

75 nearestKIndex(nearestKIndex<1) = nearestKIndex(nearestKIndex<1) + nK;

76 nearestKIndex(nearestKIndex>nK) = nearestKIndex(nearestKIndex>nK) � nK;

77

78 nearestAlphaIndex = [];

79 for indXLocal=1:nXLocal

80 nearestAlphaIndex = [nearestAlphaIndex; ...

81 (nK*(nearestXIndex(indXLocal) � 1)*ones(nKLocal,1) + ...

82 nearestKIndex)];

83 end

84

85 indAlpha = nK*(indX � 1) + indK;

86 sparseIndex = (((indAlpha�1)* nAlphaLocal + 1):(indAlpha* nAlphaLocal))';

87 sparseColumn1D(sparseIndex) = indAlpha;

88 sparseRow1D(sparseIndex) = nearestAlphaIndex;

89

90 % CREATE LOCAL X VECTOR.

91 alphaVectorLocal2D = alphaVector2D(nearestAlphaIndex,:);

92 alphaStencil1D = alphaVectorLocal2D(1,:)';

93

94 % CREATE LOCAL DIFFERENCE MATRICES.

95 [x1Vertical2D, x1Horizontal2D] = ndgrid(alphaVectorLocal2D(:,1), ...

96 alphaVectorLocal2D(:,1));

97 [x2Vertical2D, x2Horizontal2D] = ndgrid(alphaVectorLocal2D(:,2), ...

98 alphaVectorLocal2D(:,2));

221

99 [x3Vertical2D, x3Horizontal2D] = ndgrid(alphaVectorLocal2D(:,3), ...

100 alphaVectorLocal2D(:,3));

101 [k1Vertical2D, k1Horizontal2D] = ndgrid(alphaVectorLocal2D(:,4), ...

102 alphaVectorLocal2D(:,4));

103 [k2Vertical2D, k2Horizontal2D] = ndgrid(alphaVectorLocal2D(:,5), ...

104 alphaVectorLocal2D(:,5));

105

106 % CALCULATE RADIAL DISTANCE FOR THE RBF DIFFERENCE MATRIX.

107 rSquared2D = (x1Vertical2D � x1Horizontal2D).ˆ2 + ...

108 (x2Vertical2D � x2Horizontal2D).ˆ2 + ...

109 (x3Vertical2D � x3Horizontal2D).ˆ2 + ...

110 (k1Vertical2D � k1Horizontal2D).ˆ2 + ...

111 (k2Vertical2D � k2Horizontal2D).ˆ2;

112 rSquaredRow1D = rSquared2D(1,:);

113

114 x1VerticalRow1D = x1Vertical2D(1,:); x1HorizontalRow1D = ...

115 x1Horizontal2D(1,:);

116 x2VerticalRow1D = x2Vertical2D(1,:); x2HorizontalRow1D = ...

117 x2Horizontal2D(1,:);

118 x3VerticalRow1D = x3Vertical2D(1,:); x3HorizontalRow1D = ...

119 x3Horizontal2D(1,:);

120 k1VerticalRow1D = k1Vertical2D(1,:); k1HorizontalRow1D = ...

121 k1Horizontal2D(1,:);

122 k2VerticalRow1D = k2Vertical2D(1,:); k2HorizontalRow1D = ...

123 k2Horizontal2D(1,:);

124

125 clear x1Vertical2D x2Vertical2D x3Vertical2D k1Vertical2D ...

126 k2Vertical2D x1Horizontal2D x2Horizontal2D x3Horizontal2D ...

127 k1Horizontal2D k2Horizontal2D

128

129 % CALCULATE NORM FOR DIFFERENTIATION VECTOR.

130 normXY0D = sqrt(alphaStencil1D(1)ˆ2 + alphaStencil1D(2)ˆ2);

131

222

132 % CALCULATE DIFFERENTIATION VECTORS.

133 aMatrix2D(1:nAlphaLocal,1:nAlphaLocal) = rbf(epsilon0D,rSquared2D);

134 [lowerAMatrix2D,upperAMatrix2D,permutationAMatrix2D] = lu(aMatrix2D);

135

136 bVectorRow1D(1,1:nAlphaLocal) = ...

137 (alphaStencil1D(2) * alphaStencil1D(4) + ...

138 alphaStencil1D(1) * alphaStencil1D(3) * alphaStencil1D(5)) / ...

139 normXY0D * x1HorizontalRow1D ;

140 bVectorRow1D(1,1:nAlphaLocal) = bVectorRow1D(1,1:nAlphaLocal) .* ...

141 dRbfBase(epsilon0D,rSquaredRow1D);

142 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

143 (permutationAMatrix2D * bVectorRow1D'));

144 dX1Vector1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

145

146 bVectorRow1D(1,1:nAlphaLocal) = ...

147 � (alphaStencil1D(1) * alphaStencil1D(4) � ...

148 alphaStencil1D(2) * alphaStencil1D(3) * alphaStencil1D(5)) / ...

149 normXY0D * x2HorizontalRow1D ;

150 bVectorRow1D(1,1:nAlphaLocal) = bVectorRow1D(1,1:nAlphaLocal) .* ...

151 dRbfBase(epsilon0D,rSquaredRow1D);

152 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

153 (permutationAMatrix2D * bVectorRow1D'));

154 dX2Vector1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

155

156 bVectorRow1D(1,1:nAlphaLocal) = � alphaStencil1D(5) * normXY0D * ...

157 x3HorizontalRow1D ;

158 bVectorRow1D(1,1:nAlphaLocal) = bVectorRow1D(1,1:nAlphaLocal) .* ...

159 dRbfBase(epsilon0D,rSquaredRow1D);

160 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

161 (permutationAMatrix2D * bVectorRow1D'));

162 dX3Vector1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

163

164 bVectorRow1D(1,1:nAlphaLocal) = ...

223

165 � alphaStencil1D(3) * alphaStencil1D(4) * alphaStencil1D(5) / ...

166 normXY0D * k1HorizontalRow1D;

167 bVectorRow1D(1,1:nAlphaLocal) = bVectorRow1D(1,1:nAlphaLocal) .* ...

168 dRbfBase(epsilon0D,rSquaredRow1D);

169 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

170 (permutationAMatrix2D * bVectorRow1D'));

171 dK1Vector1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

172

173 bVectorRow1D(1,1:nAlphaLocal) = ...

174 alphaStencil1D(3) * alphaStencil1D(4)ˆ2 / ...

175 normXY0D * k2HorizontalRow1D ;

176 bVectorRow1D(1,1:nAlphaLocal) = bVectorRow1D(1,1:nAlphaLocal) .* ...

177 dRbfBase(epsilon0D,rSquaredRow1D);

178 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

179 (permutationAMatrix2D * bVectorRow1D'));

180 dK2Vector1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

181

182 % CALCULATE DISSIPATION VECTOR.

183 bVectorRow1D(1:nAlphaLocal) = epsilon0Dˆ(2*laplacianOrder0D) * ...

184 fnc hyperviscosity(epsilon0Dˆ2 * rSquaredRow1D', ...

185 laplacianOrder0D, laplacianDimension0D) .* ...

186 exp(�epsilon0Dˆ2 * rSquaredRow1D)';

187 weight1D = upperAMatrix2D \ (lowerAMatrix2D \ ...

188 (permutationAMatrix2D * bVectorRow1D'));

189 dissipation1D(sparseIndex) = weight1D(1:nAlphaLocal,1);

190

191 aCondition1D(indAlpha,1) = cond(aMatrix2D);

192 end

193 end

194

195

196 %% 5. ASSEMBLE INDIVIDUAL STENCILS INTO SPARSE MATRICES.

197

224

198 sparse2D.dX1 = sparse(sparseColumn1D, sparseRow1D, dX1Vector1D, nAlpha, nAlpha);

199 sparse2D.dX2 = sparse(sparseColumn1D, sparseRow1D, dX2Vector1D, nAlpha, nAlpha);

200 sparse2D.dX3 = sparse(sparseColumn1D, sparseRow1D, dX3Vector1D, nAlpha, nAlpha);

201 sparse2D.dK1 = sparse(sparseColumn1D, sparseRow1D, dK1Vector1D, nAlpha, nAlpha);

202 sparse2D.dK2 = sparse(sparseColumn1D, sparseRow1D, dK2Vector1D, nAlpha, nAlpha);

203

204 sparse2D.dissipation = sparse(sparseColumn1D, sparseRow1D, dissipation1D, ...

205 nAlpha, nAlpha);

206

207 sparse2D.condition0D = mean(aCondition1D);

208

209

210 %%%%% END OF FUNCTION %%%

1 %% ENVIRONMENT INITIALIZATION: model settings initialize.m

2 % Defines environment necessary to run scripts. Data is saved in

3 % 'model settings.mat' for quick matlab reference. Created by Adrean Webb.

4

5

6 %% 1. CONSTANTS.

7

8 G = 9.81; % gravity (m/s2)

9 RADIUS EARTH = 6.37e6; % (M)

10

11

12 %% 2. FILE PATHS.

13

14 PATH.MAIN = '/Users/adrean/Research/Projects/RBF Spectral Wave Model/';

15 PATH.DATA MD = [PATH.MAIN 'Data/MD Nodes/'];

16

17 PATH.EXEC = [PATH.MAIN 'Matlab/Dissertation Code/'];

225

18 PATH.FIGURE = [PATH.EXEC '[Figures]/'];

19 PATH.WORK = [PATH.EXEC '[Work]/'];

20 PATH.STENCIL = [PATH.EXEC '[Stencils]/'];

21

22

23 %% 3. SAVE SETTINGS.

24

25 save model settings

1 %% PLOT RBF�FD WAVE MODEL OUTPUT: plot spectra gaussian error initial direction.m

2 % This sample program plots output from the RBF�FD wave model.

3 % Created by Adrean Webb.

4

5

6 %% 1. LOAD WAVE ACTION DATA.

7

8 clear all; close all

9 model settings initialize;

10

11 initialDirectionDeg0D = 30

12

13 strHyper = 'h4n1p8';

14 strAValue = 'a2';

15 strX = '3600x17';

16 strK = '36d9';

17 strEpsilon = 'e3pt0';

18 strSpread = 's60';

19 strBoundary = 'b30';

20

21 strInitialDirection = ['i' fnc integer to string(initialDirectionDeg0D,3)];

22 initialDirectionBin0D = initialDirectionDeg0D/10 + 1;

226

23

24 FID DATA = ['[Work]/waveAction2D B Half Exp ' strX ' ' strK ' ' strHyper ' ' ...

25 strEpsilon ' ' strInitialDirection ' ' strSpread ' ' strAValue ' ' ...

26 strBoundary '.mat']

27 load(FID DATA)

28

29 nAlpha = size(alphaVector2D,1); nX = size(xVector2D,1);

30 nDir = size(dirVector1D,1); nK = size(kVector2D,1);

31

32

33 %% 2. LOAD RUN SETTINGS.

34

35 initialWidth0D = runSettings.initialWidth0D;

36 initialLongitude0D = runSettings.initialLongitude0D;

37 initialLatitude0D = runSettings.initialLatitude0D;

38 initialDirection0D = runSettings.initialDirection0D;

39 initialSpread0D = runSettings.initialSpread0D;

40 groupVelocity0D = runSettings.groupVelocity0D;

41 deltaTime = runSettings.deltaTime;

42 nTime = runSettings.nTime;

43

44

45 %% 3. DEFINE WAVE ACTION.

46

47 waveAction2D(:,nTime+1) = zeros(nAlpha,1);

48 waveAction2D(:,2:nTime+1) = waveAction2D(:,1:nTime);

49

50

51 %% 4. CREATE INITIAL CONDITIONS.

52

53 finalLongitude0D = initialLongitude0D + pi;

54 finalLatitude0D = initialLatitude0D;

55 finalDirection0D = �initialDirection0D;

227

56 finalDirectionBin0D = mod(nDir + 1 � initialDirectionBin0D,nDir) + 1;

57

58 analyticWaveAction1D = fnc initial conditions gaussian(alphaVector2D, nDir, ...

59 initialWidth0D, finalLongitude0D, finalLatitude0D, ...

60 finalDirection0D, initialSpread0D);

61

62

63 %% 5. CALCULATE ERROR.

64

65 residual1D = waveAction2D(:,end) � analyticWaveAction1D;

66

67 for tt=1:nX

68 indDir = nDir*(tt�1)+1:nDir*tt;

69 analyticNormInf1D(tt,1) = max(abs(analyticWaveAction1D(indDir)));

70 analyticNormTwo1D(tt,1) = sum(analyticWaveAction1D(indDir).ˆ2);

71 residualInf1D(tt,1) = max(abs(residual1D(indDir)));

72 residualTwo1D(tt,1) = sum(residual1D(indDir).ˆ2);

73 end

74

75 relativeErrorInf1D = residualInf1D ./ max(analyticNormInf1D);

76 relativeErrorTwo1D = residualTwo1D ./ max(analyticNormTwo1D);

77

78 max(relativeErrorTwo1D)*10000

79 colorScaleTwo0D = ceil(max(relativeErrorTwo1D)*10000);

80

81 handleFigure1 = figure; strLegend = [];

82 set(gcf, 'Position', [500 400 600 400], 'Color', 'w') % [l b w h]

83

84

85 %% 6. CREATE COLORMAP.

86

87 redratio = 0.6; blueratio = 0.9; greenratio = 0.9;

88 nRows = 64; cmap =zeros(nRows,3);

228

89 greenness = 0; redness = 0; blueness = 0; stepsize = 1/(nRows�1);

90 for i=2:nRows

91 greenness = greenness + stepsize*greenratio; cmap(i,2) = greenness;

92 redness = redness + stepsize*redratio; cmap(i,[1]) = redness;

93 blueness = blueness + stepsize*blueratio; cmap(i,[3]) = blueness;

94 end

95 cmap = cmap(end:�1:1,:);

96 colormap(cmap)

97

98

99 %% 7. PLOT AND SAVE OUTPUT.

100

101 plot3k(xVector2D, 'ColorData', relativeErrorTwo1D*10000, ...

102 'ColorRange', [0 colorScaleTwo0D], 'CBLabels', 5, 'Marker', {'o',12}, 'Labels',{'','','','','

10**(�4)'});

103 axis equal; view([�1 0 0])

104

105 xlabel('x', 'interpreter', 'latex');

106 ylabel('y', 'interpreter', 'latex');

107 zlabel('z', 'interpreter', 'latex');

108

109 set(gca,'XTick',[�1 �0.5 0 0.5 1])

110 set(gca,'YTick',[�1 �0.5 0 0.5 1])

111 set(gca,'ZTick',[�1 �0.5 0 0.5 1])

112

113 title(['Initial direction = ' num2str(initialDirectionDeg0D) '{\circ}']);

114

115 set(gca,'FontSize',18, 'FontName', 'Times New Roman');

116 set(findall(gcf,'type','text'),'FontSize',18, 'FontName', 'Times New Roman');

117

118 FID SAVE = ['[Figures]/Ch4 Case5 Error B ' strX ' ' strK ' ' strHyper ' ' ...

119 strEpsilon ' ' strInitialDirection ' ' strSpread ' ' strAValue ' ' ...

120 strBoundary '.png']

229

121

122 export fig(FID SAVE, '�m2')

